解析几何大题部分-高考数学解题方法归纳总结专题训练
高考数学:解析几何常考题型及解题方法汇总(含详解),
![高考数学:解析几何常考题型及解题方法汇总(含详解),](https://img.taocdn.com/s3/m/26543eea112de2bd960590c69ec3d5bbfd0ada36.png)
相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。
在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。
但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。
今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。
高三数学总复习专题10 解析几何(答案及解析)
![高三数学总复习专题10 解析几何(答案及解析)](https://img.taocdn.com/s3/m/b1ea9b05df80d4d8d15abe23482fb4daa58d1d90.png)
高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)
![高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)](https://img.taocdn.com/s3/m/fdaf0d3402d8ce2f0066f5335a8102d276a2610d.png)
设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)
![2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)](https://img.taocdn.com/s3/m/1309e496ac51f01dc281e53a580216fc700a53ef.png)
解法二:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 所以 kAC·kBC=x1y+1 2·x1y-1 2(2 分)
=x21y-21 4=3x121--x4421(3 分) =-34.(4 分) 即-34=kAP·kBQ=4+yP2·4-yQ2.故 yPyQ 的值为-9.(5 分)
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] (1)由双曲线定义可知||MF1|-|MF2||=2a=2, ∴a=1,(1 分) 又由|F1F2|=4,∴c=2,(2 分) ∵a2+b2=c2,∴b= 3,(3 分) ∴双曲线 C 的方程为 x2-y32=1.(4 分)
(2)①证明:设 M(x0,y0),P(x1,y1),Q(x2,y2), 则 y1= 3x1①,y2=- 3x2②, 将①+②可得 y1+y2= 3(x1-x2), 将①-②可得 y1-y2= 3(x1+x2),(5 分) ∴ 3y1x+1+y2x2= 3y1x-1-y2x2, 即xy11++yx22=3yx11--yx22,(6 分)
由题可知|MP|=|MQ|, ∴x1+x2=2x0, y1+y2=2y0, ∴xy00=3yx11--yx22,即 kPQ=3yx00,(7 分) ∴直线 PQ 的方程为 y-y0=3yx00(x-x0), 即 3x0x-y0y=3x20-y20,
高考数学解析几何专题练习与答案解析版
![高考数学解析几何专题练习与答案解析版](https://img.taocdn.com/s3/m/5f0e51fde109581b6bd97f19227916888486b930.png)
高考数学解析几何专题练习解析版82页1.一个顶点的坐标2,0,焦距的一半为3的椭圆的标准方程是()A.19422yxB.14922yxC.113422yxD.141322yx2.已知双曲线的方程为22221(0,0)x y a b ab,过左焦点F 1作斜率为3的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( )A .3B .32C .31D .323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+ m 4的值为()A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为A .30oB.45oC.60oD.120o5.已知曲线C 的极坐标方程ρ=22cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上(B)P 、Q 都不在曲线C 上(C)P 不在曲线C 上,Q 在曲线C 上(D)P 、Q 都在曲线C 上6.点M 的直角坐标为)1,3(化为极坐标为()A .)65,2( B.)6,2( C .)611,2( D.)67,2(7.曲线的参数方程为12322tyt x (t 是参数),则曲线是()A 、线段B 、直线C 、圆D 、射线8.点(2,1)到直线3x-4y+2=0的距离是()A .54B .45C .254D .4259.圆06422y x yx的圆心坐标和半径分别为()A.)3,2(、13B.)3,2(、13 C.)3,2(、13 D.)3,2(、1310.椭圆12222by x的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN,则该椭圆离心率取得最小值时的椭圆方程为( )A.1222yxB.13222yxC.12222yxD.13222yx11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB 是直角三角形,则此双曲线的离心率e 的值为()A .32B .2C .2D .312.已知)0(12222baby ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021k k ,则21k k 的最小值为1,则椭圆的离心率为( ).(A)22 (B) 42 (C)23 (D)4313.设P 为双曲线11222yx上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21PF PF ,则△PF 1F 2的面积为()A .36B .12C .123D .2414.如果过点m P,2和4,m Q 的直线的斜率等于1,那么m 的值为( )A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516xy 上,若A 点坐标为(3,0),||1AM ,且0PM AM 则||PM 的最小值是()A .2 B.3 C.2 D.316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D、17.已知椭圆2222:1(0)x y C a b ab>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AFFB ,则k()(A )1(B )2(C )3(D )218.圆22(2)4x y与圆22(2)(1)9x y 的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是()(A)圆或椭圆或双曲线(B)两条射线或圆或抛物线(C)两条射线或圆或椭圆(D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是()A .[6,3) B.(6,2) C.(3,2) D.[6,2]21.直线l 与两直线1y 和70x y 分别交于,A B 两点,若线段AB 的中点为(1,1)M ,则直线l 的斜率为()A .23B .32 C .32D .2322.已知点0,0,1,1O A,若F 为双曲线221xy的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r的取值范围为()A .21,1 B.21,2 C.1,2 D .2,23.若b a,满足12b a ,则直线03b yax过定点().A 21,61B .61,21C .61,21.D 21,6124.双曲线1922yx 的实轴长为 ( )A.4 B. 3 C. 2 D. 125.已知F 1、F 2分别是双曲线1by ax 2222(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若9021PF F ,且21PF F 的三边长成等差数列,则双曲线的离心率是()A .2B.3C. 4D. 526.过A(1,1)、B(0,-1)两点的直线方程是()A.B.C. D.y=x 27.抛物线x y 122上与焦点的距离等于6的点横坐标是()A .1B.2C.3D.428.已知圆22:260C xyx y,则圆心P 及半径r 分别为()A 、圆心1,3P ,半径10r ;B 、圆心1,3P ,半径10r ;C 、圆心1,3P ,半径10r;D 、圆心1,3P ,半径10r。
高考解析几何题型归纳总结
![高考解析几何题型归纳总结](https://img.taocdn.com/s3/m/dbe22b042f3f5727a5e9856a561252d381eb204d.png)
高考解析几何题型归纳总结随着高考的逼近,几何题成为了考生备考中不可忽视的一部分。
几何题在高考中占据了相当大的比重,解析几何题更是考生普遍认为难度较高的题型之一。
为了帮助考生更好地备考解析几何题,本文将对高考解析几何题型进行归纳总结,从而帮助考生更好地应对高考几何题。
1. 二维几何题目二维几何题目主要涉及平面图形的性质、面积、周长以及平行线、垂直线的性质等。
在解答二维几何题目时,考生应注意以下几个方面:(1) 论证步骤的完整性:解答二维几何题目时,应充分体现论证的完整性,即从已知条件出发,一步一步进行推导,最终得出结论。
(2) 图形的准确画法:在画图时应确保图形的准确性,边长、角度等应与给定条件一致,以避免答案误差。
(3) 重点关注特殊性质:几何题中常涉及到平行线、垂直线以及等边等特殊性质,考生应注意识别和运用这些特殊性质来解答题目。
2. 三角形相关题目三角形相关的题目主要涉及三角形的面积、周长、角度等性质。
在解答三角形题目时,考生应注意以下几个方面:(1) 利用相似三角形性质:在解答三角形的题目时,经常会用到相似三角形的性质。
考生应注意观察题目中是否存在相似三角形,以便能够灵活地运用相似三角形性质来解题。
(2) 角度关系的应用:三角形中的角度关系常常是解题的关键,考生应深入理解角的概念,并能够巧妙利用角度关系解答题目。
(3) 三角形的分类:根据不同的三角形分类,可以利用其特定性质解答题目。
例如,等边三角形具有所有边相等的性质,而等腰三角形具有两边相等的性质。
考生应注意灵活运用不同种类三角形的性质。
3. 圆相关题目圆相关的题目主要涉及圆的性质、弧长、面积等。
在解答圆相关题目时,考生应注意以下几个方面:(1) 圆的性质的应用:圆的性质是解答圆相关题目的基础,考生应深刻理解圆的定义、圆心角、弧长等基本概念,并能够合理运用这些性质。
(2) 弧长和扇形面积的计算:在解答涉及弧长和扇形面积的题目时,考生应熟记相应的计算公式,并注意计算过程中的单位换算。
解析几何 高考数学大题热点50题训练学生版
![解析几何 高考数学大题热点50题训练学生版](https://img.taocdn.com/s3/m/a7cde538bfd5b9f3f90f76c66137ee06eef94e5e.png)
2023 解几大题热点50 题训练一.解答题(共50 小题)1.(2023•五华区校级模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,C 的两条渐近线分别与直线2a x c=交于A ,B 两点,且AB 的长度恰好等于点F (1)求双曲线的离心率;(2)已知过点F 且斜率为1的直线l 与双曲线交于M ,N 两点,O 为坐标原点,若对于双曲线上任意一点P ,均存在实数λ,μ,使得OP OM ON λμ=+,试确定λ,μ的等量关系式.2.(2023•江西模拟)已知点F 为抛物线2:2(0)C y px p =>的焦点,点(4,)M a 在抛物线上,且||6FM =.(1)求抛物线C 的方程;(2)过点F 分别作两条互相垂直的直线与抛物线C 分别交于A ,B 与P ,Q ,记AFP ∆,BFQ ∆的面积分别为1S ,2S ,求12S S +的最小值.3.(2023•潍坊模拟)已知动点P 与两定点1(2,0)A -,2(2,0)A ,直线1PA 与2PA 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(D a ,0)(12)a <<,E 为直线2x a =上一动点,直线DE 交曲线C 于G ,H 两点,若||GD 、||HE 、||GE 、||HD 依次为等比数列{}n b 的第m 、n 、p 、q 项,且m n p q +=+,求实数a 的值.4.(2023•西安模拟)已知椭圆2222:1(0)x y C a b a b +=>>的焦点为1F 、2F ,离心率为22,直线:0l x y m ++=,1F 、2F 在直线l 上的射影分别为M 、N ,且||MN =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,(2,0)P -.求ABP ∆的面积的最大值.5.(2023•聊城一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线的倾斜角为60︒,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点(0,0)O ,(0,2)M ,动直线:l y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.6.(2023•周至县二模)如图,已知椭圆2222:1(0)y x E a b a b +=>>的一个焦点为1(0,1)F ,离心率为22.(1)求椭圆E 的方程;(2)过点I F 作斜率为k 的直线交椭圆E 于A ,B 两点,AB 的中点为M .设O 为原点,射线OM 交椭圆E 于点C .当四边形OACB 为平行四边形时,求k的值.7.(2023•太原模拟)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,上顶点为B ,其离心率12e =,直线AB 与圆22127x y +=相切.(1)求椭圆C 的方程;(2)过点M 的直线与椭圆C 相交于P ,Q 两个不同点,过点P 作x 轴的垂线分别与AB ,AQ 相交于点D 和N ,证明:D 是PN 中点.8.(2023•江苏模拟)已知直线l 与抛物线21:2C y x =交于两点1(A x ,1)y ,2(B x ,2)y ,与抛物线22:4C y x =交于两点3(C x ,3)y ,4(D x ,4)y ,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点(1,0)M,且11||||BM AM -=l 的方程;(2)①证明:12341111y y y y +=+;②设AOB ∆,COD ∆的面积分别为1S ,2(S O 为坐标原点),若||2||AC BD =,求12S S .9.(2022秋•滨江区校级期末)已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点.点M 为椭圆上一点,当12F MF ∠取最大值3π时,121()6MF MF MF +⋅= .(1)求椭圆C 的方程;(2)点P 为直线4x =上一点(且P 不在x 轴上),过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,点B 关于x 轴的对称点为B ',连接AB '交x 轴于点G .设△2AF G ,△2BF G 的面积分别为1S ,2S ,求12||S S -的最大值.10.(2023春•广东月考)已知点(1,0)F ,点P 为平面上的动点,过点P 作直线:1l x =-的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅ .(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设点P 的轨迹C 与x 轴交于点M ,点A ,B 是轨迹C 上异于点M 的不同的两点,且满足0MA AB ⋅=,求||MB的最小值.11.(2023春•商丘月考)已知动点P 到直线8y =-的距离比到点(0,1)的距离大7.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)记动点P 的轨迹为曲线C ,点M 在直线1:1l y =-上运动,过点M 作曲线C 的两条切线,切点分别为A ,B ,点N 是平面内一定点,线段MA ,NA ,NB ,MB 的中点依次为E ,F ,G ,H ,若当M 点运动时,四边形EFGH 总为矩形,求定点N 的坐标.12.(2023•铜仁市模拟)已知双曲线2222:13x y C a a -=-的一条渐近线方程为20x y -=,若过点(0,3)E -的直线l 交C 于A ,B 两点.(1)求直线l 的斜率范围;(2)若l 交C 的两条渐近线于C ,D 两点且满足CA AB BD ==,求直线l 的斜率的大小.13.(2023•抚顺模拟)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点坐标为(1,0)-,A ,B 分别是椭圆的左、右顶点,点(,)D x y 在椭圆C 上,且直线AD 与BD 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)设直线230x ty +-=与椭圆分别相交于M ,N 两点,直线(MO O 为坐标原点)与椭圆的另一个交点为E ,求MNE ∆的面积S 的最大值.14.(2023•湛江一模)已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,△1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.15.(2023•辽宁一模)如图,A ,B ,C ,D 是抛物线2:4E y x =上的四个点(A ,B 在x 轴上方,C ,D 在x 轴下方),已知直线AC 与BD 的斜率分别为63-和2,且直线AC 与BD 相交于点P .(1)若点A 的横坐标为6,则当ADC ∆的面积取得最大值时,求点D 的坐标.(2)试问||||||||PA PC PB PD ⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.16.(2023•咸阳二模)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,且椭圆C 过点(2,0)-,离心率为12.(1)求椭圆C 的方程;(2)若点1(M x ,1)y 是椭圆22221(0)x y m n m n+=>>上任一点,那么椭圆在点M 处的切线方程为11221x x y y m n +=.已知0(N x ,0)y 是(1)中椭圆C 上除顶点之外的任一点,椭圆C 在N 点处的切线和过N 点垂直于切线的直线分别与y 轴交于点P 、Q .求证:点P 、N 、Q 、1F 、2F 在同一圆上.17.(2023•赤峰三模)法国数学家加斯帕尔⋅蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础,根据他的研究成果,我们定义:给定椭圆2222:1(0)x y C a b a b +=>>,则称圆心在原点O 的圆为“椭圆C 的伴随圆”,已知椭圆22221(0)x y a b a b +=>>的一个焦点为F ,其短轴的一个端点到焦点F (1)若点A 为椭圆C 的“伴随圆”与x 轴正半轴的交点,B ,D 是椭圆C 的两相异点,且BD x ⊥轴,求AB AD ⋅的取值范围.(2)在椭圆C 的“伴随圆”上任取一点P ,过点P 作直线1l ,2l ,使得1l ,2l 与椭圆C 都只有一个交点,试判断1l ,2l 是否垂直?并说明理由.18.(2023•开封二模)如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C .当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率为12时直线l 的斜率.19.(2023•吉州区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点3(1,2A ,且12|||4AF AF +=.(1)求C 的方程;(2)过点2F 且斜率为l 的直线与C 交于点M 、N ,求OMN ∆的面积.20.(2023•毕节市模拟)在圆22:1O x y +=上任取一点P ,过点P 作y 轴的垂线,垂足为D ,点Q 满足2DQ PQ =.当点P 在圆O 上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与y 轴正半轴交点为A ,不过点A 的直线l 与曲线C 交于M ,N 两点,若0AM AN ⋅=,试探究直线l 是否过定点.若过定点,求出该点的坐标;若不过定点,请说明理由.21.(2023•大庆模拟)已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,短轴长为.(1)求椭圆C 的方程;(2)已知经过定点(1,1)P 的直线l 与椭圆相交于A ,B 两点,且与直线34y x =-相交于点Q ,如果AQ AP λ= ,QB PB μ=,那么λμ+是否为定值?若是,请求出具体数值;若不是,请说明理由.22.(2023•成都模拟)已知中心为坐标原点O ,对称轴为坐标轴的椭圆C 经过P ,3,Q ,3两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(0,1)的直线l 与椭圆C 相交于A ,B 两点,23OD OB = ,OE OD OA =+,且点E 在椭圆C 上,求直线l 的方程.23.