矩阵的初等变换与线性方程组的求解.
§1 矩阵的初等变换
1 2
3
4
÷2
(1)
解
1↔ 2 3 ÷2
(1)
x1 + x2 − 2 x3 + x4 = 4, 2 x − x − x + x = 2, 1 2 3 4 2 x1 − 3 x2 + x3 − x4 = 2, 3 x1 + 6 x2 − 9 x3 + 7 x4 = 9, x1 + x2 − 2 x3 + x4 = 4, 2 x − 2 x + 2 x = 0, 2 3 4 − 5 x2 + 5 x3 − 3 x4 = −6, 3 x 2 − 3 x 3 + 4 x 4 = − 3,
r2 − r3
1 0 0 0
4 3 = B5 0 1 −3 0 0 0
x1 = x3 + 4 B 5 对应的方程组为 x2 = x3 + 3 x = −3 4
或令 x 3 = c , 方程组的解可记作
x1 c + 4 1 4 x2 c + 3 1 3 x= = = c 1 + 0 x3 c 0 − 3 x −3 4
1 2Βιβλιοθήκη 34 1 23
( B3 )
3
4
↔4 −23
( B4 )
4
用“回代”的方法求出解: 回代”的方法求出解:
解得 x1 = x3 + 4, x2 = x3 + 3, x4 = −3, x3可任意取值 . x1 = c + 4 x = c + 3 令x3 = c , 方程组的解为 2 x3 = c x4 = − 3
矩阵的初等变换与线性方程组
第三章 矩阵的初等变换与线性方程组说明与要求:上一章已经介绍了求解线性方程组的克莱姆法则.虽然克莱姆法则在理论上具有重要的意义,但是利用它求解线性方程组,要受到一定的限制.首先,它要求线性方程组中方程的个数与未知量的个数相等,其次还要求方程组的系数行列式不等于零.即使方程组具备上述条件,在求解时,也需计算n +1个n 阶行列式.由此可见,应用克莱姆法则只能求解一些较为特殊的线性方程组且计算量较大.本章讨论一般的n 元线性方程组的求解问题.一般的线性方程组的形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (I)方程的个数m 与未知量的个数n 不一定相等,当m =n 时,系数行列式也有可能等于零.因此不能用克莱姆法则求解.对于线性方程组(I ),需要研究以下三个问题:(1)怎样判断线性方程组是否有解?即它有解的充分必要条件是什么? (2)方程组有解时,它究竟有多少个解及如何去求解? (3)当方程组的解不唯一时,解与解之间的关系如何? 目的与要求:掌握矩阵的初等变换,能用初等变换化矩阵为行阶梯形、行最简形和标准型。
理解矩阵的秩概念、掌握用初等变换求矩阵的秩。
了解初等矩阵的概念,掌握用初等变换求逆矩阵的方法。
掌握用初等变换求解线性方程组。
本章重点:矩阵的初等变换;解线性方程组;秩;线性方程组解的判定. 。
本章难点:秩;线性方程组解的判定.§3.1 矩阵的初等变换在本章的§2.3节中给出了矩阵可逆的充分必要条件,并同时给出了求逆矩阵的一种方法——伴随矩阵法.但是利用伴随矩阵法求逆矩阵,当矩阵的阶数较高时计算量是很大的.这一节将介绍求逆矩阵的另一种方法——初等变换法.为此我们先介绍初等矩阵的概念,并建立矩阵的初等变换与矩阵乘法的联系.一. 初等变换定义下面三种变换称为矩阵的初等行变换:1.互换两行(记);2.以数乘以某一行(记);3.把某一行的倍加到另一行上(记)。
矩阵的初等变换
0 6
B2
3
1 1 2 1 4
r2 2
0 r3 5r2
r4
3r2
0 0
1 0 0
1 0 0
1 2 1
0 6
B3
3
1 1 2 1 4
r3
r4
0
r4
2
r3
0 0
1 0 0
1 0 0
1 1 0
(1)
x1 x2 2x3 x4 4, ①
(1)
①② ③2
2
x1
2x1
x2 3x2
x3 x3
x4 2, x4 2,
② ③
3x1 6x2 9x3 7x4 9, ④
②③
③2①
x1
x2 2x2
矩阵之间的等价关系具有如下性质: (ⅰ)反身性 A A ;
(ⅱ)对称性 若 A B ,则 B A ;
(ⅲ) 若 A B, B C, 则 A C.
下面用矩阵的初等行变换来解方程组(1),其过程可
与方程组(1)的消元过程一一对照:
2 1 1 1 2
B
1
1
2
1
4
4 6 2 2 4
1
可以验证:以 Em ij k 左乘矩阵 A ,其结果相当于
把 A 的第 j 行乘 k 加到第i 行上;以 En ij k 右乘
矩阵 A ,其结果相当于把 A 的第i 列乘k 加到第 j 列上.
