关于电力系统经济调度的潮流计算分析

合集下载

电力系统最优潮流分析

电力系统最优潮流分析

电力系统最优潮流分析电力系统是现代社会中最重要的系统工程之一,为社会生产和人民生活提供了绝大部分能量。

电能的生产需要耗费大量的燃料,而目前电能在输送、分配和消费过程中存在着大量的损耗。

因此如何采取适当措施节约能源,提高整个电力系统的运行效率,优化系统的运行方式,是国内外许多学者一直关注与研究的热点。

电力系统的最优化运行是指在确保电力系统安全运行、满足用户用电需求的前提下,如何通过调度系统中各发电机组或发电厂的运行,从而使系统发电所需的总费用或所消耗的总燃料达到最小的运筹决策问题。

数学上可将此问题描述为非线性规划或混合非线性规划问题。

最优潮流问题是指在满足必须的系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。

同经典的经济调度法相比,最优潮流具有全面规划、统筹考虑等优点,它可将安全运行和最优经济运行等问题进行综合考虑,通过统一的数学模型来描述,从而将电力系统对经济性、安全性以及电能质量等方面的要求统一起来。

最优潮流问题的提出把电力系统的最优运行理论提高到一个新的高度,受到了国内外学者高度重视。

最优潮流已在电力系统中的安全运行、电网规划、经济调度、阻塞管理、可靠性分析以及能量管理系统等方面得到了广泛应用,成为了电力系统网络运行分析和优化中不可或缺的工具。

一、最优潮流问题研究的意义最优潮流可将电力系统可靠性与电能质量量化成相应的经济指标,并最终达到优化资源配置、降低成本、提高服务质量的目的。

因此最优潮流研究具有传统潮流计算无法比拟的意义,主要体现在以下两个方面。

一方面,通过最优潮流计算可指导系统调度员的操作,保证系统在经济、安全、可靠的状态下运行。

具体表现为:第一,当所求问题以目标函数、控制变量和约束条件的形式固定下来后,就一定可以求出唯一最优解,并且该结果不受人为因素的影响。

第二,最优潮流的寻优过程可以自动识别界约束,在解逐渐趋于最优的过程中可得到网络传输瓶颈信息,从而可以指导电网扩容与规划。

第一章-电力系统潮流计算的概述

第一章-电力系统潮流计算的概述

摘要潮流计算是电力系统的各种计算的基础,同时它又是研究电力系统的一项重要分析功能,是进行故障计算,继电保护鉴定,安全分析的工具。

电力系统潮流计算是计算系统动态稳定和静态稳定的基础。

在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。

潮流计算的目的在于:确定是电力系统的运行方式;检查系统中的各元件是否过压或过载;为电力系统继电保护的整定提供依据;为电力系统的稳定计算提供初值,为电力系统规划和经济运行提供分析的基础。

因此,电力系统潮流计算是电力系统中一项最基本的计算,既具有一定的独立性,又是研究其他问题的基础。

传统的潮流计算程序缺乏图形用户界面,结果显示不直观,难于与其他分析功能集成。

本文以潮流计算软件的开发设计为重点,在数学模型与计算方法的基础上,利用MATELAB语言进行软件编写,和进行了数据测试工作,结果较为准确,收敛效果较好,并且程序设计方法是结构化程序设计方法,该方法基于功能分解,把整个软件工程看作是一个个对象的组合,由于对某个特定问题域来说,该对象组成基本不变,因此,这种基于对象分解方法设计的软件结构上比较稳定,易于维护和扩充。

设计主要采用牛顿—拉扶逊法为算法背景.本软件的主要特点是:(1)操作简单;(2)图形界面直观;(3)运行稳定。

计算准确;关键词:潮流计算;牛顿—拉扶逊法; MATLAB;第一章电力系统潮流计算的概述1。

1电力系统叙述电力工业发展初期,电能是直接在用户附近的发电站(或称发电厂)中生产的,各发电站孤立运行。

随着工农业生产和城市的发展,电能的需要量迅速增加,而热能资源(如煤田)和水能资源丰富的地区又往往远离用电比较集中的城市和工矿区,为了解决这个矛盾,就需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。

同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。

电力系统稳态分析--潮流计算资料

电力系统稳态分析--潮流计算资料

电力系统稳态分析摘要电力系统潮流计算是研究电力系统稳态运行情况的一种重要的分析计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗。

所以,电力系统潮流计算是进行电力系统故障计算,继电保护整定,安全分析的必要工具。

本文介绍了基于MATLAB软件的牛顿-拉夫逊法和P-Q分解法潮流计算的程序,该程序用于计算中小型电力网络的潮流。

在本文中,采用的是一个5节点的算例进行分析,并对仿真结果进行比较,算例的结果验证了程序的正确性和迭代法的有效性。

关键词:电力系统潮流计算;MATLAB;牛顿-拉夫逊法;P-Q分解法;目次1 绪论 (1)1.1背景及意义 (1)1.2相关理论 (1)1.3本文的主要工作 (2)2 潮流计算的基本理论 (3)2.1节点的分类 (3)2.2基本功率方程式(极坐标下) (3)2.3本章小结 (4)3 潮流计算的两种算法 (5)3.1牛顿—拉夫逊算法 (5)3.2PQ分解算法 (10)3.3本章小结 (15)4 算例 (16)4.1系统模型 (16)4.2结果分析 (16)4.3本章小结 (19)结论 (20)参考文献 (21)附录 (22)1 绪论1.1背景及意义电力系统稳态分析是研究电力系统运行和规划方案最重要和最基本的手段。

电力系统稳态分析根据给定的发电运行方式和系统接线方式来确定系统的稳态运行状态,其中潮流计算针对电力系统的各种正常的运行方式进行稳态分析。

潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。

通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。

待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。

电力系统潮流计算问题在数学上是一组多元非线性方程式求解问题,其解法都离不开迭代。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。

它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。

本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。

一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。

潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。

潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。

二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。

直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。

迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。

牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。

三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。

首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。

其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。

此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。

四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。

传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。

因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。

此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。

电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)电力系统潮流分析与计算设计(p-q分解法)摘要潮流排序就是研究电力系统的一种最基本和最重要的排序。