(2023•湖南模拟)在平面直角坐标系xOy 中,双曲线2222:1(0,0)y x C a b a b-=>>的焦点到渐近线的距离(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,点P 在y 轴上(位于原点与上顶点之间),过P 作x 轴的平行线l ,过P 的另一条直线交双曲线于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若ANM AOM π∠+∠=,求点P 的坐标.24.(2023•贵州模拟)已知抛物线2:2(0)C x py p =>上的点0(2,)y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线:3l y =-上,过点D 作抛物线C 的两条切线,切点分别为A ,B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当||MN 最小时,求||||AB MN 的值.25.(2023•广西模拟)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)若P 为直线:2l x =-上的一动点,过P 作抛物线C 的切线PA ,PB ,A ,B 为切点,直线AB 与l 交于点M ,过F 作AB 的垂线交l 于点N ,当||MN 最小时.求||AB .26.(2023•昆明一模)已知过点(1,)e 的椭圆2222:1(0)x y E a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于A ,C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.27.(2023•全国一模)已知双曲线2222:1(0,0)x y C a b a b-=>>过点(3,A ,且渐近线方程为0x ±=.(1)求双曲线C 的方程;(2)如图,过点(1,0)B 的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求||||PB BQ 的值.28.(2023•邯郸一模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线221x y -=的离心率互为倒数,点(2,2)A 在椭圆C 上,不过点A 的直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆C 的标准方程;(2)若直线AP ,AQ 的斜率之和为1,试问直线l 是否过定点?若过定点,求出此定点;若不过定点,请说明理由.29.(2023•成都模拟)已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,与椭圆C 有相同焦点的双曲线2214x y -=在第一象限与椭圆C 相交于点P ,且2||1PF =.(1)求椭圆C 的方程;(2)设直线1y kx =+与椭圆C 相交于A ,B 两点,O 为坐标原点,且(0)OD mOB m =>.若椭圆C 上存在点E ,使得四边形OAED 为平行四边形,求m 的取值范围.30.(2023•商洛一模)已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,Q 是椭圆E 的右顶点,2||1F Q =,且椭圆E 的离心率为12.(1)求椭圆E 的方程.(2)过1F 的直线交椭圆E 于A ,B 两点,在x 轴上是否存在一定点P ,使得1()||||PA PBPF PA PB λ=+,λ为正实数.如果存在,求出点P 的坐标;如果不存在,说明理由.31.(2023•石景山区一模)已知椭圆2222:1(0)x y C a b a b+=>>过点,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,1)P -且互相垂直的直线1l ,2l 分别交椭圆C 于M ,N 两点及S ,T 两点.求||||||||PM PN PS PT 的取值范围.32.(2023•西城区校级模拟)已知点A ,B 是椭圆2222:1(0)x y E a b a b+=>>的左,右顶点,椭圆E 的短轴长为2,离心率为32.(1)求椭圆E 的方程;(2)点O 是坐标原点,直线l 经过点(2,2)P -,并且与椭圆E 交于点M ,N ,直线BM 与直线OP 交于点T ,设直线AT ,AN 的斜率分别为1k ,2k ,求证:12k k 为定值.33.(2023•江西模拟)设椭圆E 的方程为2221(1)x y a a+=>,点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB 上,满足||2||BM MA =,直线OM 的斜率为14.(1)求椭圆的方程;(2)若动直线l 与椭圆E 交于P ,Q 两点,且恒有OP OQ ⊥,是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由.34.(2023•天津模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,直线:1l x =与C 交于M ,N 两点,且||MN =(1)求C 的方程;(2)若C 的左、右顶点分别为A ,B ,点D (不同于M ,)N 为直线l 上一动点,直线AD ,BD 分别与C 交于点P ,Q ,证明:直线PQ 恒过定点,并求出该定点的坐标.35.(2023•江西模拟)已知椭圆2222:1(,02)x y C a b b a b+=><<的左、右焦点分别为1F ,2F ,点M 在椭圆上,212MF F F ⊥,若△12MF F 的周长为6,面积为32.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 交椭圆于A ,B 两点,交y 轴于P 点,设1222,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由.36.(2023•兴庆区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,经过点3(1,2,若点P 是椭圆C上一个动点(异于椭圆C 的左右顶点),点(3,0)N -,(2,0)E -,(2,0)F ,直线PN 与曲线C 的另一个公共点为Q ,直线EP 与FQ 交于点M .(1)求椭圆C 的标准方程;(2)求证:当点P 变化时,点M 恒在一条定直线上.37.(2023•渝中区校级模拟)已知椭圆2222:1x y C a b+=的焦点在x 轴上,它的离心率为12,且经过点23(3P .(1)求椭圆C 的方程;(2)若椭圆C 的左焦点为F ,过点F 的直线l 与椭圆C 交于A ,B 两点,且过点A ,B 和点2Q 的圆的圆心在x 轴上,求直线l 的方程及此圆的圆心坐标.38.(2023•兴庆区校级一模)如图所示,由半椭圆2212:1(0)4x y C y b += 和两个半圆222:(1)1(0)C x y y ++= 、223:(1)1(0)C x y y -+= 组成曲线:(,)0C F x y =,其中点1A ,2A 依次为1C 的左、右顶点,点B 为1C 的下顶点,点1F ,2F 依次为1C 的左、右焦点.若点1F ,2F 分别为曲线2C ,3C 的圆心.(1)求1C 的方程;(2)若过点1F ,2F 作两条平行线1l ,2l 分别与1C ,2C 和1C ,3C 交与M ,N 和P ,Q ,求||||MN PQ +的最小值.39.(2023•浙江模拟)已知双曲线E 的顶点为(1,0)A -,(1,0)B ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且4OFG S ∆=.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP OH ⋅为定值.40.(2023•呼和浩特模拟)已知椭圆22221(0)x y a b a b +=>>的一个焦点为(2,0)F ,且离心率e =.(1)求椭圆的标准方程;(2)设点A 、B 是x 轴上的两个动点,1)M -且||||AM BM =,直线AM 、BM 分别交椭圆于点P 、Q (均异于)M ,证明:直线PQ 的斜率为定值.41.(2023•龙岩模拟)已知椭圆2222:1(0)x y K a b a b+=>>的左、右焦点分别为1(2,0)F -,2(2,0)F ,过右焦点2F 的直线l 交椭圆K 于M ,N 两点,以线段2||MF 为直径的圆C 与圆221:8C x y +=内切.(1)求椭圆K 的方程;(2)过点M 作ME x ⊥轴于点E ,过点N 作NQ x ⊥轴于点Q ,OM 与NE 交于点P ,是否存在直线l 截得PMN ∆的面积等于62若存在,求出直线l 的方程;若不存在,请说明理由.42.(2023•济宁一模)已知直线10x y ++=与抛物线2:2(0)C x py p =>相切于点A ,动直线l 与抛物线C 交于不同两点M ,(N M ,N 异于点)A ,且以MN 为直径的圆过点A .(1)求抛物线C 的方程及点A 的坐标;(2)当点A 到直线l 的距离最大时,求直线l 的方程.43.(2023•宁波模拟)已知双曲线2222:1(,0)x y C a b a b-=>的渐近线与曲线21:22E y x =+相切.横坐标为t 的点P 在曲线E 上,过点P 作曲线E 的切线l 交双曲线C 于不同的两点A ,B .(1)求双曲线C 的离心率;(2)记AB 的中垂线交x 轴于点M .是否存在实数t ,使得30APM ∠=︒?若存在,请求出t 的值;若不存在,请说明理由.44.(2023•沙坪坝区校级模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为F 到双曲线C 的渐近线距离为1.(1)求双曲线C 的方程;(2)点P 在第一象限,P ,Q 在直线12y x =上,点P ,A ,B 均在双曲线C 上,且AQ x ⊥轴,M 在直线AQ 上,P ,M ,B 三点共线.从下面①②中选取一个作为条件,证明另外一个成立:①Q 是AM 的中点;②直线AB 过定点(0,1)T .45.(2023•石家庄模拟)已知点(4,3)P 在双曲线2222:1(0,0)x y C a b a b-=>>上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,||||4PM PN ⋅=.(Ⅰ)求双曲线C 的方程;(Ⅱ)若直线:l y kx m =+与双曲线C 交于不同的两点A ,B ,设直线PA ,PB 的斜率分别为1k ,2k ,从下面两个条件中选一个(多选只按先做给分),证明:直线l 过定点.①121k k +=;②121k k =.46.(2023•广州模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线:(1)(0)l y k x k =- 与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为(k O '为坐标原点),APQ ∆的面积为1.S BPQ ∆的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.47.(2023•南充模拟)如图,已知A ,B 分别为椭圆2222:1(0)x y M a b a b+=>>的左,右顶点,0(P x ,0)y 为椭圆M 上异于点A ,B 的动点,若4AB =,且ABP ∆面积的最大值为2.(1)求椭圆M 的标准方程;(2)已知直线l 与椭圆M 相切于点0(P x ,0)y ,且l 与直线x a =和x a =-分别相交于C ,D 两点,记四边形ABCD 的对角线AC ,BD 相交于点N .问:是否存在两个定点1F ,2F ,使得12||||NF NF +为定值?若存在,求1F ,2F 的坐标;若不存在,说明理由.48.(2023•赣州模拟)已知抛物线2:2(0)C y px p =>,F 为其焦点,点0(2,)M y 在C 上,且4(OFM S O ∆=为坐标原点).(1)求抛物线C 的方程;(2)若A ,B 是C 上异于点O 的两个动点,当90AOB ∠=︒时,过点O 作ON AB ⊥于,问平面内是否存在一个定点Q ,使得||NQ 为定值?若存在,请求出定点Q 及该定值;若不存在,请说明理由.49.(2023•杭州模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>,并且经过点,2).(1)求双曲线E 的方程.(2)若直线l 经过点(2,0),与双曲线右支交于P 、Q 两点(其中P 点在第一象限),点Q 关于原点的对称点为A ,点Q 关于y 轴的对称点为B ,且直线AP 与BQ 交于点M ,直线AB 与PQ 交于点N ,证明:双曲线在点P 处的切线平分线段MN .50.(2023•浦东新区模拟)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且点(-在椭圆1C 上.(1)求椭圆1C 的方程;(2)过点(0,1)Q 的直线l 与椭圆1C 交于D ,E 两点,已知2DQ QE = ,求直线l 的方程;(3)点P 为椭圆1C 上任意一点,过点P 作1C 的切线与圆222:12C x y +=交于A ,B 两点,设直线OA ,OB 的斜率分别为1k ,2k .证明:12k k ⋅为定值,并求该定值.。
高考数学压轴专题新备战高考《平面解析几何》技巧及练习题
![高考数学压轴专题新备战高考《平面解析几何》技巧及练习题](https://img.taocdn.com/s3/m/143eb2bded630b1c58eeb563.png)
新高考数学《平面解析几何》练习题一、选择题1.如图所示,点F 是抛物线24y x =的焦点,点,A B 分别在抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,则FAB ∆的周长的取值范围( )A .(4,6)B .[4,6]C .(2,4)D .[2,4]【答案】A 【解析】由题意知抛物线24y x =的准线为1x =-,设A B 、两点的坐标分别为1,0()A x y ,2,0()B x y ,则1||1AF x =+.由()222414y x x y ⎧=⎪⎨-+=⎪⎩ 消去y 整理得2230x x +-=,解得1x =, ∵B 在图中圆()2214x y -+=的实线部分上运动, ∴213x <<.∴FAB ∆的周长为1212(1)2()3(4,6)AF FB BA x x x x ++=+++-=+∈. 选A .点睛:解决与抛物线有关的问题时,要注意抛物线定义的运用.特别是对于焦点弦的问题更是这样,利用定义可将抛物线上的点到焦点的距离(两点间的距离)转化成该点到准线的距离(点到直线的距离),然后再借助几何图形的性质可使问题的解决变得简单.2.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是( )A 2B 3C .32D .62【答案】D 【解析】 【分析】 【详解】试题分析:由椭圆与双曲线的定义可知,|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a(其中2a 为双曲线的长轴长),∴|AF 2|=a +2,|AF 1|=2-a ,又四边形AF 1BF 2是矩形,∴|AF 1|2+|AF 2|2=|F 1F 2|2=32,∴a 2,∴e 326考点:椭圆的几何性质.3.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩,Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.4.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-.所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.5.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos aMOF c∠=. ——②由①②,解得225 ca=,即2ba=,则渐近线方程为2y x=±.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题. 6.已知双曲线2222:1(0,0)x yC a ba b-=>>)的左,右焦点分别为12,F F,其右支上存在一点M,使得21MF MF⋅=u u u u r u u u r,直线:0l bx ay+=,若直线2//MF l则双曲线C的离心率为()A.2B.2 C.5D.5【答案】C【解析】【分析】易得且1MF l⊥,从而l是线段1MF的垂直平分线求出直线1MF的方程与渐近线方程联立求出交点坐标,进而求得M坐标,根据勾股定理即可求解离心率.【详解】由12MF MF⋅=u u u u v u u u u v可得12MF MF⊥易知直线:0l bx ay+=为双曲线的一条渐近线,可知l的方程为by xa=-,且1MF l⊥,从而l是线段1MF的垂直平分线,且直线1MF的方程为()ay x cb=+设1MF,与l相交于点(),N x y.由()ay x cbby xa⎧=+⎪⎪⎨⎪=-⎪⎩得2axcabyc⎧=-⎪⎪⎨⎪=⎪⎩即2,a abNc c⎛⎫- ⎪⎝⎭,又()1,0F c-,由中点坐标公式,得222,.a abM cc c⎛⎫-⎪⎝⎭由双曲线性质可得122MF MF a-=①,由12MF MF⊥得222124MF MF c+=②,①②联立,可得2122MF MF b⋅=所以点M的纵坐标为2b c ,所以22b ab c c =即2b a =所以21 5.b e a ⎛⎫=+= ⎪⎝⎭故选:C 【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.7.在矩形ABCD 中,已知3AB =,4=AD ,E 是边BC 上的点,1EC =,EF CD ∥,将平面EFDC 绕EF 旋转90︒后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( )A .圆B .双曲线C .椭圆D .抛物线【答案】D 【解析】 【分析】利用圆锥被平面截的轨迹特点求解 【详解】由题将平面EFDC 绕EF 旋转90︒后记为平面α,则平面α⊥平面ABEF ,,又直线AB 绕AE 旋转一周,则AB 直线轨迹为以AE 为轴的圆锥,且轴截面为等腰直角三角形,且面AEF 始终与面EFDC 垂直,即圆锥母线AF ⊥平面EFDC 则 则与平面α相交形成的点的轨迹是抛物线 故选:D【点睛】本题考查立体轨迹,考查圆锥的几何特征,考查空间想象能力,是难题8.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ∆是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2 B .3 C .4 D .5【答案】A 【解析】 【分析】设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】如图,易知该直角三角形三边可设为3,4,5x x x .①若23c x =,则254a x x x =-=,得232ce a ==; ②若24c x =,则2532a x x x =-=,得222ce a==; ③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.9.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( ) A .8 B .11 C .13 D .16【答案】C 【解析】 【分析】设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】抛物线2:6C x y =中p =3,设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3,又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】本题考查了抛物线的定义的应用及中点坐标公式,是中档题.10.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) AB .3CD .5【答案】A 【解析】由已知得OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步0=,A AB ∴的一个三分点坐标为⎛⎫,该点在椭圆上,21⎛⎫+=,即()2211391k k+=+,解得22k =,从而有,222222b b a a==,解得c e a ===,故选A. 【 方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.11.已知抛物线2:4C y x =,过其焦点F 的直线l 交抛物线C 于,A B 两点,若3AF FB =uu u r uu r,则AOF V 的面积(O 为坐标原点)为( )A .33B .3C .433D .23【答案】B 【解析】 【分析】首先过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥,易得30ABM ∠=o ,60AFH ∠=o .根据直线AF :3(1)y x =-与抛物线联立得到12103x x +=,根据焦点弦性质得到163AB =,结合已知即可得到sin 6023AH AF ==o ,再计算AOF S V 即可.【详解】 如图所示:过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥.因为3AF BF =uuu r uu u r,设BF k =,则3AF k =,11BB A M k ==.所以2AM k =. 