推论 方阵 A 可逆的充要条件是 A r E .
第3章 矩阵的初等变换与线性方程组的解
↔
1 0 B = 0 2 0 0
矩阵等价性具有如下性质: (1)反身性: A ↔ A (2)对称性:如果 A ↔ B ,那么 B ↔ A (3)传递性:如果 A ↔ B, B ↔ C ,那么 A ↔ C
第 i行
| E ( i , j ) |= −1,
第j行
E ( i , j ) −1 = E ( i , j )
第i列
第j列
-12-
2、倍乘初等矩阵
1 E ( i ( k )) = O 1 k 1 O
↑ 第i列
← 第 i行 1
r
Pl L P2 P1 A = E
问 A − 1 = Pl L P2 P1 作一次行变换 再作一次行变换 继续… 考虑对 ( A E ) 作行变换
P1 ( A E ) = ( P1 A P1 E )
P2 P1 ( A E ) =
( P2 P1 A
P2 P1 E )
Pl L P2 P1 ( A E ) = ( Pl L P2 P1 A Pl L P2 P1 E )
A ↔ B,
如何把它们用等号联系起来?
-11-
定义
对单位矩阵E做一次初等变换得到的矩阵称
为初等矩阵。 共有三种初等矩阵,分别为 1、交换初等矩阵
1 O 1 0 1 L ← 1 E ( i, j ) = M O M 1 1 L 0 ← 1 O 1 ↑ ↑
第三章 矩阵的初等变换与线性方程组的解
§3.1 矩阵的初等变换 §3.2 初等矩阵 §3.3 矩阵的秩 §3.4 线性方程组的解
矩阵的初等变换和线性方程组
换前后的方程组是同解的。
2、在上述变化过程中,实际上,只对方程组的系数与常数进行运算,未知 量并未参加运算。因此,若记
B =(A
⎛ 2 −1 −1 1 2⎞
b
)
⎜ ⎜ ⎜
1 4
1 −6
−2 2
1 −2
4
⎟ ⎟
4⎟
⎜ ⎝
3
6
−9
7
9
⎟ ⎠
那么上述对方程组的变换完全可以转换为对矩阵 B 的变换。 把方程组的上述三种初等变换移植到矩阵上,可得矩阵的三种初等变换。
⎪⎪0 ⎨⎪0
x1 x1
+ +
x2 − x3 + 0x4 = 3, (2) 0x2 + 0x3 + x4 = −3, (3)
②
⎪⎩0x1 + 0x2 + 0x3 + 0x4 = 0.(4)
方程组②是 4 个未知量 3 个有效方程的方程组,应有一个自由未知量,由于方程
组②呈阶梯形,可把每个台阶的第一个未知量(即 x1, x2, x4 )选为非自由未知量,
解:
⎧x1 + x2 − 2x3 + x4 = 4, (1)
①
⎯(⎯1()3↔)÷⎯(22)⎯→
⎪⎪2 ⎨⎪2
x1 x1
− x2 − x3 + x4 = 2, (2) − 3x2 + x3 − x4 = 2, (3)
⎪⎩3x1 + 6x2 − 9x3 + 7x4 = 9.(4)
⎧x1 + x2 − 2x3 + x4 = 4, (1)
元素不等于零 ,不妨设 a11 ≠ 0 (如 a11 = 0 ,可以对矩阵 A 施以第(1)种初等
同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组
0 0 0
1 0 0
1 0 0
1 2 0
0 6 0
B4
2020/12/12
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
x4 3
令 x3 c
x1 c 4
x2 x3
c c
3
x4 3
3x2 3x3 4x4 3, ④
2020/12/12
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2x3 x4 4, ①
④ 12③
x2 x3 x4 0, ② 2x4 6, ③
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
3x1 6x2 9x3 7 x4 9, ④
x1 x2 2x3 x4 4, ①
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
1
1
01
第i行
1
E(i, j)
1 10
第
j
行
1
1
2020/12/12
17
1
1
E(i(k))
k
第i 行
1