最初,电力系统潮流排序就是通过人工手算的,后来为了适应环境电力系统日益发展的须要,使用了交流排序台。

随着电子数字计算机的发生,1956年ward等人基本建设了实际可取的计算机潮流排序程序。

这样,就为日趋繁杂的大规模电力系统提供更多了极其有力的排序手段。

经过几十年的时间,电力系统潮流排序已经发展得十分明朗。

潮流排序就是研究电力系统稳态运转情况的一种排序,就是根据取值的运转条件及系统接线情况确认整个电力系统各个部分的运转状态,例如各母线的电压、各元件中穿过的功率、系统的功率损耗等等。

电力系统潮流排序就是排序系统动态平衡和静态平衡的基础。

在电力系统规划设计和现有电力系统运转方式的研究中,都须要利用电力系统潮流排序去定量的比较供电方案或运转方式的合理性、可靠性和经济性。

电力系统潮流计算分为离线计算和在线计算,离线计算主要用于系统规划设计、安排系统的运行方式,在线计算则用于运行中系统的实时监测和实时控制。

两种计算的原理在本质上是相同的。

实际电力系统的潮流技术主要使用pq水解法。

1974年,由scottb.在文献(@)中首次提出pq分解法,也叫快速解耦法(fastdecoupledloadflow,简写为fdlf)。

本设计就是使用pq水解法排序电力系统潮流的。

关键词:电力系统潮流排序pq水解法第一章概论1.1详述电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。

电力系统潮流计算是计算系统动态稳定和静态稳定的基础。

在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。

电力系统中的动态潮流计算与分析

电力系统中的动态潮流计算与分析

电力系统中的动态潮流计算与分析在当今社会,电力已经成为我们生活中不可或缺的一部分。

从家庭的照明、电器使用,到工厂的大规模生产,再到城市的交通、通信等基础设施,无一不依赖稳定可靠的电力供应。

而在这背后,电力系统的高效运行和精准控制起着至关重要的作用。

其中,动态潮流计算与分析作为电力系统研究和运行中的重要环节,对于保障电力系统的安全、稳定和经济运行具有极其重要的意义。

那么,什么是电力系统的动态潮流呢?简单来说,潮流就像是电力系统中的“水流”,它描述了电力在电网中各个节点(如发电厂、变电站、用户等)之间的流动情况,包括电压、电流、功率等参数。

而动态潮流则是考虑了电力系统中各种动态元件(如发电机、负荷等)的动态特性以及系统运行状态变化情况下的潮流分布。

动态潮流计算的目的主要有两个方面。

一方面,通过计算可以了解电力系统在不同运行条件下的电压、电流和功率分布情况,从而评估系统的安全性和稳定性。

例如,如果某些节点的电压过低或过高,可能会导致设备损坏、停电等问题;如果某些线路的功率超过了其传输极限,可能会引发过载甚至故障。

另一方面,动态潮流计算结果可以为电力系统的规划、设计和运行提供重要的参考依据。

比如,在规划新的发电厂或变电站时,需要根据预计的负荷增长和电网结构,通过动态潮流计算来确定其最佳位置和容量。

要进行动态潮流计算,首先需要建立电力系统的数学模型。

这个模型通常包括发电机模型、负荷模型、输电线路模型等。

发电机模型描述了发电机的输出特性,如电压、频率等与输入机械功率之间的关系;负荷模型则反映了用户对电力的需求随时间的变化情况;输电线路模型则用于计算电力在线路中的传输损耗和电压降落。

在实际计算中,常用的方法有牛顿拉夫逊法、PQ 分解法等。

牛顿拉夫逊法是一种基于非线性方程组求解的方法,具有较高的计算精度,但计算量较大;PQ 分解法则是对牛顿拉夫逊法的一种简化,在一定条件下可以提高计算速度,但精度可能会有所降低。

电力系统的最优潮流与经济调度

电力系统的最优潮流与经济调度

电力系统的最优潮流与经济调度一、引言电力系统是现代社会经济运行的关键基础设施之一,其可靠性和经济性对于国家和地区的发展至关重要。

在电力系统中,潮流和经济调度是两个核心问题,它们直接影响系统的运行效果和成本。

本报告将探讨电力系统最优潮流和经济调度的相关理论和方法,并分析其在实际应用中的现状和挑战。

二、最优潮流的基本原理1. 潮流方程与节点功率平衡在电力系统中,各节点的潮流满足潮流方程和节点功率平衡条件。

潮流方程是描述电力系统各节点间潮流关系的数学方程,节点功率平衡要求系统中吸入和发出的功率之和为零。

2. 潮流计算方法常见的潮流计算方法包括直流潮流计算方法和交流潮流计算方法。

直流潮流计算方法是一种近似计算方法,简化了复杂的交流潮流计算过程,适用于小规模系统;交流潮流计算方法基于牛顿-拉夫逊法等数值计算方法,能够较准确地计算大规模电力系统的潮流。