在RT ABM V 中,12AM AB =,所以30ABM ∠=o . 则60AFH ∠=o .(1,0)F ,直线AF 为3(1)y x =-.223(1)310304y x x x y x⎧=-⎪⇒-+=⎨=⎪⎩,12103x x +=. 所以121016233AB x x p =++=+=,344AF AB ==. 在RT AFH V 中,sin 6023AH AF ==o所以112AOF S =⨯⨯=V 故选:B 【点睛】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.12.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点, 则直线bx ay 4a 0-+=与直线bx ay 0-=的距离4a d c==, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.13.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.14.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( ) A .3y x = B .3y x = C .y x =± D .2y x =±【答案】A 【解析】 【分析】因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】Q 双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅ 化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-= 可得:b =Q 双曲线渐近线方程为:b y x a=±则双曲线渐近线方程为: y = 故选:A. 【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.15.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =±C.3y x =±D.4y x =±【答案】B 【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上,直线5x y +=与x 轴交点的坐标为()5,0, 则双曲线的焦点坐标为()5,0, 则有925m +=, 解可得,16m =,则双曲线的方程为:221916x y -=,其渐近线方程为:43y x =±, 故选B.16.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,2c =解得c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即ba=∴双曲线的渐近线方程为y =. 故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.17.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,77P ⎛⎫± ⎪ ⎪⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.18.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.过双曲线()222210,0x y a b a b-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左右两支都相交,则双曲线离心率e 的取值范围为( ) A .()1,2 B .()1,2C .()2,+∞D .()2,+∞【答案】C 【解析】 【分析】设过双曲线的右焦点F 与渐近线by x a=垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之可得22b a >,从而可得双曲线的离心率e 的取值范围 . 【详解】过双曲线的右焦点F 作渐近线by x a=垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交,∴直线AF 与渐近线by x a=-必定有交点B , 因此,直线by x a=-的斜率要小于直线AF 的斜率, Q 渐近线b y x a =的斜率为b a, ∴直线AF 的斜率a k b =-,可得b aa b-<-, 即22,b a b a a b>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >双曲线离心率e 的取值范围为)2,+∞,故选C.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.20.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.。
2023年高考数学热点专题解析几何模型通关圆锥曲线中的定点问题(解析版)
![2023年高考数学热点专题解析几何模型通关圆锥曲线中的定点问题(解析版)](https://img.taocdn.com/s3/m/bb56e6e888eb172ded630b1c59eef8c75fbf95fa.png)
圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
2024年高考数学平面解析几何的复习方法总结
![2024年高考数学平面解析几何的复习方法总结](https://img.taocdn.com/s3/m/bcd892a00875f46527d3240c844769eae009a3cb.png)
2024年高考数学平面解析几何的复习方法总结一、理清知识框架平面解析几何是高中数学的重要内容,复习时首先要理清知识框架,明确各个知识点的内容和重点。
可以根据教材或参考书的章节来进行分类整理,将知识点归纳为直线方程、圆方程、二次曲线方程等等,并注意各个知识点之间的联系和线索。
二、复习关键知识点1. 直线方程:掌握直线的点斜式、斜截式、一般式等多种表示方法,能够灵活转换直线方程,解决直线的位置关系、距离、角平分线等相关问题。
2. 圆方程:了解标准方程和一般方程的定义和性质,能够根据给定条件列出圆的方程,解决圆与直线、圆与圆之间的位置关系、切线、切点等问题。
3. 二次曲线方程:熟练掌握抛物线、双曲线和椭圆的方程表示方法,注意各个二次曲线的基本性质和特点,能够画出二次曲线的图像,解决与二次曲线相关的各种问题。
4. 曲线的判别:掌握判别方程的基本方法,了解直线与二次曲线的位置关系的判别式和条件,能够根据判别式解决相关的问题。
三、掌握基本解题思路1. 了解解题步骤:解决平面解析几何问题通常遵循以下步骤:确定已知条件;列出方程或不等式;解方程或不等式得到未知量的取值范围;根据问题要求,对方程的解或取值范围进行判断与选择。
2. 注意问题的本质:平面解析几何考察的是几何图形的性质和位置关系,因此,在解答问题时要分析问题的本质,结合具体的几何意义去解决。
四、多练习典型题目1. 题海战术:平面解析几何的题目类型较多,考察灵活性较强,因此,在复习过程中要多做一些典型题目,掌握不同类型题目的解题思路和技巧。
2. 整理常见题型:将遇到的题目整理成不同的题型,比如直线方程的求法、圆方程的求法、二次曲线图像的分析等,通过总结常见的题型,加深对知识点的理解,提高解题效率。
五、查缺补漏1. 平时及时记录:在复习过程中,及时记录自己遇到的问题和不理解的知识点,并寻找相关的资料进行补充和学习。
2. 寻求帮助:如果自己在复习过程中遇到难题或困惑,可以向老师、同学或家长寻求帮助,共同解决问题。
专题10 解析几何热点问题(专项训练)- 高考数学六大题解满分解题技巧秘籍(解析版)
![专题10 解析几何热点问题(专项训练)- 高考数学六大题解满分解题技巧秘籍(解析版)](https://img.taocdn.com/s3/m/97e5a38e910ef12d2af9e7dd.png)
高考数学六大题解满分解题技巧秘籍专题10 解析几何热点问题(专项训练)1.已知椭圆P 的中心O 在坐标原点、焦点在x 轴上,且经过点A (0,23),离心率为12. (1)求椭圆P 的方程;(2)是否存在过点E (0,-4)的直线l 交椭圆P 于点R ,T ,且满足OR →·OT →=167?若存在,求直线l 的方程;若不存在,请说明理由.解 (1)设椭圆P 的方程为x 2a 2+y 2b 2=1(a >b >0), 由题意得b =23,e =c a =12, ∴a =2c ,b 2=a 2-c 2=3c 2,∴c =2,a =4,∴椭圆P 的方程为x 216+y 212=1. (2)假设存在满足题意的直线l ,易知当直线l 的斜率不存在时,OR →·OT →<0,不满足题意.故可设直线l 的方程为y =kx -4,R (x 1,y 1),T (x 2,y 2).∵OR →·OT →=167,∴x 1x 2+y 1y 2=167. 由⎩⎪⎨⎪⎧y =kx -4,x 216+y 212=1得(3+4k 2)x 2-32kx +16=0, 由Δ>0得(-32k )2-64(3+4k 2)>0,解得k 2>14.① ∴x 1+x 2=32k 3+4k 2,x 1x 2=163+4k 2, ∴y 1y 2=(kx 1-4)(kx 2-4)=k 2x 1x 2-4k (x 1+x 2)+16,故x 1x 2+y 1y 2=163+4k 2+16k 23+4k 2-128k 23+4k 2+16=167, 解得k 2=1.②由①②解得k =±1,∴直线l 的方程为y =±x -4.故存在直线l :x +y +4=0或x -y -4=0满足题意.2.(2019·郑州质检)已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝⎛⎭⎫0,12.问:在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ?若存在,请求出定点Q 的坐标;若不存在,请说明理由.解 (1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2.取F ′(-1,0),连接F ′P ,则|F ′P |+|FP |=2(|OS |+|SF |)=4.所以点P 的轨迹是以F ′,F 为焦点、长轴长为4的椭圆,其中,a =2,c =1,所以b 2=a 2-c 2=4-1=3.所以曲线C 的方程为x 24+y 23=1. (2)假设存在满足题意的定点Q .设Q (0,m ),当直线的斜率存在时直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立得方程组⎩⎨⎧x 24+y 23=1,y =kx +12. 消去y 并整理,得(3+4k 2)x 2+4kx -11=0.由题意知Δ>0,∴x 1+x 2=-4k 3+4k 2,x 1x 2=-113+4k 2. 由∠MQO =∠NQO ,得直线MQ 与直线NQ 的斜率之和为0,∴y 1-m x 1+y 2-m x 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝⎛⎭⎫12-m (x 1+x 2)x 1x 2=0, ∴2kx 1x 2+⎝⎛⎭⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝⎛⎭⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0, 当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意. 易知直线MN 的斜率不存在时,定点Q (0,6)也符合题意.∴存在符合题意的定点Q ,且定点Q 的坐标为(0,6).综上,存在定点(0,6)使得∠MQO =∠NQO .3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝⎛⎭⎫1,22在椭圆C 上, 所以2a =|AF 1|+|AF 2|=22,则a =2,b 2=a 2-c 2=1.故椭圆C 的方程为x 22+y 2=1. (2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t ,M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x 得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t 9,且-3<t <3. 由PM →=NQ →得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. 又-3<t <3,所以-73<y 4<-1, 与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.因此椭圆C 上不存在这样的点Q .4.(2019·青岛质检)在平面直角坐标系中,O 为坐标原点,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2,以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E ,恰好经过点⎝⎛⎭⎫1,22. (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 的面积的最大值.解 (1)由题意,得椭圆E 的焦点在x 轴上.设椭圆E 的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,则b =c , ∴a 2=b 2+c 2=2b 2,∴椭圆E 的标准方程为x 22b 2+y 2b 2=1. ∵椭圆E 经过点⎝⎛⎭⎫1,22,∴12b 2+12b 2=1,解得b 2=1. ∴椭圆E 的标准方程为x 22+y 2=1. (2)∵点(-2,0)在椭圆E 外,∴直线l 的斜率存在.设直线l 的斜率为k ,则直线l :y =k (x +2).设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x +2),x 22+y 2=1消去y ,得(1+2k 2)x 2+8k 2x +8k 2-2=0. ∴x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k 2, Δ=64k 4-4(1+2k 2)(8k 2-2)>0,解得0≤k 2<12. ∴|MN |=1+k 2|x 1-x 2|=21+k 22-4k 2(1+2k 2)2. ∵点F 2(1,0)到直线l 的距离d =3|k |1+k 2, ∴△F 2MN 的面积为S =12|MN |·d =3k 2(2-4k 2)(1+2k 2)2. 令1+2k 2=t ,t ∈[1,2),得k 2=t -12. ∴S =3(t -1)(2-t )t 2=3-t 2+3t -2t 2=3-1+3t -2t 2=3-2⎝⎛⎭⎫1t -342+18. 当1t =34,即t =43⎝⎛⎭⎫43∈[1,2)时,S 有最大值,S max =324,此时k =±66. ∴△F 2MN 的面积的最大值是324. 5.(2019·重庆二诊)椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),左、右顶点分别为A 1,A 2,P 为椭圆E 上的动点(不与A 1,A 2重合),且直线PA 1与PA 2的斜率的乘积为-34.(1)求椭圆E 的方程;(2)过点F 2作两条互相垂直的直线l 1与l 2(均不与x 轴重合)分别与椭圆E 相交于A ,B ,C ,D 四点,线段AB ,CD 的中点分别为M ,N ,求证:直线MN 过定点,并求出该定点的坐标.(1)解 设P (x 0,y 0)(y 0≠0),则x 20a 2+y 20b 2=1. 整理,得x 20-a 2=-a 2y 20b 2. 由题意,得y 0x 0-a ·y 0x 0+a=-34. 整理,得x 20-a 2=-43y 20. ∴-a 2y 20b 2=-43y 20, 又y 0≠0,即a 2=43b 2. ∵c =1,a 2=b 2+c 2,∴a 2=4,b 2=3.故椭圆E 的方程为x 24+y 23=1. (2)证明 设直线AB :y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2=12,得(4k 2+3)x 2-8k 2x +4k 2-12=0. ∴x 1+x 2=8k 24k 2+3. ∴x M =x 1+x 22=12·8k 24k 2+3=4k 24k 2+3, ∴y M =k (x M -1)=-3k 4k 2+3. 用-1k替换点M 坐标中的k , 可得x N =43k 2+4,y N =3k 3k 2+4. 若直线AB 关于x 轴对称后得到直线A ′B ′,直线CD 关于x 轴对称后得到直线C ′D ′,线段A ′B ′,C ′D ′的中点分别为M ′,N ′,则直线M ′N ′与直线MN 关于x 轴对称.∴若直线MN 经过定点,则该定点一定是直线M ′N ′与MN 的交点,该交点必在x 轴上.设该交点为T (s ,0),则MT →=(s -x M ,-y M ),NM →=(x M -x N ,y M -y N ).由MT →∥NM →,得s =x N y M -x M y N y M -y N. 代入点M ,N 的坐标并化简,得s =47. ∴经过的定点为⎝⎛⎭⎫47,0.6.(2018·洛阳二模)如图所示,已知圆G :(x -2)2+y 2=49是椭圆T :x 216+y 2b 2=1(0<b <4)的内接△ABC 的内切圆,其中A 为椭圆T 的左顶点,且GA ⊥BC.(1)求椭圆T 的标准方程;(2)过点M (0,1)分别作圆G 的两条切线交椭圆于E ,F 两点,试判断直线EF 与圆G 的位置关系,并说明理由.解 (1)设B ⎝⎛⎭⎫83,y 0,y 0>0,AB 与圆G 切于点D ,BC 交x 轴于点H ,连接DG ,如图.由题意得△ADG ∽△AHB ,即GD AG =HB AB, 得236=y 04009+y 20.解得y 20=59. ∵点B ⎝⎛⎭⎫83,y 0在椭圆T 上, ∴64916+y 20b 2=49+59b2=1,解得b 2=1.故椭圆T 的标准方程为x 216+y 2=1. (2)直线EF 与圆G 相切.理由如下:设过点M (0,1)与圆G :(x -2)2+y 2=49相切的直线的方程为kx -y +1=0,则23=|2k +1|1+k2,即32k 2+36k +5=0.(*)设MF ,ME 的斜率分别为k 1,k 2,且k 1,k 2为方程(*)的根,则k 1+k 2=-98,k 1k 2=532.将kx -y +1=0代入x 216+y 2=1,消去y 并整理,得(16k 2+1)x 2+32kx =0,解得x =-32k16k 2+1或x =0.设F (x 1,k 1x 1+1),E (x 2,k 2x 2+1),则x 1=-32k116k 21+1,x 2=-32k216k 22+1.∴直线EF 的斜率k EF =k2x 2-k 1x 1x 2-x 1=k 1+k 21-16k 1k 2=34.从而直线EF 的方程为y +32k 2116k 21+1-1=34⎝⎛⎭⎫x +32k 116k 21+1.将32k 21=-36k 1-5代入上式并化简,得y =34x -73.则圆心(2,0)到直线EF 的距离d =⎪⎪⎪⎪32-731+916=23.故直线EF 与圆G 相切.。
高考数学压轴大题解析几何
![高考数学压轴大题解析几何](https://img.taocdn.com/s3/m/15264745b94ae45c3b3567ec102de2bd9605de0d.png)