第2章_矩阵的初等变换与线性方程组
解
3 − 7 r2 + r1 1 4 r3 − 3r1 r1 ↔ r3 A → − 1 − 3 − 17 4 → 3 2 6 9
3 − 7 3 − 7 1 4 1 4 r3 +10r2 0 1 − 14 − 3 → 0 1 − 14 − 3 0 0 − 143 0 0 − 10 − 3 30
= = = =
B
3 − 7 1 4 即为行阶梯形矩阵。 B = 0 1 − 14 − 3 即为行阶梯形矩阵。 0 0 − 143 0
特点: 特点: (1) 可划出一条阶梯线,线的下方全为零; 可划出一条阶梯线,线的下方全为零; (2) 每个台阶只有一行,阶梯数即是非零行 每个台阶只有一行, 的行数, 的行数,阶梯线的竖线后面的第一个元 素为非零元,即非零行的非零首元。 素为非零元,即非零行的非零首元。
1 0 0 5 称为行最简形矩阵 行最简形矩阵。 → 0 1 0 − 3 = C 称为行最简形矩阵。 0 0 1 0
r2 + 14 r3 r1 − 59 r3
在具备行阶梯形矩阵特点的同时, 在具备行阶梯形矩阵特点的同时,非零行的 特点: 特点: 非零首元为1,且其所在列的其他元素全为 。 非零首元为 ,且其所在列的其他元素全为0。
将方程组的消元过程与增广矩阵的变换过程 消元过程与增广矩阵的 解 将方程组的消元过程与增广矩阵的变换过程 进行对比。 进行对比。
x1 + 2 x 2 + 3 x 3 2 x1 − x2 + 2 x3 x + 3x 2 1 = −7 = −8 =7
1 2 3 − 7 2 − 1 2 − 8 1 3 0 7
第三章%20%20矩阵的初等变换与线性方程组[1]
第三章 矩阵的初等变换与线性方程组
15
第11讲 线性方程组的解
对于线性方程组Ax=b, R(A)=r. 不妨设 B = ( A, b ) 的行最简形为
⎛1 ⎜0 ⎜M ⎜0 ⎜0 ⎜0 ⎜M ⎜0 ⎝ 0 1 M 0 0 0 M 0 L 0 b11 L 0 b21 M M L 1 br 1 L0 0 L0 0 M M L0 0 L b1,n− r L b2,n− r 2 M M ⎟ L br ,n− r d r ⎟ L 0 d r +1 ⎟ L 0 0 ⎟ M M ⎟ 0 ⎟ L 0 ⎠
r (1) A ~ B 的充分必要条件是存在m阶可逆阵P, 使得 PA = B. c (2) A ~ B 的充分必要条件是存在n阶可逆阵Q, 使得 AQ = B.
(3) A ~ B 的充分必要条件是存在m阶可逆阵P 及n阶可逆阵Q, 使得 PAQ = B.
r 推论 方阵A可逆的充分必要条件是 A ~ E
14 September 2009 河北科大理学院
第三章 矩阵的初等变换与线性方程组
7
四 利用初等变换求逆矩阵及相关问题
A −1 ?
r ( A , E ) ~ ( E , A −1 )
⎛ 0 −2 1 ⎞ 例1 设 A = ⎜ 3 0 −2 ⎟ , 求 A−1 . ⎜ −2 3 0 ⎟ ⎝ ⎠
14 September 2009
相容 不相容 d1 ⎞ 特解 通解 d ⎟
(cii ≠ 0, i = 1, 2, L , n) (1) 当 d r +1 ≠ 0 时,方程组无解; (2) 当 d r +1 = 0 时,方程组有解; 且 r = n 时,有唯一解, r < n 时,有无限多个解.
《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答
例 3.10
求齐次线性方程组
⎧ ⎪ ⎨
x1 x1
− −
x2 x2
− +
x3 x3
+ x4 = 0 − 3x4 = 0
的通解.
⎪⎩x1 − x2 − 2x3 + 3x4 = 0
解 系数矩阵经过初等变换得
⎡1 −1 −1 1 ⎤
⎡1 −1 0 −1⎤
A = ⎢⎢1 −1 1 −3⎥⎥ ⎯r⎯→ ⎢⎢0 0 1 −2⎥⎥
阶梯形的非零行数判断矩阵的秩.
2
⎛1 3 1 4⎞
解
A
⎯r⎯→
⎜ ⎜
0
6
−4
4
⎟ ⎟
,故
R(
A)
=
2
.
⎜⎝ 0 0 0 0⎟⎠
⎡1 1 2 2 3 ⎤
例 3.2
设A=
⎢⎢0 ⎢2
1 3
1 a+2
−1 3
−1 a+6
⎥ ⎥ ⎥
,则
A
的秩
R(
A)
=
(
).