3. 最优潮流的概念与求解最优潮流是指在满足各种约束条件下,使系统总成本达到最小的潮流分布。

最优潮流问题的求解可以通过数学规划方法和基于智能算法的优化方法。

其中,数学规划方法包括线性规划、非线性规划和混合整数规划等;基于智能算法的优化方法包括遗传算法、粒子群算法和模拟退火算法等。

三、经济调度的基本原理1. 发电机组经济调度发电机组的经济调度是指在满足电网需求和各种约束条件的前提下,确定发电机组出力的最优分配。

经济调度需要考虑电网的负荷需求、发电成本、发电机组的技术特性等因素。

2. 输电网的经济调度输电网的经济调度是指在满足电网功率平衡和各种约束条件的情况下,使输电网中的电力传输效率最大化。

经济调度需要考虑输电线路的损耗、电压稳定性、线路容载能力等因素。

3. 负荷与供电平衡经济调度需要实现负荷与供电平衡,即通过调整发电机组出力和调度输电线路,使得供电与负荷之间的差距最小化。

负荷与供电平衡是保证电力系统稳定运行和供电可靠性的基本要求。

四、最优潮流与经济调度的应用与挑战1. 应用案例:电力系统规划与运行最优潮流与经济调度在电力系统规划和运行中有着重要的应用。

电力系统经济调度中潮流计算的应用分析

电力系统经济调度中潮流计算的应用分析

随着电力规模的不断加大 ,对潮流计算方程 的要求也越来 越高,对 于这种规模的方程不是采用任何数学方法都能保 证给出准确答案的 ,因 此 ,这也成 为了电力系统研究人员不断寻求更可靠 的潮流计算 方法的动 力。
1 潮流 计算 的概 述
电力的潮流分传统方法和人工智能方法 。 1 )潮 流计算 的传统方法 。传统 的潮流计 算方 法有线性规划法 、非 线性规划法 、及二次规划法 。传统方法的优点是 :能按照 目标 函数的导 数信息确定搜索方 向,因此计算速度较快 ;解析过程清晰 ,结果 的可信 度高。 其缺点是 : 目 函数及约束 条件有一定限制 ,必要 时需要做简化 对 标 和近似处理 ;要么采用复杂的混合整数规划算法直接处理 , 要么将离散 变量连续化处理 ,求其最优值后 ,很有可能便最优解变成不可行解 。 2)潮流计算 的人工智能方法 。人工智能是一种新兴 的方法 ,该方 法不像传统方法那样依赖于精确的数学模型 。具有 代表性 的有遗传法 、 模拟退 火法 、粒子群优化算法等。人工智能方法的优点是 :①与导数无 关性。T程 上很多优化问题的 目标 函数是不可导的 ,若采取前一类方法 只能对其进行假设 和近似 ,这显然影 响到解的真实性。② 随机性 。容易 跳出局部极值点 ,它们是一类全局优化算法 ;③内在并行性 ,它的操作 对象是一组可行解 ,对其 内在并行性 的开发可在一定程度 上克服其 性能
在电力系统调度方式改进过程中 ,利用潮流计算程序 ,建立 电网模 型,根据潮 流计算的结果 ,从 中找 出经济的运行条件 ,调度运行人员调 整运行方式 ,使没备经济运行 ,节能调度具体化 。
1 )计算 电力中每条输 电线路 的线损 ,确立经济潮 流数据 。在 潮流 程序中对某条线路按照一定的功率因数分别输入不同的有功无功负荷 , 可 以计算 各种潮流下 的线损 。例 如 :一条实际运行 线路 ,导线型号 : L J 1 ,长度3 . m, G一 5 0 7 k 计算结果如表 1 1 。 由表 1 出,该条线路输送潮流在3 M 看 0 W以下 时线损率小 于2 。如果 重载运行 ,输送潮流大于5 M ,线损率大于4 0W %,增加一倍。以此得 出 该条线路经济输送潮流在3MW以下。 0 依次 ,计算出电网中各条输 电线路的经济输送潮流 ,编制线路经济 运行档案 。调度员可以根据经济运行方案调整方式 ,控制线路潮 流 , 实 现节能调度。 2 计算变压器变损 ,确立 其经济运行状态 。利用潮流计算程序可 ) 以计算 出变压器在不同负荷情况下的损耗 , 再换算 出变损率 ,供调度员 掌握控制 。以~ 台4 M A 圈变压器为例 ,假如功率因数为0 5 0V双 . ,铁损 9 为0 2 M . 6 W,利用潮流计算程序计算 出不 同负荷 下的损耗如表2 0 。 由表2 明显看出该 变压器带 1Mw~3 MW 负荷时 ,较为经济 ,变损 5 5 率O2 3 .3%。利用 同样的方法可算 出电网中其它各台变压器 的经济 .3 ~O24 负载率 ,编制 出变压器经济运行方案 。 3)计算不同运行方式下 的损耗 。对 于双 电源或多电源供电的变电 站 ,可 以利用潮流程序 ,模拟计算出各种方式下线路损耗 ,最终确定最 佳经济运行方式 ,供调度员参考。 如 :一 个 变 电 站 有 供 电方 式 一 : 1 线 路 送 电 ( 号 LG一 1 0, 5 3 .k 7im)。方式二 :2 号线路供 电: ( G ~2 o 4 m),利用潮流程 L J 4 ,2 k 序可以定量计算 出不 同方式下的线路损耗 ,比较不同供 电方式的经济效 益如表3 。 由表 3 可见 :输 送同样 的潮 流 ,采用方式 : ( 号线 路供 电 ) 1 其线 损是方 式二 ( 号 线路供 电 )的 1 倍 。如果输送 3 MW 潮流 ,不 同的 2 . 5 0 运行方式 ,线 损相差02 .MW,一天损 失电量相差48 h .Mw ,一个月相差 14 4 MWh 。线路潮流越 大,经济效果越显著。 ( 转第 2 1 ) 下 0页

电力系统潮流计算定义、方法

电力系统潮流计算定义、方法

3电力系统潮流计算1、前言电力是衡量一个国家经济发展的主要指标,也是反映人民生活水平的重要标志,它已成为现代工农业生产、交通运输以及城乡生活等许多方面不可或缺的能源和动力。

电力系统是由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。

为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能。

电力系统的出现,使电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,出现了近代史上的第二次技术革命。

20世纪以来,电力系统的发展使动力资源得到更充分的开发,工业布局也更为合理,使电能的应用不仅深刻地影响着社会物质生产的各个侧面,也越来越广地渗透到人类日常生活的各个层面。

电力系统的发展程度和技术水准已成为各国经济发展水平的标志之一。

潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可缺少的一个重要组成部分。

可以说,它是电力系统分析中最基本、最重要的计算,是系统安全、经济分析和实时控制与调度的基础。

是电力系统研究人员长期研究的一个课题。

MATLAB自1980年问世以来,它的强大的矩阵处理功能给电力系统的分析、计算带来许多方便。

在处理潮流计算时,其计算机软件的速度已无法满足大电网模拟和实时控制的仿真要求,而高效的潮流问题相关软件的研究已成为大规模电力系统仿真计算的关键。

随着计算机技术的不断发展和成熟,对MATLAB潮流计算的研究为快速、详细地解决大电网的计算问题开辟了新思路。

1.1 本设计主要工作1)掌握潮流计算的基本原理;2)根据电力系统网络推导电力网络数字模型,写出节点导纳矩阵;3)赋予各节点电压变量初值后,求解不平衡量;4)形成雅克比矩阵;5)求解修正量后,重新修改初值,从2)开始重新循环计算;6)求解的电压变量达到要求的精度时,再计算各支路的功率分布、功率损耗和平衡节点功率;7)上机编程调试;8)计算分析给定系统潮流,并与手工计算结果进行比较分析。