高考数学压轴大题-解析几何1. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.I 求双曲线C 的离心率e 的取值范围:II 设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.解:I 由C 与t 相交于两个不同的点,故知方程组有两个不同的实数解.消去y 并整理得1-a 2x 2+2a 2x -2a 2=0. ① 双曲线的离心率II 设)1,0(),,(),,(2211P y x B y x A由于x 1+x 2都是方程①的根,且1-a 2≠0,2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的夹角余弦的最小值为31.Ⅰ求椭圆C 的方程;Ⅱ过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ∆O 为原点的面积的最大值及相应的直线l 的方程.解:Ⅰ设椭圆的长轴为2a ,a 2=+22==c =2121221242)(PF PF PF PF PF PF ⋅-⋅-+=1244212-⋅-PF PF a又212PF PF ⋅≥∴221a PF PF ≤⋅即31211244cos 222=-=--≥aa a θ ∴32=a ∴椭圆方程为12322=+y x Ⅱ 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N()1111212OMN F OM F ON S S S OF y y ∆∆∆=+=+=2121y y -即 044)32(22=--+my y m . 由韦达定理得:∴212212214)(y y y y y y -+=-= 3216)32(162222+++m m m =222)32()1(48++m m 令12+=m t , 则1≥t ∴221y y -=41448)12(482++=+tt t t .又令tt t f 14)(+=, 易知)(t f 在1,+∞上是增函数,所以当1=t ,即0=m 时)(t f 有最小值5.∴221y y -有最大值316∴OMN S ∆ 的面积有最大值332.直线l 的方程为1-=x .3. 椭圆E 的中心在原点O,焦点在x 轴上,离心率e过点C 1,0的直线l 交椭圆于A 、B 两点,且满足:CA =BC λ 2λ≥.Ⅰ若λ为常数,试用直线l 的斜率kk ≠0表示三角形OAB 的面积. Ⅱ若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E 的方程.Ⅲ若λ变化,且λ= k 2+1,试问:实数λ和直线l 的斜率()k k ∈R 分别为何值时,椭圆E 的短半轴长取得最大值并求出此时的椭圆方程.解:设椭圆方程为22221+=x y a ba >b >0,由e =caa 2=b 2c 2得a 2=3 b 2,故椭圆方程为x 2+3y 2= 3b 2. ① Ⅰ∵直线l :y = kx +1交椭圆于Ax 1,y 1,Bx 2,y 2两点,并且CA =BC λ λ≥2, ∴x 11,y 1 =λ1x 2,y 2, 即12121(1)x x y y λλ+=-+⎧⎨=-⎩ ②把y = kx 1代入椭圆方程,得3k 21x 26k 2x 3k 23b 2= 0, 且 k 2 3b 21b 2>0 ,∴x 1x 2= 22631k k +, ③x 1x 2=2223331k b k -+, ④∴O A B S ∆=12|y 1y 2| =12|λ1|·| y 2| =|1|2λ+·| k |·| x 21|.联立②、③得x 21=22(1)(31)k λ-+,∴O A B S ∆=11λλ+-·2||31k k + k ≠0.ⅡO AB S ∆=11λλ+-·2||31k k + =11λλ+-·113||||k k + ≤11λλ+-λ≥2. 当且仅当3| k | =1||k ,即k=,O AB S ∆取得最大值,此时x 1x 2= 1. 又∵x 11= λ x 21,∴x 1=11λ-,x 2= 1λλ-,代入④得3b 2=221(1)λλ+-.此时3b 2≥5,,k b 的值符合故此时椭圆的方程为x 2+3y 2=221(1)λλ+-λ≥2.Ⅲ由②、③联立得:x 1=22(1)(31)k λλ--+1, x 2=22(1)(31)k λ-+1,将x 1,x 2代入④,得23b =224(1)(31)k λλ-+1.由k 2=λ1得23b =24(1)(32)λλλ-- 1=432212(1)(1)(32)λλλ⎡⎤+⎢⎥---⎣⎦+1.易知,当2λ≥时,3b 2是λ的减函数,故当2λ=时,23b 取得最大值3. 所以,当2λ=,k =±1符合时,椭圆短半轴长取得最大值, 此时椭圆方程为x 2 3y 2 = 3.4. 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. I 求椭圆的离心率;II 设M 为椭圆上任意一点,且(,)OM OA OB λμλμ=+∈R ,证明22μλ+为定值.解:I 设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入.化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221b a b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得II 证明:由I 知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),(y x M 在椭圆上,即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由I 知.21,23,23222221c b c a c x x ===+又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.5. 已知椭圆2212x y +=的左焦点为F,O 为坐标原点.I 求过点O 、F,并且与椭圆的左准线l 相切的圆的方程;II 设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G,求点G 横坐标的取值范围.解:I 222,1,1,(1,0),: 2.a b c F l x ==∴=-=-圆过点O 、F,∴圆心M 在直线12x =-上;设1(,),2M t -则圆半径由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++=II 设直线AB 的方程为(1)(0),y k x k =+≠代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F,∴方程有两个不等实根; 记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得∴点G 横坐标的取值范围为1(,0).2-6. 已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 满足OA OB OA OB +=-.设圆C 的方程为 I 证明线段AB 是圆C 的直径;II 当圆C 的圆心到直线X-2Y=0的距离的最小值为5时,求p 的值; I 证明1:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=设Mx,y 是以线段AB 为直径的圆上的任意一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--= 整理得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 证明2:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=12120x x y y ∴⋅+⋅= (1)设x,y 是以线段AB 为直径的圆上则 即2112211(,)y y y y x x x x x x x x --⋅=-≠≠-- 去分母得: 1212()()()()0x x x x y y y y --+--=点11122122(,),(,),(,)(,)x y x y x y x y 满足上方程,展开并将1代入得: 故线段AB 是圆C 的直径 证明3:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅= 12120x x y y ∴⋅+⋅= (1)以线段AB 为直径的圆的方程为展开并将1代入得: 221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 II 解法1:设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x-2y=0的距离为d,则当y=p 时,d=2p ∴=. 解法2: 设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =-设直线x-2y+m=0到直线x-2y=0则2m =± 因为x-2y+2=0与222y px p =-无公共点,所以当x-2y-2=0与222y px p =-仅有一个公共点时,该点到直线x-2y=0将2代入3得222220y py p p -+-= 2244(22)0p p p ∴∆=--= 解法3: 设圆C 的圆心为Cx,y,则 圆心C 到直线x-2y=0的距离为d,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅= 当122y y p +=时,d=2p ∴=.11、如图设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.1若6ED DF =,求k 的值; 2求四边形AEBF 面积的最大值. 11.Ⅰ解:依题设得椭圆的方程为2214xy +=, 直线AB EF ,的方程分别为22x y +=,(y kx k => 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中1x < 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=, 解得23k =或38k =. 6分 Ⅱ解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==,2h ==9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+== ≤ 当21k =,即当12k =时,上式取等号.所以S 的最大值为. 12分解法二:由题设,1BO =,2AO =. 设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△222x y =+9分===当222x y =时,上式取等号.所以S的最大值为 12分12、已知椭圆(222:13x y E a a +=>的离心率12e =. 直线x t =0t >与曲线E 交于不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C .1 求椭圆E 的方程;2 若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.12、1解:∵椭圆()222:133x y E a a+=>的离心率12e =, 12=. …… 2分 解得2a =. ∴ 椭圆E 的方程为22143x y +=. …… 4分 2解法1:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C的半径为2r =. …… 6分 ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即0t <<.∴弦长||AB ===. …… 8分∴ABC ∆的面积12S =⋅ …… 9分7=. …… 12分=,即7t =时,等号成立. ∴ ABC ∆. …… 14分 解法2:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分 ∴ 圆C 的方程为222123()4t x t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即07t <<.在圆C 的方程222123()4t x t y --+=中,令0x =,得2y =±,∴弦长||AB =. …… 8分 ∴ABC ∆的面积12S =⋅ …… 9分7=. ……12分=,即7t=时,等号成立. ∴ABC∆.15、已知椭圆∑:12222=+byax>>ba的上顶点为)1,0(P,过∑的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆∑上,该菱形对角线BD所在直线的斜率为1-.⑴求椭圆∑的方程;⑵当直线BD过点)0,1(时,求直线AC的方程;⑶本问只作参考......,.不计入总分.....当3π=∠ABC时,求菱形ABCD面积的最大值.15、解:⑴依题意,1=b……1分,解12222=+byac……2分,得aby2||=……3分,所以122=ab,2=a……4分,椭圆∑的方程为1422=+yx……5分;⑵直线BD:1)1(1+-=-⨯-=xxy……7分,设AC:bxy+=……8分,由方程组⎪⎩⎪⎨⎧=++=1422yxbxy得0)1(24522=-++bbxx……9分,当05)1(454)2(222>-=-⨯⨯-=∆bbb时……10分,),(11yxA、),(22yxC的中点坐标为54221bxx-=+,5222121bbxxyy=++=+……12分,ABCD是菱形,所以AC的中点在BD上,所以1545+=bb……13分,解得35-=b,满足052>-=∆b,所以AC的方程为35-=xy……14分;⑶本小问不计入总分,仅供部分有余力的学生发挥和教学拓广之用因为四边形ABCD为菱形,且3π=∠ABC,所以BCACAB==,所以菱形ABCD的面积223ACS⨯=,由⑵可得2122122122122)(2)(2)()(xxxxyyxxAC+=-=-+-=222212532532)1(548)58(28bbbxx⨯-=-⨯⨯--⨯=-,因为5||<b,所以当且仅当0=b时,菱形ABCD的面积取得最大值,最大值为531653223=⨯;。
高考解析几何典型大题专项训练(解答题、难)
![高考解析几何典型大题专项训练(解答题、难)](https://img.taocdn.com/s3/m/da3e060754270722192e453610661ed9ad51551a.png)
解析几何解析几何型解答题,着重考查直线与圆锥曲线的位置关系,求解时除了运用设而不求,整体思维外,还要用到平面几何的基本知识和向量的基本方法,解题过程始终围绕如何简化运算展开;有些问题用常规方法解答,运算往往比较复杂,此时若能以形助数,运用平面几何以及向量的方法,则会大大简化解题过程. 函数与方程思想,在解析几何中也常用到.一、求标准方程、求值典例1:已知椭圆)0(1:2222>>=+b a by a x C 的两个焦点与短轴的一个端点的连线构成等边三角形,直线0122=-++y x 与以椭圆C 的右焦点为圆心,椭圆的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)设点D C B ,,是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线OC OB CB CD ,,,的斜率分别为4321,,,k k k k ,且4321k k k k =.①求21k k 的值; ②求22OC OB +的值.典例2:已知抛物线)0(2:2>=p px y E 上一点)4,(0x M 到焦点F 的距离045x MF =. (1) 求E 的方程;(2) 过F 的直线l 与E 相交于B A ,两点,AB 的垂直平分线l '与E 相交于D C ,两点,若0=⋅AD AC ,求直线l 的方程.变式练习1: 已知椭圆)0(1:2222>>=+b a by a x G 的两个焦点分别为21,F F ,其离心率为23,椭圆G 上一点M 满足021=⋅MF MF ,且21F MF∆的面积为1. (1)求椭圆G 的方程;(2)过椭圆G 长轴上的点)0,(t P 的直线l 与圆1:22=+y x O 相切于点Q (P 与Q 不重合),交椭圆G 于B A ,两点,若BP AQ =,求实数t 的值.二、定点、定值问题典例1:已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,),0,0(),,0(),0,(O b B a A OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:BM AN ⋅为定值.典例2:已知抛物线)0(2:2>=p px y E 的焦点为F ,过F 且垂直于x 轴的直线与抛物线E 交于T S ,两点,以)0,3(P 为圆心的圆过点T S ,,且 90=∠SPT .(1)求抛物线E 和圆P 的方程;(2)设M 是圆P 上一点,过点M 且垂直于FM 的直线l 交E 于B A ,两点,证明:FB FA ⊥.典例3:已知抛物线)0(2:2>=p px y C 过点)2,(m M ,其焦点为2,=MF F .(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆1)1(:22=+-y x F 相切,切点分别为B A ,,求证:直线AB 过定点.变式练习1: 已知焦距为32的椭圆)0(1:2222>>=+b a by a x C 的左焦点为1F 、上顶点为D ,直线1DF 与椭圆C 的另一个交点为H ,且H F DF 117=.(1)求椭圆的方程;(2)点A 是椭圆C 的右顶点,过点)0,1(B 且斜率为)0(≠k k 的直线l 与椭圆C 相交于F E ,两点,直线AF AE ,分别交直线3=x 于N M ,两点,线段MN 的中点为P .记直线PB 的斜率为k ',求证:k k '⋅为定值.变式练习2: 已知椭圆)0(1:22221>>=+b a by a x C 的离心率为23,)1,2(-P 是1C 上一点. (1)求椭圆1C 的方程;(2)设Q B A ,,是P 分别关于两坐标轴及原点的对称点,平行于AB 的直线l 交1C 于异于Q P ,的两点D C ,.点C 关于原点的对称点为E .证明:直线PE PD ,与y 轴围成的三角形是等腰三角形.三、最值问题典例1:平面直角坐标系xOy 中,椭圆()012222>>=+b a by a x C :的离心率是23,抛物线y x E 2:2=的焦点F 是C 的一个顶点。
2023年高考数学热点专题解析几何模型通关圆追曲线中的定值问题(解析版)
![2023年高考数学热点专题解析几何模型通关圆追曲线中的定值问题(解析版)](https://img.taocdn.com/s3/m/ad2ee17fac02de80d4d8d15abe23482fb4da02c2.png)
圆锥曲线中的定值问题思路引导处理圆锥曲线中定值问题的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.母题呈现考法1证明某些几何量为定值【例2】(2022·湖北省天门中学模拟预测)在平面直角坐标系xOy 中,已知椭圆C :x 4+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =11(,)2x y ,n =22(,)2x y ,m·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值,并说明理由.【解题指导】【解析】(1)证明:∵k 1,k 2均存在,∴x 1x 2≠0.又m·n =0,∴x 1x 24+y 1y 2=0,即x 1x24=-y 1y 2,∴k 1·k 2=y 1y 2x 1x 2=-14.(2)①当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时,由y 1y 2x 1x 2=-14,得x 214-y 21=0.又∵点P (x 1,y 1)在椭圆上,∴x 214+y 21=1,∴|x 1|=2,|y 1|=22.∴S △POQ =12|x 1||y 1-y 2|=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b .kx +b ,y 2=1,消去y 并整理得(4k 2+1)x 2+8kbx +4b 2-4=0,其中Δ=(8kb )2-4(4k 2+1)(4b 2-4)=16(1+4k 2-b 2)>0,即b 2<1+4k 2.∴x 1+x 2=-8kb4k 2+1,x 1x 2+1∵x 1x 24+y 1y 2=0,∴x 1x 24+(kx 1+b )(kx 2+b )=0,得2b 2-4k 2=1(满足Δ>0).∴S △POQ =12·|b |1+k 2·|PQ |=12|b |x 1+x 22-4x 1x 2=2|b |4k 2+1-b 24k 2+1=1.综合①②知△POQ 的面积S 为定值1.【解题技法】参数法解决圆锥曲线中最值问题的一般步骤【跟踪训练】(2020·北京卷)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q ,求|PB ||BQ |的值.解(1)由椭圆过点A (-2,-1),得4a 2+1b 2=1.又a =2b ,∴44b 2+1b2=1,解得b 2=2,∴a 2=4b 2=8,∴椭圆C 的方程为x 28+y 22=1.(2)当直线l 的斜率不存在时,显然不合题意.设直线l :y =k (x +4),=k (x +4),2+4y 2=8得(4k 2+1)x 2+32k 2x +64k 2-8=0.由Δ>0,得-12<k <12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-84k 2+1.又∵直线AM :y +1=y 1+1x 1+2(x +2),令x =-4,得y P =-2(y 1+1)x 1+2-1.将y 1=k (x 1+4)代入,得y P =-(2k +1)(x 1+4)x 1+2.同理y Q =-(2k +1)(x 2+4)x 2+2.∴y P +y Q =-(2k +1)121244(,)22x x x x ++++=-(2k +1)·2x 1x 2+6(x 1+x 2)+16(x 1+2)(x 2+2)=-(2k +1)·2(64k 2-8)4k 2+1+6×(-32k 2)4k 2+1+16(x 1+2)(x 2+2)=-(2k +1)×128k 2-16-192k 2+64k 2+16(4k 2+1)(x 1+2)(x 2+2)=0.∴|PB |=|BQ |,∴|PB ||BQ |=1.考法2证明某些代数式为定值【例3】(2022·山东泰安·三模)已知椭圆2222:1x y E a b +=(a >b >0)的离心率2e =,四个顶点组成的菱形面积为O 为坐标原点.(1)求椭圆E 的方程;(2)过228:3O x y +=上任意点P 做O 的切线l 与椭圆E 交于点M ,N ,求证PM PN ⋅ 为定值.【解题指导】【解析】(1)由题意得2ab =,2c e a ==,222a b c =+可得a =b =2,所以椭圆的标准方程为22184x y +=.(2)当切线l的斜率不存在时,其方程为x =【提醒】求直线方程时忽略直线斜率不存在的情况.当3x =时,将3x =代入椭圆方程22184x y +=得3y =±,∴33M ⎛ ⎝⎭,,33N ⎛⎫- ⎪ ⎪⎝⎭,,03P ⎛⎫⎪ ⎪⎝⎭,,0,PM PN ⎛⎛== ⎝⎭⎝⎭ ∴83PM PN ⋅=-当x =83PM PN ⋅=- ,当切线l 的斜率存在时,设l 的方程为y kx m =+,()11,M x y ,()22,N x y ,因为l 与O3=,所以22388m k =+【技巧】圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.由22184y kx m x y =+⎧⎪⎨+=⎪⎩,得()222124280k x kmx m +++-=,∴122412km x x k +=-+,21222812m x x k -=+∴()()()2PM PN OM OP ON OP OP OP OM OP ON OM ON⋅=-⋅-=-⋅-⋅+⋅()()()22283OPOPOPOM ON OM ON=--+⋅=-+⋅()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()2212121k x x km x x m =++++()2222222228438810121212m kmm k k km m k kk ---⎛⎫=++-+== ⎪+++⎝⎭∴8·3PM PN =-综上,PM PN 为定值83-.【解后反思】常见处理技巧:(1)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;(2)巧妙利用变量间的关系,例如点的坐标符号曲线方程等,尽量做到整体代入,简化运算.【例4】(2022·湖南怀化·一模)如图.矩形ABCD 的长AB =12BC =,以A 、B 为左右焦点的椭圆2222:1x y M a b+=恰好过C 、D 两点,点P 为椭圆M 上的动点.(1)求椭圆M 的方程,并求PA PB ⋅的取值范围;(2)若过点B 且斜率为k 的直线交椭圆于M 、N 两点(点C 与M 、N 两点不重合),且直线CM 、CN 的斜率分别为12k k 、,试证明122k k k +-为定值.【解题指导】【解析】(1)由题意得c =又点)12C 在椭圆2222:1x y M a b+=上,所以223114a b +=,且223a b -=,所以2a =,1b =,故椭圆M 的方程为2214x y +=.(3分)设点(,)P x y ,由A ,(B 得222223331244x x PA PB x y x ⋅=-+=-+-=- .又[2,2]x ∈-,所以PA PB ⋅[]2,1∈-.(5分)【技巧】利用隐含的不等关系,即点P 在圆上转化为[2,2]x ∈-,从而确定PA PB ⋅的取值范围(2)设过点B 且斜率为k 的直线方程为(y k x =-,联立椭圆M 方程得2222(14)1240k x x k +-+-=.设两点M 11(,)x y 、N 22(,)x y ,故21228314x x k+=+,212212414k x x k -=+.(7分)因为())()121212121212111222y y y x x y y y x x k k --++-++==,其中()1212121228214k y x x y kx x x x k -+=+=+,12y y +=(9分)故221222228614141421242414143k k k k k k k k k k k k -+++++==---+++所以122k k k +-=(12分)【解题技法】圆锥曲线中的定值问题的常见类型及解题策略(1)证明代数式为定值:依题意设条件,得出与代数式中参数有关的等式,代入代数式并化简,即可得出定值;(2)证明点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、证明。