⎢⎣4 0 4 a + 7 a +11⎥⎦
(A) 必为 2
6
⎡ 1 1 0 −2 1 −1⎤
⎡1 0 0 2 −1 −1⎤
( A | b) = ⎢⎢−2 −1
1
−4 2
1
⎥ ⎥
⎯r⎯→
⎢⎢0
1
0
−4
2
0
⎥ ⎥
⎢⎣−1 1 −1 −2 1 2 ⎥⎦
⎢⎣0 0 1 −4 2 −1⎥⎦
R( A) = R( A | b) = 3 < 5 ,所以方程组有无穷多解,令 x4 = c1, x5 = c2 ,得
矩阵的初等变换在高等代数中的应用
矩阵的初等变换在高等代数中的应用矩阵的初等变换是高等代数中一个重要的概念,它在各个领域都有广泛的应用。
本文将从不同的角度介绍矩阵的初等变换在高等代数中的应用。
一、线性方程组的求解线性方程组是高等代数中的一个基础问题,而矩阵的初等变换可以帮助我们解决线性方程组。
通过对系数矩阵进行初等变换,我们可以将线性方程组转化为简化的行阶梯形矩阵,从而求解出方程组的解。
这个过程中,我们可以使用矩阵的初等变换来交换方程的顺序、缩放方程以及将方程相加,从而将方程组转化为更简化的形式,使求解过程更加高效。
二、矩阵的相似与对角化矩阵的相似性在高等代数中是一个重要的概念,而矩阵的初等变换可以帮助我们判断两个矩阵是否相似。
通过对矩阵进行初等变换,我们可以将一个矩阵转化为对角矩阵,从而判断出两个矩阵是否相似。
这个过程中,我们可以使用矩阵的初等变换来交换矩阵的列、缩放矩阵的列以及将矩阵的列相加,从而将矩阵转化为更简化的形式,使相似性的判断更加方便。
三、线性变换的表示与求解线性变换是高等代数中一个重要的概念,而矩阵的初等变换可以帮助我们表示和求解线性变换。
通过对向量空间的基进行初等变换,我们可以得到线性变换的矩阵表示,从而将线性变换转化为矩阵运算。
这个过程中,我们可以使用矩阵的初等变换来交换向量的顺序、缩放向量以及将向量相加,从而得到线性变换的矩阵表示,使线性变换的求解更加简化。
总结起来,矩阵的初等变换在高等代数中有着广泛的应用。
它可以帮助我们求解线性方程组、判断矩阵的相似性以及表示和求解线性变换。
通过灵活运用矩阵的初等变换,我们可以简化问题的复杂度,提高问题的求解效率。
因此,在高等代数的学习中,我们需要深入理解矩阵的初等变换的概念和应用,以便更好地应用于实际问题的求解中。
第三章 矩阵的初等变换与线性方程组
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9
①②
①②
x1 x2 2x3 x4 4
423xxx111
x2 6x2 6x2
x3 2x3 9x3
x4 2x4 7 x4
一个同解的方程 这种变换过程称为同解变换. 同解变换有 交换两个方程的位置 把某个方程乘以一个
非零数 某个方程的非零倍加到另一个方程上.
例如
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
的线性方程组都是同解的 其中行最简形矩阵所对应的线性
方程组是最简单的 而且是最容易求解的.
首页
上页
返回
下页
结束
§3.2 初等矩阵
矩阵的初等变换是矩阵的一种最基本的运算 这有着广泛的应用.
首页
上页
返回
下页
结束
初等矩阵
例如
由单位矩阵E经过一次初等变 换得到的矩阵称为初等矩阵.
E(i j)表示对调单位矩阵E的第 i j两行(列)得到的初等矩阵.
第3章 矩阵的初等变换与线性方程组
天
津
师 范
§3.1 矩阵的初等变换
大
学 计 算
§3.2 初等矩阵
机
与 信
§3.3 矩阵的秩
息
工 程 学
§3.4 线性方程组的解
院
郑 陶 然
§3.1 矩阵的初等变换
矩阵的初等变换是矩阵的一种十分重要的运 算 它在解线性方程组、求逆阵及矩阵理论的探讨 中都可起重要的作用.