电力系统潮流计算算法研究与优化

电力系统潮流计算算法研究与优化

电力系统潮流计算算法研究与优化概述:电力系统是现代社会不可或缺的基础设施,而电力潮流计算是电力系统运行和规划中的重要工具。

潮流计算算法的研究和优化对于电力系统的稳定运行和经济调度至关重要。

本文将探讨电力系统潮流计算算法的研究现状、存在的问题以及如何进行优化。

1. 电力系统潮流计算算法的研究现状1.1 潮流计算算法的定义与发展电力系统潮流计算是指通过建立电力系统的数学模型,计算电力系统中各节点的电压、功率、电流等参数并分析其流动情况。

潮流计算算法的发展经历了传统的直接方法、迭代法以及基于优化的方法,如牛顿-拉夫逊法、高斯-赛德尔法和交替方向乘子法等。

1.2 现有算法的优缺点传统的潮流计算算法存在计算速度慢、精度不高等问题,特别对于大型电力系统而言,甚至无法满足实时计算的要求。

此外,现有算法对于非线性特性的处理和收敛性的保证也存在一定的挑战。

1.3 现有研究的方向与成果针对以上问题,学术界和工业界都开展了一系列的研究。

其中,一些研究聚焦在改进现有算法的收敛速度和准确性,如引入松弛因子、改进迭代策略等。

另外,一些研究探索了基于人工智能、机器学习和大数据分析的方法,如神经网络和遗传算法,以提高潮流计算的效率和精度。

2. 电力系统潮流计算算法的问题与挑战2.1 高效性与准确性的平衡潮流计算算法需要在保持高效性的同时,保证计算结果的准确性。

当前的一些高效算法在确保计算速度的同时,可能牺牲了计算结果的准确性。

因此,如何在高效性和准确性之间找到平衡是一个重要的挑战。

2.2 非线性和不确定性的处理电力系统的非线性特性和不确定性因素(如负载变化、可再生能源接入)给潮流计算带来了额外的困难。

现有的一些算法在处理非线性问题和不确定性方面还存在一定的不足,需要进一步研究和改进。

2.3 大规模系统的计算困难随着电力系统规模的扩大,大规模系统的潮流计算变得更加困难。

传统的算法难以满足大规模系统的计算要求,因此需要通过新的算法和优化方法来解决大规模系统的潮流计算问题。

电力系统中的潮流计算与电能损耗优化研究

电力系统中的潮流计算与电能损耗优化研究

电力系统中的潮流计算与电能损耗优化研究电力系统作为现代社会不可或缺的能源供应基础设施,其正常运行对于社会的稳定运转至关重要。

潮流计算和电能损耗优化是电力系统运行中必不可少的两个环节,对于保证系统的可靠性和经济性具有重要意义。

本文将分别对电力系统中的潮流计算和电能损耗优化进行深入探讨,并提出一些应对策略。

一、电力系统中的潮流计算潮流计算是电力系统运行状态评估和控制的基础,通过计算电网各节点的电压、功率等参数,实现对电力系统的全面了解,为运行控制决策提供依据。

首先,我们需要了解潮流计算的基本原理。

潮流计算可以被视为一种复杂的节点电压和功率平衡问题。

通过建立节点电压相位和幅值的方程组,并根据电网拓扑连接关系以及节点功率平衡条件,通过迭代解方程组,可以得到电网各节点的电压和功率。

然而,在实际应用中,电力系统的规模庞大,存在大量的节点和支路,传统的潮流计算方法难以满足实时性和准确性的要求。

因此,研究者们提出了许多快速高效的潮流计算算法,例如快速潮流算法、直接分解法等。

其次,电力系统中的潮流计算不仅仅局限于传统的交流潮流计算,现如今直流输电系统的出现也对潮流计算提出了更高的要求。

与交流潮流计算相比,直流潮流计算具有更好的收敛性、更高的计算效率和更好的网络控制能力。

因此,需要针对电力系统中存在的直流输电特点,开展直流潮流计算的相关研究。

最后,潮流计算的准确性对于电力系统的运行和规划具有关键性的影响。

在实际应用中,需要结合电力系统的实时数据和实际运行条件进行潮流计算,确保计算结果的可靠性。

同时,通过分析潮流计算结果,可以发现潮流过载、电压稳定等问题,并提出相应的解决方案。

二、电能损耗优化研究电能损耗是电力系统中不可避免的现象,也是电力系统运行的一个重要指标。

通过对电能损耗的优化,可以实现电力系统的能源利用效率最大化,降低能源消耗和环境污染。

首先,电能损耗的产生主要来源于传输和配送过程中的线路损耗和变压器损耗。

通过优化电力系统的线路布局和变压器容量等因素,可以减少损耗的产生。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各中的功率分布以及功率母线上的电压(幅值及相角)、网络损耗等。

电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。

意义:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。

(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。

(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。

(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。

总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

潮流计算的发展史利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。

此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。

对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。

因此其数学模型不包含微分方程,是一组高阶非线性方程。

电力系统牛拉法潮流计算

电力系统牛拉法潮流计算

电力系统牛拉法潮流计算电力系统的潮流计算是电力系统运行中一项重要的工作,它用来确定电力系统中各节点的电压和功率的分布情况。

牛拉法(Newton-Raphson)方法是一种主要的潮流计算方法,它是基于牛顿迭代法的一种改进方法,可以用来求解非线性方程组,并被广泛应用于电力系统的潮流计算。