高考数学专题解解析几何题的方法
![高考数学专题解解析几何题的方法](https://img.taocdn.com/s3/m/10bf657f14791711cd791713.png)
解解析几何题的方法大全高考解析几何试题一般共有4题,共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识, 这点值得考生在复课时强化.例1 已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形B B A A '',使A A '垂直且等于AT ,使B B '垂直且等于BT ,B A ''交半圆于P 、Q 两点,建立如图所示的直角坐标系.(1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标;(3)证明:由点P 发出的光线,经AB 反射后,反射光线通过点Q.讲解: 通过读图, 看出'',B A 点的坐标.(1 ) 显然()t A -1,1', (),,‘t B +-11 于是 直线B A ''的方程为1+-=tx y ;(2)由方程组⎩⎨⎧+-==+,1,122tx y y x解出 ),(10P 、),(2221112t t t t Q +-+;(3)tt k PT 1001-=--=,t t t t tt t t t k QT1111201122222=--=-+-+-=)(. 由直线PT 的斜率和直线QT 的斜率互为相反数知,由点P 发出的光线经点T 反射,反射光线通过点Q.需要注意的是, Q 点的坐标本质上是三角中的万能公式, 有趣吗?例2 已知直线l 与椭圆)0(12222>>=+b a by a x 有且仅有一个交点Q ,且与x 轴、y轴分别交于R 、S ,求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程. 讲解:从直线l 所处的位置, 设出直线l 的方程,由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得.)2(22222222b a m kmx x k a x b =+++ 化简后,得关于x 的一元二次方程.02)(222222222=-+++b a m a mx ka x b k a于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=∆ 由已知,得△=0.即.2222m b k a =+ ①在直线方程m kx y +=中,分别令y=0,x =0,求得).,0(),0,(m S kmR -令顶点P 的坐标为(x ,y ), 由已知,得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧=-=.,.,y m x y k m y k m x 解得 代入①式并整理,得 12222=+y b x a , 即为所求顶点P 的轨迹方程.方程12222=+y b x a 形似椭圆的标准方程, 你能画出它的图形吗?例3已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程;(2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值.讲解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k .设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210kx y k k kx y k k x x x BE-=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又 故所求k=±7.为了求出k 的值, 需要通过消元, 想法设法建构k 的方程.例4 已知椭圆C 的中心在原点,焦点F 1、F 2在x 轴上,点P 为椭圆上的一个动点,且∠F 1PF 2的最大值为90°,直线l 过左焦点F 1与椭圆交于A 、B 两点,△ABF 2的面积最大值为12.(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解:(1)设cF F r PF r PF 2||,||,||212211===, 对,21F PF ∆ 由余弦定理, 得1)2(2441244242)(24cos 22122212221221221212221121-+-≥--=--+=-+=∠r r c a r r c a r r c r r r r r r c r r PF F0212=-=e , 解出 .22=e(2)考虑直线l 的斜率的存在性,可分两种情况:i) 当k 存在时,设l 的方程为)(c x k y +=………………①椭圆方程为),(),,(,122112222y x B y x A b y a x =+由.22=e 得 2222,2c b c a ==.于是椭圆方程可转化为 022222=-+c y x ………………② 将①代入②,消去y 得 02)(22222=-++c c x k x ,整理为x 的一元二次方程,得 0)1(24)21(22222=-+++k c x ck x k .则x 1、x 2是上述方程的两根.且221221122||k k c x x ++=-, 2212221)1(22||1||k k c x x k AB ++=-+=,也可这样求解:||||212121y y F F S -⋅=||||21x x k c -⋅⋅=AB 边上的高,1||2sin ||22121kk c F BF F F h +⨯=∠=c k k k k c S 21||)211(2221222+++=.2141224412221||122224242422222c k k c k k k k ck k k c<++=+++=++=ii) 当k 不存在时,把直线c x -=代入椭圆方程得22221,2||,22c c S c AB c y ⨯==±=由①②知S 的最大值为22c 由题意得22c =12 所以2226b c == 2122=a故当△ABF 2面积最大时椭圆的方程为: .12621222=+y x下面给出本题的另一解法,请读者比较二者的优劣: 设过左焦点的直线方程为:c my x -=…………① (这样设直线方程的好处是什么?还请读者进一步反思反思.)椭圆的方程为:),(),,(,122112222y x B y x A by a x =+由.22=e 得:,,22222c b c a ==于是椭圆方程可化为:022222=-+c y x ……② 把①代入②并整理得:02)2(222=---c mcy y m于是21,y y 是上述方程的两根.||1)()(||122221221y y m y y x x AB -+=-+-=2)2(441222222++++=m m c c m m2)1(2222++=m m c , AB 边上的高212mc h +=,从而222222)2(122122)1(2221||21++=+⨯++⨯==m m cm c m m c h AB S.221111222222c m m c ≤++++=当且仅当m=0取等号,即.22max c S =由题意知1222=c , 于是 212,26222===a c b .故当△ABF 2面积最大时椭圆的方程为: .12621222=+y x例5 已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B两点,且线段AB 的中点在直线02:=-y x l 上. (1)求此椭圆的离心率;(2 )若椭圆的右焦点关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程.讲解:(1)设A 、B 两点的坐标分别为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由 得 02)(2222222=-+-+b a a x a x b a ,根据韦达定理,得,22)(,2222212122221b a b x x y y b a a x x +=++-=++=+ ∴线段AB 的中点坐标为(222222,b a b b a a ++).由已知得2222222222222)(22,02c a c a b a b a b b a a =∴-==∴=+-+故椭圆的离心率为22=e . (2)由(1)知,c b =从而椭圆的右焦点坐标为),0,(b F 设)0,(b F 关于直线02:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得 b y b x 545300==且 由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .例6 已知⊙M :x Q y x 是,1)2(22=-+轴上的动点,QA ,QB 分别切⊙M 于A ,B两点, (1)如果324||=AB ,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程.讲解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中, 523||||||2222=-=-=MO MQ OQ , 故55-==a a 或,所以直线AB 方程是;0525205252=+-=-+y x y x 或(2)连接MB ,MQ ,设),0,(),,(a Q y x P 由 点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙.例7 如图,在Rt △ABC 中,∠CBA=90°,AB=2,AC=22。
专题05 解析几何(解答题10种考法)讲义(解析版)2024届高三数学二轮复习《考法分类》专题训练
![专题05 解析几何(解答题10种考法)讲义(解析版)2024届高三数学二轮复习《考法分类》专题训练](https://img.taocdn.com/s3/m/c98d5f9977eeaeaad1f34693daef5ef7ba0d12eb.png)
专题05 解析几何(解答题10种考法)考法一 定点【例1-1】(2023·山西运城·山西省运城中学校校考二模)已知点()4,3P 为双曲线2222:1(0,0)x y E a b a b -=>>上一点,E 的左焦点1F(1)求双曲线E 的标准方程;(2)不过点P 的直线y kx t =+与双曲线E 交于,A B 两点,若直线PA ,PB 的斜率和为1,证明:直线y kx t =+过定点,并求该定点的坐标.【答案】(1)22143x y -=(2)证明见解析,定点为(2,3)-.【解析】(1)设1(,0)F c -(0)c >到渐近线by x a=,即0bx ay -=222+=a b c得b =,又(4,3)P 在双曲线22213x ya -=上,所以216913a -=,得24a =,所以双曲线E 的标准方程为22143x y -=.(2)联立22143y kx tx y =+⎧⎪⎨-=⎪⎩,消去y 并整理得()2223484120k x ktx t ----=,则2340k -≠,2222644(34)(412)0k t k t ∆=+-+>,即2234t k +>,设11(,)A x y ,22(,)B x y ,则122834kt x x k +=-,212241234t x x k+=--,则12123344PA PB y y k k x x --+=+--12123344kx t kx t x x +-+-=+--()()()()()()122112343444kx t x kx t x x x +--++--=--()()121212122438244()16kx x t k x x t x x x x +--+-+=-++1=,所以()()1212243824kx x t k x x t +--+-+12124()16x x x x =-++,所以()()()12122141880k x x t k x x t -+-++-+=,所以()()()222214124188803434k t t k kt t k k -+-+⋅-+-+=--,整理得22626890t k kt t k -+--+=,所以22(3)2(3)80t k t k -+--=,所以()()32340t k t k ---+=,因为直线y kx t =+不过(4,3)P ,即34k t ≠+,340t k -+≠,所以320t k --=,即23t k =+,所以直线23y kx t kx k =+=++,即3(2)y k x -=+过定点(2,3)-.【例1-2】(2023·全国·统考高考真题)已知椭圆2222:1(0)C b b x a a y+>>=()2,0A -在C上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】(1)由题意可得2222b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段MN 的中点是定点()0,3.【例1-3】(2023·江西九江·统考一模)已知过点(2,0)P 的直线l 与抛物线2:2(0)E y px p =>交于,A B 两点,过线段AB 的中点M 作直线MN y ⊥轴,垂足为N ,且PM PN ⊥.(1)求抛物线E 的方程;(2)若C 为E 上异于点,A B 的任意一点,且直线,AC BC 与直线2x =-交于点,D R ,证明:以DR 为直径的圆过定点.【答案】(1)24y x =(2)证明见解析【解析】(1)由题意,可设直线l 的方程为2x my =+,将2x my =+代入22y px =,消去x 得2240y pmy p --=,设11(,)A x y ,22(,)B x y ,则122y y pm +=,124y y p =-,M 是线段AB 的中点,21212(42)22M x x m y y x pm +++∴===+,122M y y y pm +==,即2(2,)M pm pm +, 又MN y ⊥轴,∴垂足N 的坐标为(0,)pm ,则2(,)PM pm pm = ,(2,)PN pm =-,PM PN ⊥ ,22220PM PN pm p m ∴⋅=-+=对任意的R m ∈恒成立,220p p ∴-+=,又0p >,解得2p =,故抛物线E 的方程为24y x =.(2)设2(,)4t C t ,211(,)4y A y ,222(,)4y B y ,由(1)可知,124y y m +=,128y y =-,则12211444AC y t k y t y t -==+-,直线AC 的方程为214()4t y t x y t -=-+,令2x =-,则211184(24ty t y t y t y t -=+--=++,118(2,ty D y t -∴-+,同理228(2,)ty R y t--+,由抛物线的对称性可知,若以线段DR 为直径的圆过定点,则定点必在x 轴上,设该点坐标为(,0)T a ,则118(2,ty DT a y t -=+-+ ,228(2,)ty RT a y t -=+-+ ,且0DT RT ⋅= ,2121288(2)0ty ty a y t y t--∴++⋅=++,22212121222121212888()6483264(2)8()48ty ty t y y t y y t mt a y t y t y y t y y t t mt ---++--+∴+=-⋅=-=-=++++++-,2a ∴=或2a=--,∴以DR为直径的圆过定点2,0)和(2,0)--.【变式】1.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)-【解析】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T +,由MT TH =得到(5,H -+.求得HN方程:(22y x =-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-2.(2023·福建泉州·统考模拟预测)已知椭圆()2222:10x y E a b a b +=>>,上、下顶点分别为A ,B .圆22:2O x y +=与x 轴正半轴的交点为P ,且1PA PB ⋅=- .(1)求E 的方程;(2)直线l 与圆O 相切且与E 相交于M ,N 两点,证明:以MN 为直径的圆恒过定点.【答案】(1)22163x y +=(2)证明见解析【解析】(1)由已知得()0,A b ,()0,B b -,)P.则()PA b =,()PB b =- ,221PA PB b ⋅=-=-,所以23b =.因为c e a ==222b c a +=,所以23c =,26a =.故E 的方程为22163x y +=.(2)当直线l 的斜率存在时,设l 的方程为y kx m =+,即0kx y m -+=.因为直线l 与圆O=2222m k =+.设()11,M x y ,()22,N x y ,则11y kx m =+,22y kx m =+.由22,1,63y kx m x y =+⎧⎪⎨+=⎪⎩化简,得()222214260k x kmx m +++-=,由韦达定理,得12221224212621km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以()()()2212121212y y kx m kx m k x x km x x m =++=+++222222222646212121m km m k k km m k k k --=⋅-⋅+=+++,所以()2222212122223222660212121m k m m k x x y y k k k ----+=+==+++,故OM ON ⊥,即以MN 为直径的圆过原点O .当直线l 的斜率不存在时,l的方程为xx =.这时M,N或(M,(N .显然,以MN 为直径的圆也过原点O .综上,以MN 为直径的圆恒过原点O .3(2023·河南·校联考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,圆224x y +=与椭圆C 恰有两个公共点.(1)求椭圆C 的标准方程;(2)已知结论:若点()00,x y 为椭圆22221x y a b+=上一点,则椭圆在该点处的切线方程为00221x x y y a b +=.若椭圆C的短轴长小于4,过点(8,)T t 作椭圆C 的两条切线,切点分别为,A B ,求证:直线AB 过定点.【答案】(1)22154x y +=或22143x y +=(2)证明见解析【解析】(1)设椭圆C 的半焦距为c .当圆224x y +=在椭圆C 的内部时,2222,1,5b c a b c ===+=,椭圆C 的方程为22154x y +=.当圆224x y +=在椭圆C 的外部时,2222,1,3a c b a c ===-=,椭圆C 的方程为22143x y +=.(2)证明:设()()1122,,,A x y B x y .因为椭圆C 的短轴长小于4,所以C 的方程为22143x y +=.则由已知可得,切线AT 的方程为111,43x x y yBT +=的方程为22143x x y y +=,将(8,)T t 代入,AT BT 的方程整理可得,1122630,630x ty x ty +-=+-=.