线性代数第1章解线性方程组的消元法与矩阵的初等变换PPT课件
当(1)式右端常数全为0而得到的齐次线性方程组
a11 x1 a12 x2
a21 x1
a22 x2
am1 x1 am2 x2
a1n xn 0 a2n xn 0
amn xn 0
成为(1)导出的齐次线性方程组。
- 30 -
定义 由方程组(1)的系数与常数项组成的矩阵
几种特殊的方阵(P4)
1. 对角矩阵(约定:未写出的元素全为零)
d1
D
d2
d
n
记作 D d ia g ( d 1 ,d 2 , ,d n )
2. 数量矩阵
A
- 11 -
3. 单位矩阵
1
E
1
1
4.上(下)三角矩阵
a11 A
a12 a22
上三角
a1n
a2n
- 16 -
定义 称矩阵的下面三种变换分别为第一、第二、 第三种初等行变换:
(1) 交换矩阵的某两行,记为 ri rj (2) 以不等于0的数乘矩阵的某一行,记为 k ri (3) 把矩阵的某一行乘上一个数加到另一行上,
记为 ri krj
类似定义三种初等列变换:
( 1 ) c i c j( 2 ) k i ( k c 0 )( 3 ) c i k j c
2 2
2
0
1 2
r2
0
1 1
1
0
r3 2r1 0 5 5 3 6 0 5 5 3 6
r4 3r1
0
3 3
4
3
0
3 3
4
3
- 24 -
1 1 2 1 4
1 1 2 1 4
r35r2
第三章知识点总结矩阵的初等变换与线性方程组
第三章知识点总结矩阵的初等变换与线性方程组第三章主要介绍了矩阵的初等变换与线性方程组的关系,以及利用矩阵的初等变换来求解线性方程组的方法。
一、矩阵的初等变换1.矩阵的初等变换包括三种操作:互换两行、用一些非零标量乘以其中一行、将其中一行的若干倍加到另一行上。
2.初等变换的性质:初等变换保持矩阵的秩不变;有逆变换;多次初等变换的结果等于这些变换分别作用于单位矩阵的结果的乘积。
二、线性方程组的解1.线性方程组可用矩阵表示为AX=B,其中A为系数矩阵,X为未知向量,B为常数列。
2.系数矩阵A的秩等于增广矩阵(A,B)的秩,即r(A)=r(A,B)。
3.齐次线性方程组与非齐次线性方程组:-齐次线性方程组为AX=0,其中0为零向量。
它总有零解,即使有非零解也有无穷多个。
-非齐次线性方程组为AX=B,其中B不为零向量。
它只有唯一解或无解两种可能。
4.矩阵的秩和线性方程组解的关系:r(A)=n,即系数矩阵A的秩等于未知数的个数,则线性方程组只有唯一解;r(A)<n,则线性方程组有无穷多解或无解。
三、求解线性方程组的方法1.初等变换法:-将线性方程组的系数矩阵A和常数列B增广为(A,B)的增广矩阵。
-利用初等变换将增广矩阵化为行简化形式。
-根据化简后的增广矩阵,确定线性方程组的解。
2.矩阵的逆法:-若系数矩阵A可逆,则可将AX=B两边同时左乘A的逆矩阵A-1,得到X=A-1B。
-利用矩阵的逆可以直接求解线性方程组的解。
3.克拉默法则:-若系数矩阵A可逆,则线性方程组AX=B的解可以表示为Xi=,Ai,/,A,其中Ai是将系数矩阵A的第i列替换为常数列B后所得到的矩阵,A,是系数矩阵A的行列式。
-克拉默法则可以用来求解二元线性方程组和三元线性方程组的解。
综上所述,矩阵的初等变换与线性方程组有着密切的关系。
利用矩阵的初等变换可以简化线性方程组的求解过程,而线性方程组的解与系数矩阵的秩有关。
在求解线性方程组时,可以通过初等变换法、矩阵的逆法或克拉默法则来得到方程组的解。
第三章矩阵的初等变换与线性方程组
0 0 1
0
0
2
类型二、含参数线性方程组解的讨论
2010年期末考题 课后题16
四、(12分)设有线性方程组:
x1x1xx22
x3 x3
1
x1
x2
x3
2
问 取何值式时,此方程(1)有唯一解,(2) 无解,(3) 有无限
多解?并在有无限多解时求其通解。
答案:(1) 1且 -2有唯一解;(2) -2无解; (3) 1有无限多解,
x1 1 1 1
x2 c1 1 c2 0 0
x
3
0
1 0
2011年选考题
四.(12分)当c, d取何值时,线性方程组
x1 x2 x3 x4 x5 1
3xx2 122xx3 22xx34
x4 3x5 6x5 3
c
5 x1 4 x2 3 x3 3 x4 x5 d
并在有无穷多解时求其通解。
答案:(1) 1或 10,有唯一解, (2) 10,
2 2 1
(3)
1,
通解c 1
1
c 2
0
0
0 1 0
类型三、判断线性方程组的解
2009年期末考题
4. 设B是数域K上的n阶可逆矩阵,对应K中任意n个数b1,…,bn,
x1 b1
线性方程组B
2x2 x3
x1
x2
2x3
2
当 取何值时有解?并求出它的通解。
1 1
答案:(1)=
1,通解c
1
0
1 0
1 2
(2)
2,
通解c
1
2
1 0
课后题18
设 (2 )x1 2 x2 2 x3 1
线性代数第三章 矩阵的初等变换与线性方程组
✓一个方程加上另一个方程的 k 倍,记作 i +k j .
其逆变换是:
ij
i ×k i +k j
ij
i ÷k i -k j
结论: 1. 由于对原线性方程组施行的变
换是可逆变换,因此变换前后 的方程组同解. 2. 在上述变换过程中,实际上只 对方程组的系数和常数进行运 算,未知数并未参与运算.