牛拉法潮流计算的基本原理是通过不断迭代求解节点电压和相应的功率,直到收敛为止。

具体步骤如下:1.建立潮流计算的数学模型。

电力系统的潮流计算可以被建模为一个非线性方程组,其中未知量为各节点的电压和功率,方程组的解表示系统的潮流分布情况。

2.初始化节点电压。

初始时,可以假设所有节点的电压为1,并根据负荷功率和潮流方向,计算各发电机节点的功率注入。

3.计算节点电压。

利用牛拉法迭代求解非线性方程组。

首先,根据电压相角和幅值的变化情况,更新节点电压;然后,利用更新的节点电压计算各发电机节点的功率注入,以及从节点注入到节点之间的功率传输;最后,根据功率平衡方程计算支路的功率。

4.判断迭代是否收敛。

判断迭代是否收敛的常用方法有两个:一是通过计算节点电压变化量来判断,如果变化量小于一定阈值,则认为计算收敛;二是通过计算功率平衡误差来判断,如果误差小于一定阈值,则认为计算收敛。

5.如果迭代未收敛,返回步骤3;如果迭代收敛,计算结束,得到系统的潮流分布情况。

牛拉法潮流计算的优点是能够处理复杂的非线性方程组,收敛速度快,并且适用于大规模电力系统的计算。

但是,牛拉法潮流计算也存在一些问题,比如可能出现发散情况,需要进行故障处理。

牛拉法潮流计算在电力系统调度和运行中起着重要的作用。

通过潮流计算,可以确保电力系统的稳定运行,优化电力系统的运行方式,提高系统的可靠性和经济性。

总结起来,牛拉法潮流计算是电力系统潮流计算的一种重要方法,通过迭代求解非线性方程组,可以得到电力系统各节点的电压和功率的分布情况。

它在电力系统调度和运行中具有重要的应用价值,可以帮助优化电力系统的运行方式,提高系统的稳定性和经济性。

电力系统中的潮流计算与优化调度策略研究

电力系统中的潮流计算与优化调度策略研究

电力系统中的潮流计算与优化调度策略研究概述电力系统是一个复杂的能源供应和分配网络,它的稳定运行对于经济的发展和人民生活的正常运转至关重要。

电力潮流计算和优化调度策略是电力系统运行的关键技术,其目标是提高电力系统的可靠性、经济性和安全性。

本文将介绍电力系统中潮流计算的基本原理和常用方法,并探讨电力系统中的优化调度策略的研究现状和未来发展趋势。

一、电力潮流计算的基本原理电力潮流计算是指确定电力系统各节点的电压幅值和相角,以及输电线路的功率流向和功率损耗的计算过程。

它是电力系统分析和运行的基础,为电力系统的安全稳定运行提供了重要的参数和依据。

电力潮流计算的基本原理是基于电力系统的网络拓扑和电气参数建立数学模型,利用电流-电压关系等电气方程进行计算。

电力潮流计算方法可以分为直流潮流计算和交流潮流计算两种。

直流潮流计算是一种简化的计算方法,适用于小型电力系统或对精度要求较低的场景。

交流潮流计算是一种更准确的计算方法,考虑了电压相位差对功率流动的影响。

传统的交流潮流计算方法包括牛顿-拉夫逊法(Newton-Raphson, NR法)和高斯-赛德尔法(Gauss-Seidel, GS法)等,这些方法都需要通过迭代计算来逼近潮流计算的结果。

二、电力潮流计算方法的优化传统的电力潮流计算方法存在计算速度慢、收敛性差等问题,随着电力系统规模的不断扩大和电力市场的不断发展,对于更高效、更准确的电力潮流计算方法的需求也越来越迫切。

因此,研究者们提出了一系列的优化方法和算法,以改进传统的电力潮流计算方法。

一种常见的优化方法是基于模型线性化的快速潮流方法,例如改进的牛顿-拉夫逊法(Improved Newton-Raphson, INR 法),该方法通过线性化电气方程,快速计算电力潮流。