显然,A B 的坐标都满足方程630x ty +-=,故直线AB 的方程为630x ty +-=,令0y =,可得12x =,即直线AB 过定点1,02⎛⎫⎪⎝⎭.考法二 定值【例2】(2023·四川南充·四川省南充高级中学校考三模)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,离心率为12.点P 是椭圆C 上不同于顶点的任意一点,射线1PF 、2PF 分别与椭圆C 交于点A 、B ,1PF B △的周长为8.(1)求椭圆C 的标准方程;(2)若111PF F A λ= ,222PF F B λ=,求证:12λλ+为定值.【答案】(1)22143x y +=(2)证明见解析【解析】(1)∵1PF B C V 1212224PF PF BF BF a a a =+++=+=,∴48a =,2a =由离心率为12得1c =,从而b =,所以椭圆C 的标准方程为22143x y +=.(2)设()()0011,,,P x y A x y ,()22,B x y ,则2200143x y +=,可设直线PA 的方程为1x my =-,其中001x m y +=,联立221143x my x y =-⎧⎪⎨+=⎪⎩,化简得()2234690m y my +--=,则0122009934134y y m x y --==+⎛⎫++ ⎪⎝⎭,同理可得,022009134y y x y -=⎛⎫-+ ⎪⎝⎭.因为111PF F A λ= ,222PF F B λ=.所以001212012121211y y PF PF y AF BF y y y y λλ⎛⎫+=+=+=-+ ⎪--⎝⎭()()222000222000001134343131899x x y y y x x y ⎡⎤⎛⎫⎛⎫+-⎢⎥+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭++-+⎣⎦==220068624610993x y +++===,所以12λλ+是定值103.【变式】1.(2023·河北保定·统考二模)已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为短轴长的2倍,若椭圆C 经过点()2,2P ,(1)求椭圆C 的方程;(2)若,A B 是椭圆上不同于点P 的两个动点,直线,PA PB 与x 轴围成底边在x 轴上的等腰三角形,证明:直线AB 的斜率为定值.【答案】(1)221205x y +=(2)证明见解析【解析】(1)设椭圆的方程为()222210x ya b a b +=>>根据题意得222441a ba b =⎧⎪⎨+=⎪⎩,解得22205a b ⎧=⎨=⎩故所求椭圆方程为221205x y +=(2)如下图所示:设直线:l y kx m =+交该椭圆221205x y +=与()()1122,,,A x y B x y 两点.将y kx m =+代入221205x y+=得()2221484200k x kmx m +++-=所以()()2221222122(8)41442081442014km k mkm x x k m x x k ⎧-+->⎪⎪⎪+=-⎨+⎪⎪-=⎪+⎩由直线,PA PB 能与x 轴共同围成底边在x 轴上的等腰三角形,可得0PA PB k k +=,即()()()()()()122112121222222202222y x y x y y x x x x --+----+==----整理得()()()()()()()12211212222222242kx m x kx m x kx x m k x x m +--++--=+--+--,即()()22242082224201414m km k m k m k k-⋅---⋅--=++即()24181020k m k k -+-+=,所以当14k =时,不论m 为何值时()24181020k m k k -+-+=都成立,所以直线,PA PB 与x 轴共同围成底边在x 轴上的等腰三角形时直线AB 的斜率为定值142.(2023·四川南充·四川省南充高级中学校考三模)已知椭圆()2222:10x y C a b a b +=>>的左、右焦点为12,F F ,离心率为12.点P 是椭圆C 上不同于顶点的任意一点,射线12,PF PF 分别与椭圆C 交于点,A B ,1PF B △的周长为8.(1)求椭圆C 的标准方程;(2)设12PF F △,1PF B △,PAB V 的面积分别为123,,S S S .求证:213221S S S S S S +--为定值.【答案】(1)22143x y +=(2)证明见解析【解析】(1)解:因为1PF B △的周长为8,即1212228PF PF BF BF a a +++=+=所以48a =,可得2a =,由椭圆的离心率12c e a ==,可得1c =,从而2223b a c =-=,所以椭圆C 的标准方程为22143x y +=.(2)证明:设001122(,),(,),(,)P x y A x y B x y ,则2200143x y +=,可设直线PA 的方程为1x my =-,其中001x m y +=,联立方程221143x my x y =-⎧⎪⎨+=⎪⎩,整理得22(34)690m y my +--=,则0122009934134y y m x y --==+⎛⎫++ ⎪⎝⎭,同理可得,022009134y y x y -=⎛⎫-+ ⎪⎝⎭.因为112112111212212132211112122111sin sin 2211sin sin 22∠∠+=+=+--∠∠V V V V PF B PF F AF B BF F PF F B PF B PF F F PF F S S S S S S S S S S AF F B AF B BF F F BF F 1212PF PF AF BF =+,所以213221S S S S S S +=--1212PF PF AF BF +0012y y y y =+--01211y y y ⎛⎫=-+ ⎪⎝⎭222000001134349x x y y y ⎡⎤⎛⎫⎛⎫+-⎢⎥+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2220003(1)3(1)89x x y ++-+=220068624610993x y +++===,所以213221S S S S S S +--是定值.3.(2023·湖北武汉·华中师大一附中校考模拟预测)已知抛物线T 的顶点在原点,对称轴为坐标轴,且过()2,1-,11,4⎛⎫⎪⎝⎭,()2,2--,()3,2-四点中的两点.(1)求抛物线T 的方程:(2)已知圆()2223xy +-=,过点()(,1P m m -≠作圆的两条切线,分别交抛物线T 于()11,A x y ,()22,B x y 和()33,C x y ,()44,D x y 四个点,试判断1234x x x x 是否是定值?若是定值,求出定值,若不是定值,请说明理由.【答案】(1)24x y =(2)是定值16.【解析】(1)抛物线T 的顶点在原点,对称轴为坐标轴,且过()2,1-,11,4⎛⎫⎪⎝⎭,()2,2--,()3,2-四点中的两点,由对称性,点()2,1-和点()2,2--不可能同时在抛物线T 上,点()2,2--和点()3,2-也不可能同时在抛物线T 上,则抛物线只可能开口向上或开口向右,设()2:20T x py p =>,若过点()2,1-,则42p =,得2p =,∴24x y =,抛物线过点11,4⎛⎫⎪⎝⎭,∴24x y =符合题意;设()2:20T y px p =>,若过点11,4⎛⎫ ⎪⎝⎭,则1216p =,得132p =,∴2116y x =,但抛物线不过点()3,2-,不合题意.综上,抛物线T 的方程为24x y =.(2)(),1P m -,设直线()1:1AB y k x m =--,即1110k x y k m ---=,由AB∴()22113660m k mk -++=,设()2:1CD y k x m =--,同理可得()22223660m k mk -++=,∴12,k k 是方程()223660m k mk -++=的两根,12122266,33m k k k k m m -+==--.联立()1214y k x m x y ⎧=--⎨=⎩,消y 得2114440x k x k m -++=,∴12144x x k m =+,同理34244x x k m =+,∴()()()212341212124444161x x x x k m k m k k m k k m ⎡⎤=++=+++⎣⎦2222661611633m m m m ⎛⎫=-+= ⎪--⎝⎭所以1234x x x x 为定值16.考法三 定直线【例3】(2023·全国·统考高考真题)已知双曲线C的中心为坐标原点,左焦点为()-,离心率为(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.【答案】(1)221416x y -=(2)证明见解析.【解析】(1)设双曲线方程为()222210,0x y a b a b -=>>,由焦点坐标可知c =,则由ce a==可得2a =,4b ==,双曲线方程为221416x y -=.(2)由(1)可得()()122,0,2,0A A -,设()()1122,,,M x y N x y ,显然直线的斜率不为0,所以设直线MN 的方程为4x my =-,且1122m -<<,与221416x y -=联立可得()224132480m y my --+=,且264(43)0m ∆=+>,则1212223248,4141m y y y y m m +==--,直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =--,联立直线1MA 与直线2NA 的方程可得:()()()()()2121121211212121222222266y x y my my y y y y x x y x y my my y y +--+++==--=--112221122483216222141414148483664141m mm y y m m m m m y y m m -⋅-⋅++---===-⨯----,由2123x x +=--可得,即,据此可得点P 在定直线上运动.【变式】1.(2023·湖南永州·统考一模)已知点A 为圆上任意一点,点B 的坐标为,线段AB 的垂直平分线与直线AC 交于点D .(1)求点D 的轨迹E 的方程;(2)设轨迹E 与x 轴分别交于两点(1A 在2A 的左侧),过的直线l 与轨迹E 交于,M N 两点,直线与直线的交于P ,证明:P 在定直线上.【答案】(1)(2)证明见解析【解析】(1)由得,其半径为4,因为线段AB的垂直平分线与直线AC交于点D,故,则,而,故点D的轨迹E为以,B C为焦点的双曲线,则,故点D的轨迹E的方程为.(2)证明:由题意知,若直线l斜率为0,则其与双曲线的交点为双曲线的两顶点,不合题意;故直线l的斜率不能为0,故设其方程为,联立,得,,故,设,则直线的方程为,直线的方程为,故,则,即,解得,故直线与直线的交点P 在定直线上.2.(2023·江苏常州·校考一模)已知椭圆C :()222210x y a b a b +=>>的短轴长为.(1)求椭圆C 的方程;(2)过点的动直线l 与椭圆C 相交于不同的,A B 两点,在线段AB 上取点,满足,证明:点总在某定直线上.【答案】(1)(2)证明见解析【解析】(1)由题意可知,因为,所以解得2a =,.所以所求椭圆的方程为(2)设()11,A x y ,()22,B x y ,,,直线AB 的斜率显然存在,设为,则AB 的方程为.因为A ,P ,B ,四点共线,不妨设,则,,,,由,可得,化简得.(*)联立直线和椭圆的方程,得,消去y ,得,,得,由韦达定理,得,.代入(*)化简得,即.又,代入上式,得,化简得.所以点总在一条定直线上.考法四 最值【例4】(2023·全国·统考高考真题)已知直线与抛物线交于,A B 两点,且.(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,,求面积的最小值.【答案】(1)2p =(2)【解析】(1)设,由可得,,所以,所以,即,因为0p >,解得:2p =.(2)因为,显然直线MN 的斜率不可能为零,设直线MN :,()()1122,,,M x y N x y ,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线MN 的距离为,所以,,所以的面积,而或,所以,当时,的面积.【变式】1.(2023·浙江·模拟预测)我国著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”事实上,很多代数问题可以转化为几何问题加以解决,已知曲线C 上任意一点满足.(1)化简曲线C 的方程;(2)已知圆(O 为坐标原点),直线l 经过点且与圆O 相切,过点A 作直线l 的垂线,交C 于,M N 两点,求面积的最小值.【答案】(1);(2)【解析】(1),由得.所以曲线C的方程是;(2)设,直线MN方程是,则直线l方程为,即,直线l与已知圆相切,所以,则,由得,,由题意(∵),,,∴或,,又原点O到直线MN的距离为,∴,由或得,设,,当且仅当时等号成立,,当且仅当时等号成立,∴时,,∴,即时,.2.(2023·浙江·模拟预测)已知椭圆,点,斜率不为0的直线l 与椭圆C 交于点,A B ,与圆N 相切且切点为为AB 中点.(1)求圆N 的半径的取值范围;(2)求的取值范围.【答案】(1)(2)【解析】(1)如图所示,由题意知,直线l 的斜率存在且不为0,设直线l 方程为y kx m =+(),11(,)A x y ,22(,)B x y ,设圆N的半径为r ,,,,,所以,又因为M 为AB 的中点,所以,又因为圆N与直线l相切于点M,所以,且,所以,所以,解得,所以,,解得:,所以(),所以,即,所以圆N的半径r的取值范围为.(2)由(1)知,,所以(),令,则(),所以,显然在上单调递减,所以,所以,即,故的取值范围为.3.(2023·河北秦皇岛·校联考二模)已知双曲线实轴的一个端点是P,虚轴的一个端点是,直线PQ与双曲线的一条渐近线的交点为.(1)求双曲线的方程;(2)若直线与曲线C有两个不同的交点是坐标原点,求的面积最小值.【答案】(1)(2)【解析】(1)设点,点,则直线PQ的方程为,与渐近线by x a=联立,得,解之得,即直线PQ 与双曲线的一条渐近线交点为,又直线PQ 与双曲线的一条渐近线的交点为,所以,即,因此双曲线方程为.(2)设()()1122,,,A x y B x y ,把代入,得,则 ,,,点O 到直线的距离,所以的面积为,令,所以,令,则,因为,所以,由,得,由,得,由,得,即当时,等号成立,此时满足,所以面积的最小值为.考法五轨迹问题【例5】(2023·湖南·校联考二模)已知12,F F为双曲线的左右焦点,且该双曲线离心率小于等于,点和是双曲线上关于轴对称非重合的两个动点,为双曲线左右顶点,恒成立.(1)求该双曲线C的标准方程;(2)设直线和的交点为P,求点P的轨迹方程.【答案】(1)221 43x y-=(2)【解析】(1)设双曲线C的焦距为,由及双曲线的定义,得,解得,由可得,又恒成立,所以,解得.因为该双曲线离心率小于等于,所以,即,解得,所以,则,所以双曲线C的标准方程为221 43x y-=.(2)因为,所以点只能在双曲线的右支上,设,则,因为在双曲线上,所以,易得,所以直线的斜率为,直线的方程为①,同理可求得直线的方程为②,由①×②得③,将代入③得,化简得,令①=②即,化简得,因为,所以,即点P的轨迹方程为.【变式】1(2023·湖北武汉·华中师大一附中校考模拟预测)已知过右焦点的直线交双曲线于两点,曲线C的左右顶点分别为,虚轴长与实轴长的比值为.(1)求曲线C的方程;(2)如图,点关于原点的对称点为点P,直线与直线交于点,直线与直线交于点,求的轨迹方程.【答案】(1)(2)【解析】(1)由题意得,又222a b c,则,曲线C的方程为;+=,k k,直线为,(2)设直线的斜率分别为12由,得,,,则,,由于点关于原点的对称点为点P,,则直线为,直线为,显然,由,得,即,则直线的方程为,由得,即,当时,由对称性可知在y轴上,此时直线平行于直线,不符合题意,故的轨迹方程为.,x y作椭圆C的切线,则切线2.(2023·江西·校联考二模)已知过曲线上一点()00的方程为.若P为椭圆上的动点,过P作的切线交圆于,过分别作的切线,直线交于点.(1)求动点的轨迹E的方程;(2)已知R为定直线上一动点,过R的动直线与轨迹E交于两个不同点,A B,在线段上取一点,满足,试证明动点的轨迹过定点.【答案】(1)(2)证明见解析【解析】(1)设点,由题意知切线的方程为,同理,设点,则切线的方程分别为:,又点Q在直线上,所以,所以直线的方程为:,和比较可得,又在曲线上,即,所以,即点Q的轨迹E的方程为;(2)设点,则由知,设,则且,则:,即,,整理可得且,又在曲线E 上,则,故,所以,所以,即,由于,故时,,所以动点T 的轨迹过定点.3.(2023·湖南长沙·雅礼中学校考一模)已知椭圆C :,直线l 与椭圆C 交于A ,B 两点.(1)点为椭圆C 上的动点(与点A ,B 不重合),若直线PA ,直线PB 的斜率存在且斜率之积为,试探究直线l 是否过定点,并说明理由;(2)若.过点O 作,垂足为点Q ,求点Q 的轨迹方程.【答案】(1)直线l 过定点;(2)【解析】(1)直线过定点,下面证明:设()11,A x y ,,,又,,∴,∴直线过原点满足.又当PA 两点固定时为定值,有且仅有一个斜率值与之相乘之积为,则直线重合,则重合,∴直线l 过定点.(2)设,,,不妨设,∴,,又点A,B在椭圆上,∴,,∴,,两式相加得,由,得,∴点Q的轨迹是以点O为半径的圆,∴点Q的轨迹方程为.考法六长度比值【例6】(2023·上海杨浦·复旦附中校考模拟预测)贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比p 为一给定的实数.例的结论.如图所示,抛物线,其中0(1)写出抛物线的焦点坐标及准线方程;(2)若直线与抛物线只有一个公共点,求实数k的值;(3)如图,A,B,C是H上不同的三点,过三点的三条切线分别两两交于点D,E,F,证明:.【答案】(1),(2)(3)证明见解析【解析】(1)焦点为,准线为;(2)将代入,化简得(*),方程(*)的判别式,化简得,解得;(3)设,设抛物线在A点处的切线方程为,由,消去y并化简得,,,,解得,故切线方程为,,,即,同理可求得抛物线上过点B,C的切线方程分别为:,,联立,解得,即,同理可得,,因为,,,所以.【变式】1.(2023·云南·校联考三模)如图,已知椭圆的上、下顶点为,右顶点为P和相交于点A,过N作直线交x轴的正半轴于B点,交椭圆于C 点,连接交于点D.(1)求的方程;(2)求证:.【答案】(1)(2)证明见解析【解析】(1)依题意可得,,又,解得,所以的方程为.(2)在椭圆中,,所以,,设直线(),直线(),因为直线与直线相交于点C,由,解得,所以,又点C在椭圆上,所以,整理得,y=得,即,因为直线交x轴正半轴于B点,令0又因为,所以,,所以,因为直线交于点D,令2x=得,故,又,所以,,所以,又,所以,所以,所以.2.(2023·河南·校联考模拟预测)已知双曲线的左、右焦点分别为1F,2F.过2F的直线l交C的右支于M,N两点,当l垂直于x轴时,M,N到C的一条渐近线的距离之和为.(1)求C的方程;(2)证明:为定值.【答案】(1)(2)证明见解析【解析】(1)根据题意有,C的一条渐近线方程为,将代入C的方程有,,所以M ,N 到直线的距离之和为,所以,C 的方程为.(2)方法1:当l 垂直于x 轴时,由(1)可知,,且由双曲的定义可知,故.当l 不垂直于x 轴时,由双曲线的定义可知,,故.设,代入C 的方程有:,设()11,M x y ,()22,N x y ,则,,所以,所以.综上,的值为6.方法2:当l 垂直于x 轴时,由(1)可知,,且由双曲的定义可知,故.当l 不垂直于x 轴时,设,代入C 的方程有:.设()11,M x y ,()22,N x y ,则,,所以.综上,的值为6.考法七 存在性【例7】(2023·陕西西安·陕西师大附中校考模拟预测)已知椭圆经过点,过点的直线交该椭圆于P ,两点.(1)求面积的最大值,并求此时直线PQ 的方程;(2)若直线PQ 与x 轴不垂直,在x 轴上是否存在点使得恒成立?若存在,求出的值;若不存在,说明理由.【答案】(1)PQ 的方程为或;(2)存在,【解析】(1)将代入椭圆方程,得到,故,故椭圆方程为22143x y +=.当直线PQ 的斜率为0时,此时三点共线,不合要求,舍去;当直线PQ 的斜率不为0时,设直线PQ 的方程为,与椭圆方程22143x y+=联立,得,设,则,则,当且仅当,即时,等号成立,故此时直线PQ的方程为或.(2)在x轴上存在点使得恒成立,理由如下:因为,所以,即,整理得,即,所以,则,解得,故在x轴上存在点,使得恒成立.【变式】1.(2023·吉林长春·东北师大附中校考一模)椭圆2222:1(0)x y C a b a b +=>>且垂直于长轴的弦长度为1.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相交于A ,B 两点,与y 轴相交于点,若存在实数m ,使得,求m 的取值范围.【答案】(1)(2)【解析】(1,在方程22221x y a b+=中,令,解得,因为过椭圆焦点并且垂直于长轴的弦长度为1,所以有,由可得:,所以椭圆的方程为;(2)当直线l 不存在斜率时,由题意可知直线与椭圆有两个交点,与纵轴也有两个交点不符合题意;当直线l 存在斜率时,设为,所以直线l 的方程设为y kx m =+,于是有,因为该直线与椭圆有两个交点,所以一定有,化简,得,设()()1122,,,A x y B x y ,于是有,因为,所以,代入中,得,于是有,化简,得,代入中,得.2.(2023·辽宁抚顺·校考模拟预测)已知动点M 到定点的距离与动点M 到定直线2x =的距离之比为(1)求点M 的轨迹C 的方程;(2)对,曲线C 上是否始终存在两点A ,B 关于直线对称?若存在,求实数的取值范围;若不存在,请说明理由.【答案】(1)(2)存在,【解析】(1)设,则,即,整理得,所以点M 的轨迹C 的方程为.