定义:下列三种变换称为矩阵的初等行变换:
0 0 0 0 1
以 k 乘单位阵第 i 列加到第 j 列.
1 0 0 0 0
1 0 0 0 0
0
1
0
0
0
0
1
0
0
0
? E5
0
0
1
0
0 c53 c53 k 0
0
1
0
k0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0k 0 1
a11 a12 a13 a14
第三章 矩阵的初等变换与线性方程组
知识点回顾:克拉默法则
a11 x1 a12 x2 a1n xn b1
设
a21
x1
a22 x2
a2n xn b2
(1)
an1 x1 an2 x2 ann xn bn
结论 1 如果线性方程组(1)的系数行列式不等于零,则该 线性方程组一定有解,而且解是唯一的.(P. 24定理4)
✓对调两行,记作 ri rj ; ✓以非零常数 k 乘某一行的所有元素,记作 ri k ; ✓某一行加上另一行的 k 倍,记作 ri krj .
其逆变换是:
ri rj ri k ri krj
ri rj ; ri k; ri krj .
线性代数课件_第3章_矩阵的初等变换与线性方程组
-13-
定理 (等价标准形定理 等价标准形定理) 等价标准形定理 用初等变换必能将矩阵化为如下等价标准形 等价标准形( 用初等变换必能将矩阵化为如下等价标准形(也称 相抵标准形): 相抵标准形):Er Fra bibliotek O O
等价标准形是唯一的。 等价标准形是唯一的。
-14-
例2
(接例1) 接例 )
1 2 1 1 1 2 1 1 4 6 2 2 3 6 9 7
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0
-10-
只用初等行变换必能将矩阵化为阶梯形, 定理 只用初等行变换必能将矩阵化为阶梯形, 从而再化为最简阶梯形。阶梯形不唯一,最简阶梯形 从而再化为最简阶梯形。阶梯形不唯一, 唯一。 唯一。
-8-
在 m × n 的矩阵集合 R 中的一个等价关系? 中的一个等价关系
m×n
A r 中, 如果
B ,
具有行相抵的关系,问行相抵是不是 行相抵的关系 则称 A 与 B 具有行相抵的关系 问行相抵是不是 R m × n
Gauss消元法的思想又可表述为 在与方程组增 消元法的思想又可表述为, 消元法的思想又可表述为 广矩阵行相抵的矩阵中,找一个最简单的 找一个最简单的,然后求解 广矩阵行相抵的矩阵中,找一个最简单的,然后求解 这个最简单的矩阵所对应的方程组. 这个最简单的矩阵所对应的方程组 以后我们把这个最简单的矩阵叫做(行 最简阶 以后我们把这个最简单的矩阵叫做 行)最简阶 梯形矩阵. 梯形矩阵
a11 = a 21 a 31
a12
a 22 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
第二讲:矩阵初等变换与线性方程组
3.同解方程组
如果两个线性方程组有相同的解集合,则称它们 是同解的.
4. 方程组的同解变换 例 解线性方程组
2x2 x3 1 x1 x2 x3 0
2x1 x2 x3 2
对此线性方程组,可做如下三种消元变换: (1) 互换两个方程的位置; (2) 把某一个方程的两边同乘以一个非零常数c; (3) 将某一个方程加上另一个方程的k倍.
进而 有
m,n Z , m P, n
m 0 m P.
n
n
而任意一个有理数可表成两个整数的商,
Q P.
练习 判断数集 P1, P2 是否为数域?为什么? P1 {2n 1 | n Z },
P2 {n 2 | n Z } Z( 2).