还有基于灵敏度分析的快速潮流算法,利用灵敏度矩阵的性质,快速估计节点电压和线路功率等。

另外,随着计算机技术和数值计算方法的不断发展,人工智能和机器学习技术也逐渐应用于电力系统潮流计算优化中。

基于智能算法的电力系统潮流计算与优化调度研究

基于智能算法的电力系统潮流计算与优化调度研究

基于智能算法的电力系统潮流计算与优化调度研究电力系统是现代社会不可或缺的基础设施之一,对电力的稳定供应和高效利用有着重要意义。

潮流计算和优化调度是电力系统运行与管理中的两个重要任务。

本文将探讨基于智能算法的电力系统潮流计算与优化调度的研究。

潮流计算是指通过计算电力系统中各节点的电压、电流和功率等参数,以分析电力系统中各元件之间的能量传递和平衡情况的一种方法。

潮流计算可以用于识别潜在的系统故障,评估线路负载能力,以及优化系统配置等。

然而,由于电力系统的规模庞大和复杂性,传统的潮流计算方法往往存在计算速度慢、收敛性差的问题。

为了提高潮流计算的精度和效率,智能算法被引入其中。

智能算法是指通过模拟和学习生物智能的计算方法,以优化和解决问题的一种方法。

在电力系统潮流计算中,智能算法可以通过不断调整电力系统中各节点的电压和功率等参数,以找到使得系统中的能量传递和平衡达到最优的组态。

常用的智能算法包括遗传算法、粒子群算法、人工神经网络等。

遗传算法是一种受到达尔文进化论启发的优化算法。

它通过模拟自然选择、交叉和变异等过程,以搜索问题的最优解。

在电力系统潮流计算中,遗传算法可以用于优化发电机出力、线路传输功率和负荷调度等参数,以降低系统能耗和线路负载,并提高系统的性能。

粒子群算法是一种模拟鸟群、鱼群等群体行为的优化算法。

粒子群算法通过模拟粒子在解空间中的移动和搜索行为,以找到问题的最优解。

在电力系统潮流计算中,粒子群算法可以用于优化系统中各节点的电压和功率等参数,以提高系统中电力能量的流动和平衡。

人工神经网络是一种模拟人脑神经元网络的计算模型。

它通过不断调整网络中神经元之间的连接权值,以学习和优化问题的解决方法。

在电力系统潮流计算中,人工神经网络可以用于建模和预测电力系统中各节点的电压和功率等参数,以实现系统的自适应优化。

除了潮流计算,优化调度是电力系统中另一个重要的任务。

优化调度是指通过优化技术和方法,提高电力系统的运行效率和经济性,实现电力供需平衡和负荷调度的一种方法。

电力系统的潮流计算与分析

电力系统的潮流计算与分析

电力系统的潮流计算与分析引言电力是现代社会不可或缺的能源,电力系统的稳定运行和高效管理对整个社会经济发展起着重要作用。

而电力系统的潮流计算与分析是电力系统运行和管理的重要工具。

本文将探讨电力系统潮流计算与分析的原理、方法以及应用领域,旨在增进读者对该领域的了解。

一、电力系统潮流计算的原理电力系统潮流计算是指在给定电网拓扑结构、负荷需求和发电机输出等条件下,通过数学模型计算各节点的电压幅值和相位角,以获取电网各元件的电流分布和功率流向。

潮流计算的核心是建立电力系统的节点电压和传输功率的联立方程组,并通过求解方程组得到节点电压和功率流向的数值解。

潮流计算的基本原理是基于电力系统的各节点之间存在有功功率平衡和无功功率平衡,即电力系统各节点的有功功率和无功功率之和等于节点的负荷功率和发电机输出功率之和。

通过对电力系统进行潮流计算,可以得出各节点的电压、功率因数、功率损耗等参数,为电力系统的运行和管理提供依据。

二、电力系统潮流计算的方法1. 直流潮流计算方法直流潮流计算方法是一种较为简化的计算方法,适用于较小规模的电力系统以及初步的潮流计算。

该算法假设电力系统中各节点电压的相角都为零,即所有节点电压相位角均取0°,从而简化了潮流计算的计算量。

然而,直流潮流计算方法无法考虑电网的无功功率平衡,无法准确得到节点的功率因数和无功功率分布。

2. 迭代法潮流计算方法迭代法是一种常用的潮流计算方法,其基本思路是通过反复迭代计算节点电压和功率分布,直到达到收敛条件为止。

迭代法潮流计算方法常用的算法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。

迭代法潮流计算方法能较好地考虑电网的无功功率平衡,可以获得较为准确的节点电压和功率分布。

3. 双切迭代法潮流计算方法双切迭代法是一种相对较新的潮流计算方法,其基本思路是通过分析电力系统的分割区域,将电力系统划分为多个小区域进行潮流计算,并通过切割和迭代的方式逐步求解整个电力系统。