(2)假设曲线C 上始终存在两点A ,B 关于直线对称,当时,设直线AB 方程为,()11,A x y ,()22,B x y ,联立,整理得,则,所以,.设AB的中点为()00,x y,则,,将()00,x y代入,则,所以,所以对恒成立,即对恒成立,因为,所以,则.易知当时,曲线C上存在两点,关于直线0y=对称.所以的取值范围为.3.(2023·四川成都·模拟预测)已知椭圆2222:1(0)x yC a ba b+=>>的中心为O,左、右焦点分别为1F,2F,M为椭圆C上一点,线段与圆相切于该线段的中点N,且的面积为4.(1)求椭圆C的方程;(2)椭圆C上是否存在三个点A,B,P,使得直线AB过椭圆C的左焦点1F,且四边形是平行四边形?若存在,求出直线AB的方程;若不存在.请说明理由.【答案】(1)(2)【解析】(1)连接,则,因为N为的中点,O为的中点,所以,故,,,解得,由椭圆定义可知,,解得,由勾股定理得,即,解得,故,故椭圆方程为;x=-,(2)由题意得,当直线AB的斜率不存在时,即2此时,解得,设,=,由对称性可知,P为椭圆左顶点D,但,故不合要求,舍去,由于OA OB当直线AB的斜率存在时,设为,联立得,,,设()()1122,,,A x y B x y ,则,,则AB 中点坐标为,假设存在点P ,使得四边形是平行四边形,则,将代入椭圆中,得,解得,此时直线AB 的方程为.考法八 角度关系转斜率【例8】(2022·全国·统考高考真题)已知点在双曲线上,直线l 交C 于P ,Q两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若,求的面积.【答案】(1)1-;(2).【解析】(1)因为点在双曲线上,所以,解得,即双曲线.=+,,易知直线l的斜率存在,设:l y kx m联立可得,,所以,,且.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)[方法一]:【最优解】常规转化不妨设直线的倾斜角为,因为,所以,由(1)知,,当,A B均在双曲线左支时,,所以,即,解得(负值舍去)此时PA与双曲线的渐近线平行,与双曲线左支无交点,舍去;当,A B均在双曲线右支时,因为,所以,即,即,解得(负值舍去),于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点A到直线PQ的距离,故的面积为.[方法二]:设直线AP的倾斜角为,,由,得,由,得,即,联立,及得,,同理,,,故,而,,由,得,故【变式】1.(2023·陕西宝鸡·校考模拟预测)已知点P是平面直角坐标系异于O的任意一点过点P作直线及的平行线,分别交x轴于M,N两点,且.(1)求点P的轨迹C的方程;(2)在x轴正半轴上取两点,且,过点A作直线l与轨迹C交于E,F两点,证明:.【答案】(1)(2)证明见解析【解析】(1)由题意,设点P坐标为()00,x y,则根据题意,得,由得:,化简得:2200143x y+=,所以轨迹C的方程为:(2)由题意,当直线l的斜率不存在时,根据椭圆的对称性,成立.当直线l的斜率存在,由题意,设直线l的方程为:、、,由得:,有得:,且,,则,又,因为,所以,则.综上所述,.2.(2023·贵州毕节·校考模拟预测)已知椭圆2222:1(0)x yC a ba b+=>>的三个顶点所确定的三角形的面积为(是C的离心率)是C上一点.(1)求C的方程;(2)若直线与C交于,P Q两点,设,直线与C分别交于,M N(不同于,P Q)两k>时,记直线的倾斜角分别为,,求的最大值.点,当0【答案】(1)(2)【解析】(1)依题意可得,得,得,得,得,得,得26a=,则,所以椭圆C的方程为.(2)设,,联立,消去y并整理得,因为在椭圆内,所以判别式恒大于,,,当时,直线:,联立,消去y并整理得,因为,即,所以,所以,因为B在椭圆内,所以判别式恒大于,,,,所以,当11x =时,直线:1x =,易得,也满足,故,同理可得,所以,所以,因为0k >,所以,当且仅当,又0k >,即时,等号成立,所以的最大值为.考点九 三点共线【例9】(2023·贵州毕节·校考模拟预测)已知是抛物线的焦点,过点的直线交抛物线C 于,A B 两点,当AB 平行于y 轴时,.(1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线于点D ,过点A 作直线的垂线与抛物线C 的另一交点为的中点为,证明:三点共线.【答案】(1)(2)证明见解析【解析】(1)抛物线C 的焦点为,当AB 平行于y 轴时,设直线AB 的方程为,设点、,,解得,所以,抛物线C 的方程为.(2)设直线AB 的方程为,设点()11,A x y 、()22,B x y ,联立可得,由韦达定理可得,,又因为直线的方程为,将代入直线的方程可得,可得,即点,所以,,因为,则,所以,直线的方程为,联立可得,则,故,则,由的中点为,可得,故、B、D三点共线.【变式】1.(2022秋·云南昆明)过抛物线:24上一动点P作x轴的垂线,记垂足为H,设线段的中点y x为M,动点M的轨迹为曲线C,设O为坐标原点(1)求曲线C的方程;(2)过抛物线的焦点作直线与曲线C交于,A B两点,设抛物线的准线为l,过点A作直线l的垂线,记垂足为D,证明:B、D、O三点共线,【答案】(1)(2)证明见解析【解析】(1)解:设,则,,因为M是的中点,所以,即,所以,即,所以曲线C的方程;(2)证明:由题意得,准线,设点,,则设过抛物线的焦点的直线为当时,则,,,所以直线的方程为,即,因为过原点O ,所以B 、D 、O 三点共线;当时,联立方程,化简得,则,且,直线的方程为,将代入的方程,即当成立时,B 、D 、O 三点共线.下面证明成立:因为,欲证成立,只需证成立,即证成立,即证成立,又,所以所以成立,所以B 、D 、O 三点共线.2.(2023·江苏镇江)已知过抛物线的焦点,斜率为的直线交抛物线于两点()11,A x y 、()22,B x y ,其中,且.(1)求该抛物线的方程;(2)设O 为坐标原点,过点A 作抛物线的准线的垂线,垂足为C ,证明:B 、O 、C 三点共线.【答案】(1);(2)证明见解析.【解析】(1)依题意可知抛物线的焦点坐标为,故直线AB 的方程为,联立,可得.∵,0p >,,解得.∴经过抛物线焦点的弦,解得.∴抛物线方程为;(2)由(1)知A点的坐标为,B点的坐标为,过点A作抛物线的准线的垂线,垂足为C,则C点的坐标为,,又直线与直线有一个公共点O,所以B、O、C三点共线.3.(2023·江苏南京)在平面直角坐标系中,已知抛物线E:的准线方程为l:.(1)求抛物线E的方程;(2)过抛物线E的焦点作直线与抛物线相交于A,B两点,过点B作直线l的垂线,交l于点C,求证:A,O,C三点共线.【答案】(1);(2)证明见详解.【解析】(1)因为抛物线的准线方程为l:,故可得,解得.故抛物线方程为.(2)由(1)中抛物线方程可得,设坐标分别为,故可设直线方程为,联立抛物线方程可得:,;又根据抛物线定义可知C点坐标为,。
高考数学复习考点题型专题讲解28 解析几何中优化运算的方法
![高考数学复习考点题型专题讲解28 解析几何中优化运算的方法](https://img.taocdn.com/s3/m/793b9d71326c1eb91a37f111f18583d049640f2a.png)
高考数学复习考点题型专题讲解专题28 解析几何中优化运算的方法1.焦点三角形的面积(1)设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,△PF1F2的面积记为S△PF1F2,则S△PF1F2=b2tanθ2.(2)设P点是双曲线x2a2-y2b2=1(a>0,b>0)上异于实轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,△PF1F2的面积记为S△PF1F2,则S△PF1F2=b2tanθ2.2.中心弦的性质设A,B为圆锥曲线关于原点对称的两点,P为该曲线上异于A,B的点.(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k PA k PB=-b2a2=e2-1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k PA k PB=b2a2=e2-1.3.中点弦的性质设圆锥曲线以M(x0,y0)(y0≠0)为中点的弦AB所在的直线的斜率为k.(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k AB=-b2xa2y,k AB·k OM=-b2a2=e2-1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k AB=b2xa2y,k AB·k OM=b2a2=e2-1.(3)若圆锥曲线为抛物线y2=2px(p>0),则k AB=py0 .4.圆锥曲线的切线方程设M(x0,y0)为圆锥曲线上的点,(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>1),则椭圆在M处的切线方程为xxa2+yyb2=1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则双曲线在M处的切线方程为xxa2-yyb2=1.(3)若圆锥曲线为抛物线y2=2px(p>0),则抛物线在M处的切线方程为y0y=p(x+x0).5.与抛物线的焦点弦有关的二级结论过抛物线y2=2px(p>0)的焦点F倾斜角为θ的直线交抛物线于A(x1,y1),B(x2,y2)两点,则(1)x1x2=p24,y1y2=-p2;(2)两焦半径长为p1-cos θ,p1+cos θ;(3)1|AF|+1 |BF|=2p;(4)|AB|=2psin2θ,S△AOB=p22sin θ.类型一优化运算的基本途径途径1 回归定义当题目条件涉及圆锥曲线的焦点时,要考虑利用圆锥曲线的定义表示直线与圆锥曲线相交所得的弦长.例1 已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P .若|AF |+|BF |=4,求l 的方程. 解 设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).由题设得F ⎝⎛⎭⎪⎫34,0,故结合抛物线的定义可得|AF |+|BF |=x 1+x 2+32. 由题设可得x 1+x 2=52.由⎩⎨⎧y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0, 则x 1+x 2=-12(t -1)9,从而-12(t -1)9=52,解得t =-78,所以直线l 的方程为y =32x -78.途径2 设而不求在解决直线与圆锥曲线的相关问题时,通过设点的坐标,应用“点差法”或借助根与系数的关系来进行整体处理,设而不求,避免方程组的复杂求解,简化运算. 例2 已知点M 到点F (3,0)的距离比它到直线l :x +5=0的距离小2. (1)求点M 的轨迹E 的方程;(2)过点P (m ,0)(m >0)作互作垂直的两条直线l 1,l 2,它们与(1)中轨迹E 分别交于点A ,B 及点C ,D ,且G ,H 分别是线段AB ,CD 的中点,求△PGH 面积的最小值.解(1)由题意知,点M到点F(3,0)的距离与到直线l′:x+3=0的距离相等,结合抛物线的定义,可知轨迹E是以F(3,0)为焦点,以直线l′:x+3=0为准线的抛物线,则知p2=3,解得p=6,故M的轨迹E的方程为y2=12x.(2)设A(x1,y1),B(x2,y2),则有y21=12x1,y22=12x2,以上两式作差,并整理可得y1-y2x1-x2=12y1+y2=6yG.即k AB=6y G ,同理可得k CD=6yH,易知直线l1,l2的斜率存在且均不为0,又由于l1⊥l2,可得k AB·k CD=36yGyH=-1,即y G y H=-36,所以S△PGH=12|PG|·|PH|=12·1+1k2AB|y G| ·1+1k2CD|y H|=182+1k2AB+1k2CD≥182+2|k AB k CD|=182+2=36,当且仅当|k AB|=|k CD|=1时,等号成立,故△PGH面积的最小值为36. 途径3 换元引参结合解决问题的需要,根据题目条件引入适当的参数或相应的参数方程,巧妙转化相应的解析几何问题,避开复杂的运算.例3 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3. 证明法一 设P (a cos θ,b sin θ)(0≤θ<2π),则线段OP 的中点Q 的坐标为⎝ ⎛⎭⎪⎫a 2cos θ,b 2sin θ.|AP |=|OA |⇔AQ ⊥OP ⇔k AQ ×k =-1. 又A (-a ,0), 所以k AQ =b sin θ2a +a cos θ,即b sin θ-ak AQ cos θ=2ak AQ . 2ak AQ =b 2+a 2k 2AQ sin(θ-α), tan θ=ak AQb, 从而可得|2ak AQ |≤b 2+a 2k 2AQ <a 1+k 2AQ ,解得|k AQ |<33,故|k |=1|k AQ |> 3.法二 依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.①由|AP |=|OA |及A (-a ,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0, 于是x 0=-2a1+k 2, 代入①,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三 依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).联立⎩⎨⎧y 0=kx 0,x 20a 2+y 20b2=1,消去y 0并整理,得x 20=a 2b2k 2a 2+b 2.① 由|AP |=|OA |,A (-a ,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝ ⎛⎭⎪⎫a b 2+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.训练1 (1)(2022·杭州质检)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B. 3C.32D.62(2)已知抛物线C :y 2=2px (p >0)过点(1,-2),经过焦点F 的直线l 与抛物线C 交于A ,B 两点,A 在x 轴的上方,Q (-1,0),若以QF 为直径的圆经过点B ,则|AF |-|BF |=( ) A.23B.2 5 C.2 D.4答案 (1)D (2)D解析 (1)由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知,可得 ⎩⎨⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a =2,所以双曲线C 2的离心率e =32=62.(2)由于抛物线C :y 2=2px (p >0)过点(1,-2), 则有4=2p ,解得p =2,设直线l 的倾斜角为α∈⎝ ⎛⎭⎪⎫0,π2,根据焦半径公式,可得|AF |=21-cos α,|BF |=21+cos α,由于以QF 为直径的圆经过点B ,则有BQ ⊥BF ,在Rt△QBF 中,|BF |=2cos α, 则有|BF |=21+cos α=2cos α,即1-cos 2α=cos α, 所以|AF |-|BF |=21-cos α-21+cos α=4cos α1-cos 2α=4cos αcos α=4,故选D. 类型二 优化运算之二级结论的应用圆锥曲线中有很多的二级结论,应用这些结论能够迅速、准确地解题. 应用1 椭圆中二级结论的应用例4 (1)A ,B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,M 是椭圆上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为-49,则椭圆C 的离心率为( )A.23B.33C.23D.53(2)已知椭圆方程为x 25+y 2=1,右焦点为F ,上顶点为B .直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,则直线l 方程为________.答案 (1)D (2)x -y +6=0解析 (1)椭圆上不同于A ,B 的任意一点与左、右顶点的斜率之积为-b 2a 2,∴-b 2a 2=-49,∴b 2a 2=49,∴椭圆的离心率e =1-b 2a2=1-49=53. (2)设点M (x 0,y 0)为椭圆x 25+y 2=1上一点.由过点M 与椭圆相切的结论,可设l :x 0x 5+y 0y =1,在直线MN 的方程中, 令x =0,可得y =1y 0,由题意可知y 0>0,即点N ⎝⎛⎭⎪⎫0,1y 0. 直线BF 的斜率为k BF =-b c =-12,所以,直线PN 的方程为y =2x +1y 0.在直线PN 的方程中, 令y =0,可得x =-12y 0, 即点P ⎝ ⎛⎭⎪⎫-12y 0,0.因为MP ∥BF ,则k MP =k BF , 即y 0x 0+12y 0=2y 202x 0y 0+1=-12,整理可得(x 0+5y 0)2=0, 所以x 0=-5y 0.又因为x 205+y 20=1,所以6y 20=1.因为y 0>0,故y 0=66,x 0=-566, 所以直线l 的方程为-66x +66y =1,即x -y +6=0. 训练2 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点,若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)(2022·金华模拟)已知P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上一动点,F 1,F 2是椭圆的左、右焦点,当∠F 1PF 2=π3时,S △F 1PF 2=43;当线段PF 1的中点落到y 轴上时,tan∠F 1PF 2=43,则椭圆的标准方程为( )A.x216+x212=1 B.x216+y29=1C.x225+y212=1 D.x225+y29=1答案(1)D (2)A解析(1)由题意知c=3,即a2-b2=9,AB的中点记为P(1,-1),由k AB·k OP=-b2 a2,则(-1)×-1-01-3=-b2a2,∴a2=2b2,又a2-b2=9,∴a2=18,b2=9,∴E的方程为x218+y29=1.(2)设|PF1|=m,|PF2|=n,当∠F1PF2=π3时,由题意知S△F1PF2=b2tanθ2,即43=b2tan π6,所以b2=12.当线段PF1的中点落到y轴上时,又O为F1F2的中点,所以PF2∥y轴,即PF2⊥x轴.由tan∠F1PF2=43,得|F1F2||PF2|=43,即n =3c 2,则m =52c ,且n =b 2a =12a.所以联立⎩⎪⎨⎪⎧3c 2+5c 2=2a ,3c 2=12a ,解得⎩⎨⎧a =4,c =2,所以椭圆标准方程为x 216+y 212=1.应用2 双曲线中二级结论的应用例5 (1)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( ) A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1 (2)已知P (1,1)是双曲线外一点,过P 引双曲线x 2-y 22=1的两条切线PA ,PB ,A ,B为切点,求直线AB 的方程为________. 答案 (1)B (2)2x -y -2=0解析 (1)由题意可知k AB =-15-0-12-3=1,k MO =-15-0-12-0=54,由双曲线中点弦性质得k MO ·k AB =b 2a 2,即54=b 2a2,又9=a 2+b 2, 联立解得a 2=4,b 2=5,故双曲线的方程为x 24-y 25=1.(2)设切点A (x 1,y 1),B (x 2,y 2), 则PA :x 1x -y 1y 2=1,PB :x 2x -y 2y 2=1,又点P (1,1)代入得x 1-12y 1=1,x 2-12y 2=1,∴点A (x 1,y 1),B (x 2,y 2)均在直线x -12y =1上,∴过直线AB 的方程为x -12y =1,即2x -y -2=0.训练3 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,实轴的两个端点为A ,B ,点P 为双曲线上不同于顶点的任一点,则直线PA 与PB 的斜率之积为________.(2)已知P 是椭圆x 2a 21+y 2b 21=1(a 1>b 1>0)和双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)的一个交点,F 1,F 2是椭圆和双曲线的公共焦点,e 1,e 2分别为椭圆和双曲线的离心率,若∠F 1PF 2=π3,则e 1·e 2的最小值为________. 答案 (1)3 (2)32解析 (1)由题意知c a =2,即c 2a 2=4,∴c 2=4a 2,∴a 2+b 2=4a 2,∴b 2=3a 2,∴k PA ·k PB =b 2a2=3.(2)因为点P 为椭圆和双曲线的公共点,F 1,F 2是两曲线的公共焦点,则由焦点三角形的面积公式得S △PF 1F 2=b 21tan π6=b 22tanπ6,化简得b 21=3b 22,即a 21-c 2=3(c 2-a 22),等式两边同除c 2,得1e 21-1=3-3e 22,所以4=1e 21+3e 22≥23e 1·e 2,解得e 1·e 2≥32,所以e 1·e 2的最小值为32.