变换ri 2rj不可写成2rj ri; 2ri 3rj无此变换;
1 0 练习:对矩阵 1 1
2 1
1 0 2 r2 +r1
解:
1
1
1
r3 -2r1
2 1 1
2
1
作初等行变换。
1
1 0 2
00
1 1
3-3
r3 -r2
5 +3x4
0
(2)
2x3 4x4 7
x22 x32 13
x1 x2 x3 0
2x - y 3 ex y 3z 5
4
(3)(4)为非线性方程组。
1. 线性方程组与矩阵(P105)
线性方程组的一般形式为
矩阵的初等变换与线性方程组求解
矩阵的初等变换与线性方程组求解矩阵在数学中扮演着重要的角色,它们被广泛用于各个领域的问题求解。
在矩阵中,初等变换是一种常用的工具,用于改变矩阵的形式,进而帮助我们解决线性方程组的求解问题。
本文将详细介绍矩阵的初等变换的概念和操作,以及如何利用初等变换来求解线性方程组。
一、初等变换的概念初等变换是指在满足一定规则下对矩阵进行的一系列基本操作。
根据初等变换的不同类型,可以将其划分为三类:交换两行或列、某行或列乘以非零常数、某行或列乘以非零常数后加到另一行或列上。
通过这些操作,我们可以改变矩阵的行列式、秩、高斯消元等性质,从而为线性方程组的求解提供便利。
二、初等变换的操作1. 交换两行或列:通过交换矩阵中任意两行或两列的位置,可以改变矩阵的行列式和秩,但不改变方程组的解。
2. 某行或列乘以非零常数:将矩阵中某一行或列的所有元素乘以一个非零常数,可以改变矩阵的行列式和秩,但不改变方程组的解。
3. 某行或列乘以非零常数后加到另一行或列上:将矩阵中某一行或列的所有元素乘以一个非零常数,并加到另一行或列上,可以改变矩阵的行列式和秩,但不改变方程组的解。
三、利用初等变换,我们可以将线性方程组的系数矩阵通过一系列操作,转化为特殊形式的矩阵。
这个特殊形式的矩阵通常被称为行简化阶梯形矩阵或行最简矩阵。
行简化阶梯形矩阵的主对角线上的元素全为1,并且每个主对角线上方的元素全为0。
得到行简化阶梯形矩阵后,就可以利用高斯消元法等技巧,快速求解线性方程组的解。
通过矩阵变换的过程,我们可以发现行简化阶梯形矩阵的解可以直接得到,而不需要进行繁琐的计算。
四、实例分析为了更好地理解矩阵的初等变换与线性方程组求解的过程,我们来看一个具体的例子。
考虑以下线性方程组:x + y + z = 62x + 3y + 4z = 174x + 5y + 6z = 28将其转化为矩阵形式:( 1 1 1 | 6 )( 2 3 4 | 17 )( 4 5 6 | 28 )接下来,我们利用初等变换将矩阵转化为行简化阶梯形矩阵。
矩阵的初等变换与线性方程组
B
1 4
1 6
2 2
1 2
4 4
3 6 9 7 9
1 1 2 1 4
r1 r2 r3 2
2 2 3
1 3
6
1 1
9
1 1
7
2 2
B1
9
r2 r3 1 1 2 1 4
r3 2r1 r4 3r1
0 0 0
2 5
3
2 5
3
2 3
4
0 6
B2
3
r2 2 r3 5r2
0 1 0 A 0
0 1
1 1 0 6
2 5
3 4
,
求
A
.
0 0 1 0 0 1 7 8 9
解
设
B
1 6
2 5
3 4
,
则有
E(1,2)AE(1,3(1)) B ,
7 8 9
即 A E(1,2)1 BE(1,3(1))1 E(1,2)BE(1,3(1))
1 B 6
2 5
3 6 r1r2
E(ij(k))1 E(ij(k))
定理 初等矩阵均可逆,且其逆是同类型的初等矩阵
如
0 1
1 0
0 0
1
0 1
1 0
0 0
E(1,2) 1 E(1,2)
0 0 1 0 0 1
E(i, j)1 E(i, j)
1 0
0
0 1 0
0
1
0
- 2
1
0
0
0 1 0
0
0 -1
2
3、定义3 如果矩阵A经有限次初等变换变成矩 阵B,就称矩阵A与B等价,记作A ~ B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bm1x1+bm2x2+…+bmnxn=0
的解向量,则称C与B是匹配的(亦称B与 C是匹配的)
引理1 设B为m×n行最简形矩阵,若将B 的第i列与第j列交换位置所得矩阵B′仍为行 最简形,则
(1)将B的s×n单位填充矩阵C的第i行与 第j行交换位置所得矩阵C′即为B′的s×n 单位填充矩阵,其中max{i,j} ≤s。
解
系.