电力系统潮流分析

电力系统潮流分析

潮流计算的意义1在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求;2在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议;3正常检修及下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求;4预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案;总结为在和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性;同时,为了电力系统的运行状态,也需要进行大量而快速的潮流计算;因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算;在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在的实时监控中,则采用在线潮流计算;潮流计算的发展史利用电子计算机进行潮流计算从20世纪50年代中期就已经开始;此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的;对潮流计算的要求可以归纳为下面几点:1算法的可靠性或收敛性2计算速度和内存占用量3计算的方便性和灵活性电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程;因此其数学模型不包含微分方程,是一组高阶非线性方程;非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案;随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的;这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法;在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳为基础的高斯-赛德尔迭代法一下简称导纳法;这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法以下简称阻抗法;20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件;阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵;这就需要较大的内存量;而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大;阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献;但是,阻抗法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大;当系统不断扩大时,这些缺点就更加突出;为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法;这个方法把一个大系统分割为几个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了节省速度;克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法以下简称;牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性;解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式的稀疏性,就可以大大提高牛顿潮流程序的计算效率;自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法;在牛顿法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法;P-Q分解法在计算速度方面有显着的提高,迅速得到了推广;牛顿法的特点是将非线性方程线性化;20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法;另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法;近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的;此外,随着人工智能理论的发展,遗传算法、、模糊算法也逐渐被引入潮流计算;但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位;由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域;潮流计算的发展趋势通过几十年的发展,潮流算法日趋成熟;近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法;牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法;后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法;对于保留非线性算法典型论文有:1.文献保留非线性的电力系统概率潮流计算提出了它在电力系统概率潮流计算中的应用;该文献提出了一种新的概率潮流计算方法,它保留了潮流方程的非线性,又利用了P-Q解耦方法,因而数学模型精度较高,且保留了P-Q解耦的优点,有利于大电网的随机潮流计算,用提出的方法对一个典型的系统进行了计算,其数值用MonteCarlo随机模拟作了验证,得到了满意的结果;2.文献基于系统分割的保留非线性的快速P-Q解耦潮流计算法分析研究了保留非线性的P-Q解耦快速潮流计算法;该文献提出了一种新的状态估计算法,既保留了量测方程非线性又利用了快速P-Q分解方法,因此数学模型精度高且保留了快速P-Q分解的优点,提高了状态估计的计算精度和速度.采用系统分割方法将大系统分割为多个小系统,分别对每个小系统进行状态估计,然后对各小系统的状态估计结果进行协调,得到整个系统具有同一参考节点的状态估计结果,这样可大大提高状态估计的计算速度,有利于进行大电网的状态估计.在18节点系统上进行的数字仿真实验验证了该方法的有效性;岩本伸一等提出了一种保留非线性的快速潮流计算法,但用的是,因而没法利用P-Q解耦;为了更有利于大电网的潮流计算,将此原理推广用于P-Q解耦;这样,既利用了保留非线性的快速算法,在迭代中使用常数,又保留了P-Q解耦的优点;对于一些病态系统,应用非线性潮流计算方法往往会造成计算过程的振荡或者不收敛,从数学上讲,非线性的潮流计算方程组本来就是无解的;这样,人们提出来了将潮流方程构造成一个函数,求此函数的最小值问题,称之为非线性规划潮流的计算方法;优点是原理上保证了计算过程永远不会发散;如果将数学规划原理和牛顿潮流算法有机结合一起就是最优乘子法;另外,为了优化系统的运行,从所有以上的可行潮流解中挑选出满足一定指标要求的一个最佳方案就是最优潮流问题;最优潮流是一种同时考虑经济性和安全性的分析优化问题;OPF 在电力系统的安全运行、经济调度、可靠性分析、能量管理以及电力定价等方面得到了广泛的应用;最优潮流方面的典型论文有:1.文献电力系统最优潮流新算法的研究以NCP 方法为基础,提出了一种新的求解最优潮流算法——投影渐近半光滑牛顿型算法;该文献以NCP方法为基础,提出了一种新的求解OPF算法——投影渐近半光滑牛顿型算法;针对电力系统的特点,本文的研究工作如下: 1.建立了与OPF问题的KKT系统等价的带界约束的半光滑方程系统;与已有的NCP方法相比,新的模型由于无需考虑界约束对应的对偶变量乘子变量,降低了问题的维数,从而适用于解大规模的电力系统问题;2.基于建立的新模型,本文提出了一类新的Newton型算法,该算法一方面保持界约束的相容性,另一方面有较好的全局与局部超线性收敛性,同时,算法结构简单,易于实现; 3.考虑到电力系统固有的弱耦合特性,受传统解耦最优潮流方法的启示,在所提出的新Newton型方法的基础上,本文又设计了一类分解方法;新方法基于解耦——校正的策略实现算法,不仅充分利用了系统的弱耦合特性,同时保证分解算法在理论上的收敛性; 4.根据所提出的两种算法,用标准的IEEE电力测试系统进行数值实验,并与已有的其他方法进行比较;结果显示新算法具有良好的收敛性和计算效果,在电力系统的规划与运行方面将有广阔的应用前景;2.文献基于可信域内点法的最优潮流问题研究介绍了OPF内点法具有收敛性强、多项式时间复杂性等优点,是极具潜力的优秀算法之一;电力系统不断发展,使得OPF算法跻身于极其困难、非凸的大规模非线性规划行列;可信域和线性搜索方法是保证最优化算法全局收敛性能的两类技术,将内点法和可信域、线性搜索方法有机结合,构造新的优化算法,是数学规划领域的研究热点;此方面的典型文献有:1.文献电力市场环境下基于最优潮流的输电容量充裕度研究首先以最优潮流为工具,选取系统中的关键线路作为系统输电容量充裕度的研究对象,从电网运行的安全性、可靠性的角度系统地研究了稳定限额对输电容量充裕度的影响,指出稳定限额因子与影子价格的乘积可直接反应出稳定限额水平的经济价值,同时也可以较好的指示出系统运行相对安全、经济的稳定限额水平区间;2.文献电力市场环境下基于最优潮流的节点实时电价和购电份额研究为了为配电公司最优购电模型提供价格参考依据,以发电成本最小为目标函数,考虑电力的影响,建立了实时电价模型;模型利用预测校正原对偶内点法求解,以IEEE30节点系统为算例验证了模型的可行性;3.文献电力系统动态最优潮流的模型与算法研究指出电力系统动态最优潮流是对调度周期内的系统状态进行统一优化的有效工具,对保证电力系统安全经济运行具有重要的理论意义和现实意义;文献结合内点法和免疫遗传算法,对经典动态最优潮流问题和动态无功优化问题的算法进行了深入的研究,提出了新的算法;并建立了含电压稳定约束、含无功型离散变量,以及含机组启停变量的动态最优潮流模型,将新算法推广应用于各种新模型,拓展了动态最优潮流的研究领域;对于一些特殊性质的潮流计算问题有直流潮流计算方法、随机潮流计算方法和三相潮流计算方法;直流潮流计算方法,文献基于改进布登法的交直流潮流计算主要介绍在分析求解非线性方程组的布罗伊登法和一种改进的布罗伊登法的基础上,针对交直流混联系统,运用改进的布罗伊登法,提出了一种潮流计算的统一迭代法,设计了算法的具体实现步骤,并以一个IEEE9节点修改系统进行仿真计算,结果表明本文采用的改进布罗伊登法交直流潮流计算方法有效可行;文献基于直流潮流和分布因子三脆性源辨识技术提出了基于直流潮流和分布因子法相结合,提出了快速找到系统脆性源的方法和步骤;通过对3节点电力系统脆性源的辨识,证明了此方法的有效性;文献计及双馈风力发电机内部等值电路的电力系统随机潮流计算研究了含变速恒频双馈式发电机的风电场接入系统后对电压质量的影响,在双馈式发电机简化等值电路的基础上建立了风电场的确定性潮流模型,建立了风力发电机的随机分析模型,并在这二者的基础上运用基于半不变量法的随机潮流进行计算;文献计及分布式发电的随机潮流计算提出了计及分布式发电的配电系统随机潮流计算;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于电力系统经济调度的潮流计算分析
摘要:潮流计算是电力调度中最重要也是最基本的计算之一,它应用于电力系统中
实时电价计算、输电权分配、网络阻塞管理等多方面。

关键词:电力系统;经济调度;潮流计算
前言
随着经济的快速发展和科技的不断进步,社会各行业对电力资源的需求量越来越大,我
国的电力系统建设规模也越来越大。

电力调度对电力系统的正常运行有很大的影响,而潮流
计算则是电力调度中最重要的基本计算方法,潮流计算对电价计算、输电分配、电网线路管
理有十分重要的影响。

随着经济的快速发展,我国的电力企业得到了飞速的发展,与此同时,人们对供电质量的要求也越来越高,为满足人们的用电需求,电力系统在运行过程中,必须
保证电力调度的合理性、科学性,潮流计算是电力系统经济调度最重要的计算方法之一,潮
流计算的结果准确性很高,科学性很强,潮流计算对电力系统经济调度有十分重要的作用。

一、潮流计算的概述
1.1 潮流计算的概述
潮流计算是指利用已知的电网接线方式、参数、运行条件,将电力系统的各个母线电压、支路电流、功率、网损计算出来。

通过潮流计算能判断出正在运行的电力系统的母线电压、
支路电流、功率是否在允许范围内运行,如果超出允许范围,就需要采用合理的措施,对电
力系统的进行方式进行调整。

在电力系统规划过程中,采用潮流计算,能为电网供电方案、
电气设备的选择提供科学的依据,同时潮流计算还能为自动装置定整计算、继电保护、电力
系统稳定计算、故障计算提供原始数据。