证明 设以B为系数矩阵的齐次线性方程组 为(1),则(1)与(6)同解,据引理2知C的所有
“J-列向量”构成方程组的解,且是n-r
个线性无关的解向量(其中r=R(A)=R(B)),
从而构成方程组(1)的一个基础解系,也 就是方程组(6)的一个基础解系。
定理2 设非齐次线性方程组
a11 x1 a12 x2 a1n xn b1
a21
x1
a22
x2
a2n xn b2
(7)
am1 x1 am2 x2 amn xn bm
有解,其增广矩阵A经一系列初等行变换化 为行最简形矩阵B,则B的n×(n+1)单位填充
矩阵的所有“J-列向量”构成方程组(7)的导
出组的一个基础解系,而C的最后一列为方 程组(7)的一个特解。
证明 由定理1,前一结论显然。下证C的最 后一列为方程组的一个特解。
“
1
”
或“-1”,若主对角线上某一元素为“-1”,则该
元素所在的列之列向量称为C的“J-列向量”。
定义2: 设B为最简形矩阵,若B的单位填充
矩阵C的任一“J-列向量” 均为以B为系数
矩阵的齐次线性方程组
b11 x1+b12x2+…+b1nxn=0
b21x1+b22x2+…+b2nxn=0
(1)
… …………
矩阵的初等变换与线性方程组的求解
理论内容
1. 矩阵的初等变换解线性方程组 2. 矩阵的初等变换解矩阵方程
应用举例
1. 利用初等变换求整数的最大公因数 2. 利用初等变换解线性不定方程 3. 矩阵的初等变换在求特征值与特征向量的应用
若阶梯形矩阵Bm×n还满足: (1)B的任一非零行的第一个非零元(每一
1 0
0
1
0 b1,r 1 0 b2,r 1
b1,r 2 b2,r 2
b1n
b2
n
C
0
0
1 b b r ,r 1
r ,r 2
brn
(5)
0 0
0 1 0
0
0 0
00 0
1 nn
其所有J-列向量为: r+1=(b1,r+1, …,br,r+1, -1,0, …,0) r+2=(b1,r+1, …,br,r+1,0, -1, …,0)
行的首非零元或主元)均为1; (2)B的首非零元所在的列的其它元素均
为0. 则称Bm×n为行最简形矩阵。
结论:任何矩阵都可以通过行初等变换化 为阶梯形,并进而化为行最简形(行最简 形唯一)。
理论内容
1. 矩阵的初等变换解线性方程组
给出单位填充矩阵的概念之后,通过对 线性方程组的系数矩阵(或增广矩阵)进行 初等变换,直接得出其基础解系或一般解。
(2)若C与B是匹配的,则C′与B′也是 匹配的。
证明: 结论(1)显然,下证(2),因为C与 B是匹配的,故C只能是n×n矩阵, 从而C′ 也是n×n 矩阵,设以B为系数矩阵的方程组 为(1),以B′为系数矩阵的方程组为
b11′ y1+b12′y2+…+b1n′yn=0
b21′y1+b22′y2+…+b2n′yn=0
………………
n=(b1,n, …,br,n,0, …, 0, -1)
显然它们都是方程组(4)的解,即B与C是 匹配的。
2. 一般形式的行最简形矩阵B显然总是可 以通过一系列的第二类初等列变换(变换两列 的位置)化为(3)的形式,从而B的单位填充矩 阵C通过相应的初等行、列变换就变成矩阵(5), 由于这种变换是可逆的,据引理2及引理1(2) 知B与C是匹配的。
定理1 设齐次线性方程组
a11 x1 a12 x2 a1n xn 0
a21 x1 a22 x2 a2n xn 0
(6)
am1 x1 am2 x2 amn xn 0
的系数矩阵A经一系列初等行变换化为最简 形矩阵B,则B的n×n的单位填充矩阵C的所
有“J-列向量”构成方程组(6)的一个基础
定义1:对于m×n阶行最简形矩阵B,按以 下方法构造s×n矩阵C: 对任一 i: 1≤i≤s (1≤s≤n),若B的某个首非零元位于第i列,则 将其所在的行称为C的第i行,否则以n维单位 向量ei =(0, …,0,-1,0, …,0)作为C 的第i行,称 C为B的s×n单位填充矩阵。
显然,单位填充矩阵的主对角线上的元素是
0
0 0
00 0
0 nn
则以B为系数矩阵的其次线性方程组为:
x1 b1,r1 xr1 b1,r2 xr2 b1n xn 0
x2
b x 2,r1 r1
b2 ,r 2xr2b2n xn 0(4)
xr b x r,r1 r1 b x r,r2 r2 brn xn 0
而B的填充矩阵为:
C' C *
置后得到,又由C与B是匹配的知,C′与B′也是匹配 的.
引理1 任一n×n行最简形矩阵B与其n×n 单
位填充矩阵C是匹配的。
证明: 1. 设
1 0
0 b b 1,r1
1,r 2
b1n
0
1
0 b b 2,r1
2,r2
b2
n
B 0 0
1 b b r ,r1
r ,r 2
brn
(3)
0 0
00 0
作齐次线性方程组
a11 x1 a12 x2 a1n xn b1 xn1 0
a21 x1 a22 x2 a2n xn b2 xn1 0
(8)
am1 x1 am2 x2 amn xn bm xn1 0
则方程组(8)的系数矩阵即为方程组(7)的增广 矩阵A.
于是B的n×(n+1)单位填充矩阵为:
(2)
… …………
bm1′y1+bm2′y2+…+bmn′yn=0
则由B与B′的关系可知对方程组(1)进行变量代换:
x1=y1 , …, xj=yj , …, xn=yn
就得到方程组(2),于是方程组(1)的任一解向量交 换i,j两个分量的位置就是方程组(2)的一个解向量。
又从C与C′的关系可知, C′的任一“ J-列向量 ” 均可由C的某一“J-列向量 ”交换i,j 两个分量的位