1.2 潮流计算的电气量
潮流计算是根据电力系统接线方式、运行条件、参数等已知条件,将稳定状态下电力系
统的电气量计算出来。

一般情况下,给出的条件有电源、负荷节点的功率、平衡节点的电压、相位角、枢纽点的电压,需要计算的电气量有各节点的电压、相位角、各支路通过的电流、
功率、网络的功率损耗等。

1.3 传统的潮流计算方法
传统的潮流计算方法,包括很多不同的内容,具有一定的优点和缺点。

例如,传统的潮
流计算方法,包括非线性规划法、二次规划法和线性规划法等。

在电力系统经济调度的过程中,应用传统的潮流计算方法,优点是:可以根据目标函数的导数信息,确定需要进行搜索
的方向,因此在计算的时候,具有较快的速度和清晰的计算过程。

而且,可信度比较高。

1.5 智能的潮流计算方法
潮流计算中人工智能方法的优点是:随机性:属于全局优化算法,跳出局部极值点比较
容易;与导数无关性:在工程中,一些优化问题的目标函数处于不可导状态。

如果进行近似
和假设,会对求解的真实性造成影响;内在并行性:操作对象为一组可行解,在一定程度上
可以克服内在并发性开放中性能的不足。

而其缺点,主要是:需要按照概率进行操作,不能
保证可以完全获取最优解;算法中的一些控制参数需要根据经验人文地给出,对专家经验和
一定量的试验要求比较高;表现不稳定,在同一问题的不同实例中应用算法会出现不同的效果。

二、潮流计算的分类
根据电力系统的运行状态,潮流计算可以分为离线计算和在线计算两种方法,离线计算
主要用于电力系统规划设计和电力系统运行方式安排中;在线计算主要用于电力系统运行监
控和控制中;根据潮流计算的发展,潮流计算可以分为传统方法和人工智能方法两种情况,
下面分别对这两种方法进行分析。

2.1 潮流计算的传统方法
潮流计算的传统方法有非线性规划法、线性规划法、二次规划法等几种情况,潮流计算
的传统方法具有计算速度快、解析过程清晰、结果真实可靠等优点,但传统方法对目标函数
有一定的限制,需要简化处理,这样求出来的值有可能不是最优值。

2.2 潮流计算的人工智能方法
潮流计算的人工智能方法是一种新兴的方法,人工智能方法不会过于依赖精确的数学模型,它有粒子群优化算法、遗传法、模拟退火法等几种情况,人工智能方法的计算结果和导
数没有关系,其操作对象是一组可行解,能克服内在并行性存在的问题,但人工智能方法表
现不太稳定,在计算过程中,有的控制参数需要根据经验得出,因此,采用人工智能方法进
行计算时,需要计算人员有丰富的经验。

三、潮流计算在电力系统经济调度中的应用
3.1 在输电线路线损计算的应用
在进行输电线路线损计算过程中,通过潮流计算能得出经济潮流数据。

潮流程度能根据
线路的功率因数、有功负荷、无功负荷等参数,计算出潮流线损,例如一条长为38.1km,型
号为LGJ—150的导线,当潮流为20MW、功率因数为0.9时,该线路线损为0.24MW,线损
率为1.18%;当潮流为30MW、功率因数为0.9时,该线路线损为0.57MW,线损率为1.91%;潮流为50MW、功率因数为0.9时,该线路线损为1.95MW,线损率为3.90%;由此可以看出,潮流小于30MW时,线损率小于2%,潮流超过50MW时,线损率将超过4%,因此,该输电线路的经济输送潮流为30MW以下。

调度人员可以根据计算结果,编制线路经济运行方案,
从而实现节能调度。

3.2 在变压器变损中的应用
调度人员可以利用潮流计算程序,将变压器在不同负荷下的损耗、变损率计算出来,从
而为变压器控制提供依据。

例如一台40MVA双圈变压器在功率因素为0.95、铁损为
0.026MW的情况下,当负荷为5MW时,铜损为0.027MW,变损率为0.540%;负荷为
15MW时,铜损为0.035MW,变损率为0.233%;当负荷为35MW时,铜损为0.082MW,变
损率为0.234%;当负荷为40MW时,铜损为0.101MW,变损率为0.253%。

由此看出,该变
压器在15MW-35MW条件下,变损率为0.233%-0.234%,比较经济。

3.3 在运行方式损耗中的应用
对于多电源供电站,可以通过潮流程序,计算出不同运行方式下的线损,从而确定经济
运行方式。

例如某变电站有两种供电方式,一种供电方式是采用LG—150,38.2km的导线供电,另一种供电方式为采用LGJ—240,24.3km的导线供电,当潮流为20MW,功率因数为
0.9时,1号运行方式的线损为0.24MW,线损率为1.18%,2号运行方式的线损为0.15MW,
线损率为0.76%;当潮流为30MW,功率因数为0.9时,1号运行方式的线损为0.82MW,线
损率为1.91%,2号运行方式的线损为0.52MW,线损率为1.23%;当潮流为40MW,功率因
数为0.9时,1号运行方式的线损为1.12MW,线损率为2.80%,2号运行方式的线损为
0.72MW,线损率为1.79%。

由此可见,2号供电方式比1号供电方式更加经济。

总结
随着经济的快速发展,电力系统的节能调度越来越重要,因此,电力企业要了解潮流计
算方法,在电力系统经济调度中合理的运用潮流计算,为电力调度提供科学、准确的运行数据,从而为电力系统的稳定运行提供保障。

参考文献
[1]姚勇,李健,王雨虹.几种电力系统潮流计算的比较与分析[J].科技广场,2013,(07):94-96.
[2]朱定兰,李新.电力系统经济运行及电力经济调度综述[J].中国新技术新产品,2013,(23):125-126.
[3]杨佳俊,雷宇.考虑风电接入的电力系统经济调度研究综述[J].东北电力技术,2014,(02):144-146.
作者简介
秦先威(1986.10.08),男,学历:山东科技大学电气工程学士,研究方向:电力调度。

相关文档
最新文档