应用3 抛物线中二级结论的应用例6 (1)(2022·泰州调研)已知F 是抛物线C :y 2=4x 焦点,过点F 作两条相互垂直的直线l 1,l 2,直线l 1与C 相交于A ,B 两点,直线l 2与C 相交于D ,E 两点,则|AB |+|DE |的最小值为( ) A.16 B.14 C.12 D.10(2)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线交于A ,B 两点(点A 在第一象限),若BA →=4BF →,则△AOB 的面积为( ) A.833 B.433C.823 D.423答案 (1)A (2)B解析 (1)如图,设直线l 1的倾斜角为θ,θ∈⎝⎛⎭⎪⎫0,π2,则直线l 2的倾斜角为π2+θ,由抛物线的焦点弦弦长公式知 |AB |=2p sin 2θ=4sin 2θ,|DE |=2p sin 2⎝ ⎛⎭⎪⎫π2+θ=4cos 2θ, ∴|AB |+|DE |=4sin 2θ+4cos 2θ=4sin 2θcos 2θ≥4⎝⎛⎭⎪⎫sin 2θ+cos 2θ22=16,当且仅当sin 2θ=cos 2θ,即sin θ=cos θ, 即θ=π4时取“=”.(2)由题意知|AF ||BF |=3,设l 的倾斜角为θ,则|AF |=p 1-cos θ,|BF |=p1+cos θ,∴1+cos θ1-cos θ=3,cos θ=12,sin θ=32, S =p 22sin θ=43=433. 训练4 (1)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为26,则|AB |=( ) A.24 B.8 C.12 D.16(2)已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于M,N两点,且|MF|=2|NF|,则直线l的斜率为( )A.±2B.±2 2C.±22D.±24答案(1)A (2)B解析(1)由题意知p=2,S△AOB=p22sin θ=26,∴sin θ=16,∴|AB|=2psin2θ=24.(2)由抛物线的焦点弦的性质知1|MF|+1|NF|=2p=1,又|MF|=2|NF|,解得|NF|=32,|MF|=3,∴|MN|=92,设直线l的倾斜角为θ,∴k=tan θ,又|MN|=2psin2θ,∴4sin2θ=92,∴sin2θ=89,∴cos2θ=19,∴tan2θ=8,∴tan θ=±22,故k=±2 2.一、基本技能练1.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△AOB 的面积为( ) A.334 B.938C.6332D.94 答案 D解析 抛物线C :y 2=3x 中,2p =3,p =32,故S △OAB =p 22sin θ=942sin 30°=94.2.已知椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34 C.⎣⎢⎡⎦⎥⎤12,1D.⎣⎢⎡⎦⎥⎤34,1 答案 B解析 由周角定理得k PA 1·k PA 2=-b 2a 2=-34,又k PA 2∈[-2,-1], ∴k PA 1=-34k PA 2∈⎣⎢⎡⎦⎥⎤38,34.3.已知斜率为k (k >0)的直线l 与抛物线C :y 2=4x 交于A ,B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,△OFM 的面积等于3,则k =( ) A.14B.13C.12D.263答案 B解析设AB的中点M(x0,y0),由中点弦的性质得k=py(y0≠0).由抛物线方程知p=2,所以k=2y0,另焦点F(1,0),又S△OFM=3,可知12×1×y0=3,所以y0=6,再代入k=2y=13.4.椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是( )A.3B.11C.22D.10 答案 D解析设椭圆x216+y24=1上的点P(4cos θ,2sin θ),则点P到直线x+2y-2=0的距离为d=|4cos θ+4sin θ-2|5=⎪⎪⎪⎪⎪⎪42sin⎝⎛⎭⎪⎫θ+π4-25,所以d max=|-42-2|5=10,故选D.5.已知点A(0,-5),B(2,0),点P为函数y=21+x2图象上的一点,则|PA|+|PB|的最小值为( ) A.1+25B.7 C.3 D.不存在 答案 B解析 由y =21+x 2,得y 24-x 2=1(y >0).设点A ′(0,5),即点A ′(0,5),A (0,-5)为双曲线y 24-x 2=1的上、下焦点.由双曲线的定义得|PA |-|PA ′|=4, 则|PA |+|PB |=4+|PA ′|+|PB |≥4+|BA ′|=7,当且仅当B ,P ,A ′共线时取等号,故选B.6.(2022·丽水调研)已知椭圆Г:x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,过右焦点F 且斜率为k (k >0)的直线与Г相交于A ,B 两点,且AF →=3FB →,则k =( ) A.1 B.2 C.3D. 2 答案 D解析 依题意a =2b ,e =1-⎝ ⎛⎭⎪⎫b a 2=32,因为AF →=3FB →,所以λ=3,设直线的倾斜角为α,则e =⎪⎪⎪⎪⎪⎪λ-1(λ+1)cos α 得32=⎪⎪⎪⎪⎪⎪3-1(3+1)cos α,|cos α|=33, 又k >0,∴α∈⎝ ⎛⎭⎪⎫0,π2,得cos α=33,所以k =tan α= 2. 7.抛物线y 2=2px (p >0)的焦点为F ,过焦点F 且倾斜角为π6的直线与抛物线相交于A ,B 两点,若|AB |=8,则抛物线的方程为________. 答案y 2=2x 解析∵|AB |=2psin 2θ=2psin 2π6=8p =8,∴p =1,∴抛物线的方程为y 2=2x .8.已知点P ⎝ ⎛⎭⎪⎫12,12为椭圆:x 22+y 2=1内一定点,经过点P 引一条弦,使此弦被点P 平分,则此弦所在的直线方程为________. 答案 2x +4y -3=0解析 直线与椭圆交于A ,B ,P 为AB 中点.由k AB ·k OP =-b 2a 2得k AB ×1=-12,即k AB =-12,则直线方程为y -12=-12⎝ ⎛⎭⎪⎫x -12,即2x +4y -3=0.9.(2022·南京模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),过原点的直线与双曲线交于A ,B两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若△ABF 的面积为2a 2,则双曲线的离心率为________. 答案 3解析 如图.设双曲线的左焦点为F ′,连接AF ′,BF ′,因为以AB 为直径的圆恰好过双曲线的右焦点F (c ,0), 所以S △AF ′F =S △ABF =2a 2且∠F ′AF =∠θ=π2, 根据双曲线焦点三角形面积公式,得S △AF ′F =b 2tanθ2.所以2a 2=b 2,即b 2a2=2,e =1+b 2a2= 3. 10.(2022·武汉调研)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)与C 2:y 2a 22-x 2b 22=1(a 2>0,b 2>0)有相同的渐近线,若C 1的离心率为2,则C 2的离心率为________. 答案233解析 设双曲线C 1,C 2的半焦距分别为c 1,c 2, 因为C 1的离心率为2,所以C 1的渐近线方程为y =±b 1a 1x =±⎝ ⎛⎭⎪⎫c 1a 12-1x =±22-1x =±3x , 所以C 2的渐近线方程为y =±a2b 2x =±3x ,所以a 2b 2=3,所以C 2的离心率为c 22a 22=1+⎝ ⎛⎭⎪⎫b 2a 22=233.11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l :y =kx +a ,直线l 与椭圆C 交于M ,N 两点,与y 轴交于点P ,O 为坐标原点.(1)若k =1,且N 为线段MP 的中点,求椭圆C 的离心率;(2)若椭圆长轴的一个端点为Q (2,0),直线QM ,QN 与y 轴分别交于A ,B 两点,当PA →·PB →=1时,求椭圆C 的方程.解 (1)由题意知直线l :y =x +a 与x 轴交于点(-a ,0), ∴点M 为椭圆C 的左顶点,即M (-a ,0). 设N ⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆C :x 2a 2+y 2b 2=1得14+a 24b 2=1,即b 2a 2=13, 则e 2=c 2a 2=1-b 2a 2=23,∴e =63,即椭圆C 的离心率e =63. (2)由题意得a =2,∴椭圆C :b 2x 2+4y 2=4b 2(b >0), 联立⎩⎨⎧b 2x 2+4y 2=4b 2,y =kx +2,消去y 得(4k 2+b 2)x 2+16kx +16-4b 2=0,⎩⎪⎨⎪⎧Δ=16b 2(4k 2+b 2-4)>0,x M+x N=-16k 4k 2+b 2,x M ·x N =16-4b24k 2+b2,∵直线QM :y =y M x M -2(x -2),∴A ⎝ ⎛⎭⎪⎫0,-2y M x M -2,PA →=⎝ ⎛⎭⎪⎫0,2y M +2x M -42-x M . ∵y M =kx M +2, ∴y M -2=kx M ,即PA →=⎝ ⎛⎭⎪⎫0,2(k +1)x M 2-x M , 同理PB →=⎝ ⎛⎭⎪⎫0,2(k +1)x N 2-x N , ∴PA →·PB →=4(k +1)2x M x Nx M x N -2(x M +x N )+4=4-b 2=1,即b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.12.在平面直角坐标系xOy 中,已知点F 1(-17,0),F 2(17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |·|TB |=|TP |·|TQ |,求直线AB 的斜率与直线PQ 的斜率之和. 解 (1)因为|MF 1|-|MF 2|=2<|F 1F 2|=217,所以点M 的轨迹C 是以F 1,F 2分别为左、右焦点的双曲线的右支.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),半焦距为c ,则2a =2,c =17,得a =1,b 2=c 2-a 2=16, 所以点M 的轨迹C 的方程为x 2-y 216=1(x ≥1).(2)设T ⎝ ⎛⎭⎪⎫12,t ,由题意可知直线AB ,PQ 的斜率均存在且不为零,设直线AB 的方程为y-t =k 1⎝ ⎛⎭⎪⎫x -12(k 1≠0),直线PQ 的方程为y -t =k 2⎝ ⎛⎭⎪⎫x -12(k 2≠0),由⎩⎪⎨⎪⎧y -t =k 1⎝ ⎛⎭⎪⎫x -12,x 2-y 216=1,得(16-k 21)x 2-2k 1⎝ ⎛⎭⎪⎫t -k 12x -⎝⎛⎭⎪⎫t -k 122-16=0.设A (x A ,y A ),B (x B ,y B )⎝ ⎛⎭⎪⎫x A >12,x B>12, 由题意知16-k 21≠0,则x A x B =-⎝⎛⎭⎪⎫t -k 122-1616-k 21,x A +x B =2k 1⎝⎛⎭⎪⎫t -k 1216-k 21,所以|TA |=1+k 21⎪⎪⎪⎪⎪⎪x A -12=1+k 21⎝⎛⎭⎪⎫x A -12,|TB |=1+k 21⎪⎪⎪⎪⎪⎪x B -12=1+k 21⎝ ⎛⎭⎪⎫x B -12, 则|TA |·|TB |=(1+k 21)⎝⎛⎭⎪⎫x A -12⎝ ⎛⎭⎪⎫x B -12=(1+k 21)⎣⎢⎡⎦⎥⎤x A x B -12(x A +x B )+14=(1+k 21)⎣⎢⎡-⎝ ⎛⎭⎪⎫t -k 122-1616-k 21-12·⎦⎥⎤2k 1⎝ ⎛⎭⎪⎫t -k 1216-k 21+14=(1+k 21)(t 2+12)k 21-16. 同理得|TP |·|TQ |=(1+k 22)(t 2+12)k 22-16.因为|TA |·|TB |=|TP |·|TQ |,所以(1+k 21)(t 2+12)k 21-16=(1+k 22)(t 2+12)k 22-16,所以k 22-16+k 21k 22-16k 21=k 21-16+k 21k 22-16k 22,即k 21=k 22,又k 1≠k 2,所以k 1=-k 2,即k 1+k 2=0. 故直线AB 的斜率与直线PQ 的斜率之和为0. 二、创新拓展练13.(2022·广东四校联考)倾斜角为π3的直线经过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F ,与双曲线C 的右支交于A ,B 两点,且AF →=λFB →(λ≥5),则双曲线C 的离心率的范围是( ) A.⎣⎢⎡⎭⎪⎫43,+∞B.⎝ ⎛⎦⎥⎤1,43C.(1,2)D.⎣⎢⎡⎭⎪⎫43,2答案 D解析 tan π3>b a ⇒b a <3⇒b 2<3a 2⇒c 2-a 2<3a 2⇒c 2<4a 2,∴c 2a 2<4,即e <2;|e cos θ|=|λ-1||λ+1|⇒e 2=⎪⎪⎪⎪⎪⎪λ-1λ+1=λ-1λ+1=1-2λ+1∈⎣⎢⎡⎭⎪⎫23,1,即23≤e 2<1,故43≤e <2.14.(多选)(2022·海南调研)已知斜率为3的直线l 经过抛物线C :y 2=2px (p >0)的焦点F ,与抛物线C 交于点A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AB |=8,则以下结论正确的是( ) A.1|AF |+1|BF |=1 B.|AF |=6C.|BD |=2|BF |D.F 为AD 中点 答案 BCD解析 法一 如图,过点B 作x =-p 2的垂线,垂足为B ′,F ⎝ ⎛⎭⎪⎫p 2,0,直线l 的斜率为3,则直线l 的方程为y =3⎝⎛⎭⎪⎫x -p 2,联立⎩⎨⎧y 2=2px ,y =3⎝⎛⎭⎪⎫x -p 2, 得12x 2-20px +3p 2=0. 解得x A =3p 2,x B =p6,由|AB |=|AF |+|BF |=x A +x B +p =8p3=8,得p =3.所以抛物线方程为y2=6x.则|AF|=x A+p2=2p=6,故B正确;所以|BF|=8-|AF|=2,|BD|=|BB′|cos 60°=|BF|cos 60°=4,∴|BD|=2|BF|,故C正确;所以|AF|=|DF|=6,则F为AD中点,故D正确;而1|AF|+1|BF|=23,故A错误.法二设直线AB的倾斜角为θ,利用抛物线的焦点弦的性质,由|AB|=2psin2θ=8,则p=3,|AF|=p1-cos θ=6,|BF|=p1+cos θ=2,1 |AF|+1|BF|=2p=23,在Rt△DBB′中,cos θ=|BB′||BD|,所以|BD|=4,|DF|=|BF|+|BD|=6,因此F为AD中点.故选BCD.15.已知A,B是抛物线y2=4x上的两点,F是焦点,直线AF,BF的倾斜角互补,记AF,AB的斜率分别为k1,k2,则1k22-1k21=________.答案 1解析F(1,0),设A(x1,y1),B(x2,y2),根据抛物线的对称性,且两直线的倾斜角互补, 所以(x 2,-y 2)在直线AF 上, 直线AF :y =k 1(x -1),代入y 2=4x ,化简可得k 21x 2-(2k 21+4)x +k 21=0,根据韦达定理,可得⎩⎨⎧x 1+x 2=2k 21+4k 21,x 1x 2=1,又k 2=y 2-y 1x 2-x 1=4x 2-4x 1x 2-x 1=2x 2+x 1, 所以k 22=4x 1+x 2+2x 1x 2=42k 21+4k 21+2=k 21k 21+1,故1k 22-1k 21=1.16.已知P 是圆C :(x -2)2+(y +2)2=1上一动点,过点P 作抛物线x 2=8y 的两条切线,切点分别为A ,B ,则直线AB 斜率的最大值为________. 答案34解析 由题意可知,PA ,PB 的斜率都存在,分别设为k 1,k 2,切点A (x 1,y 1),B (x 2,y 2), 设P (m ,n ),过点P 的抛物线的切线为y =k (x -m )+n , 联立⎩⎨⎧y =k (x -m )+n ,x 2=8y ,得x 2-8kx +8km -8n =0, 因为Δ=64k 2-32km +32n =0, 即2k 2-km +n =0,所以k1+k2=m2,k1k2=n2,又由x2=8y得y′=x 4,所以x1=4k1,y1=x218=2k21,x 2=4k2,y2=x228=2k22,所以k AB=y2-y1x2-x1=2k22-2k214k2-4k1=k2+k12=m4,因为点P(m,n)满足(x-2)2+(y+2)2=1,所以1≤m≤3,因此14≤m4≤34,即直线AB斜率的最大值为3 4 .17.已知点A为圆B:(x+2)2+y2=32上任意一点,定点C的坐标为(2,0),线段AC的垂直平分线交AB于点M.(1)求点M的轨迹方程;(2)若动直线l与圆O:x2+y2=83相切,且与点M的轨迹交于点E,F,求证:以EF为直径的圆恒过坐标原点.(1)解圆B的圆心为B(-2,0),半径r=42,|BC|=4. 连接MC,由已知得|MC|=|MA|,∵|MB |+|MC |=|MB |+|MA |=|BA |=r =42>|BC |,∴由椭圆的定义知:点M 的轨迹是中心在原点,以B ,C 为焦点,长轴长为42的椭圆, 即a =22,c =2,b 2=a 2-c 2=4, ∴点M 的轨迹方程为x 28+y 24=1.(2)证明 当直线EF 的斜率不存在时, 直线EF 的方程为x =±83, E ,F 的坐标分别为⎝⎛⎭⎪⎫83,83,⎝⎛⎭⎪⎫83,-83或⎝⎛⎭⎪⎫-83,83,⎝⎛⎭⎪⎫-83,-83, OE →·OF →=0.当直线EF 斜率存在时,设直线EF 的方程为y =kx +m , ∵EF 与圆O :x 2+y 2=83相切,∴|m |1+k2=83,即3m 2=8k 2+8. 设E (x 1,y 1),F (x 2,y 2),∴OE →·OF →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2,(*)联立⎩⎨⎧x 28+y 24=1,y =kx +m ,消去y 得(1+2k 2)x 2+4kmx +2m 2-8=0, ∴x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k 2,代入(*)式得OE→·OF→=(1+k2)·2m2-81+2k2-4k2m21+2k2+m2=3m2-8k2-81+2k2,又∵3m2=8k2+8,∴OE→·OF→=0,综上,以EF为直径的圆恒过定点O.31 / 31。
【知识梳理】解析几何的20个微专题(附高考数学真题讲析)
![【知识梳理】解析几何的20个微专题(附高考数学真题讲析)](https://img.taocdn.com/s3/m/b439ee175b8102d276a20029bd64783e09127dd2.png)
【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。
高考数学 专题22 解析几何高考常考题型方法总结(解析版)
![高考数学 专题22 解析几何高考常考题型方法总结(解析版)](https://img.taocdn.com/s3/m/f059ee0fcf84b9d528ea7a80.png)
专题22 解析几何高考常考题型方法总结一.【学习目标】1.掌握圆锥曲线的定义;2.掌握焦点三角形的应用和几何意义; 3.掌握圆锥曲线方程的求法;4.掌握直线与圆锥曲线的位置关系;5.熟练掌握定点、定值、最值和范围问题。
二.【知识点总结】1.椭圆定义:平面内与两个定点12,F F 的距离的和等于常数(大于12,F F 之间的距离)的点的轨迹叫做椭圆,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) 22221,(0)x y a b a b +=>>,焦点12(,0),(,0)F c F c -,其中c =.(2) 22221,(0)x y a b b a+=>>,焦点12(0,),(0,)F c F c -,其中c =3.椭圆的几何性质以22221,(0)x y a b a b+=>>为例(1)范围:,a x a b y b -≤≤-≤≤.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:长轴端点:12(,0),(,0)A a A a -,短轴端点:12(0,),(0,)B b B b -;长轴长12||2A A a =,短轴长12||2B B b =,焦距12||2F F c =.(4)离心率,01,ce e e a=<<越大,椭圆越扁,e 越小,椭圆越圆.(5) ,,a b c 的关系:222c a b =-.4.双曲线的定义:平面内与两个定点12,F F 的距离的差的绝对值等于常数(小于12,F F 之间的距离)的点的轨迹叫做双曲线,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 5.双曲线的标准方程(1) 22221,(0,0)x y a b a b -=>>,焦点12(,0),(,0)F c F c -,其中c =(2) 22221,(0,0)x y a b b a-=>>,焦点12(0,),(0,)F c F c -,其中c =6.双曲线的几何性质以22221,(0,0)x y a b a b-=>>为例(1)范围:,x a x a ≥≤-.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:实轴端点:12(,0),(,0)A a A a -,虚轴端点:12(0,),(0,)B b B b -;实轴长12||2A A a =,虚轴长12||2B B b =,焦距12||2F F c =.(4)离心率,1ce e a=>(5) 渐近线方程by x a=±.7.抛物线的定义:平面内与一个定点和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,直线l 叫抛物线的准线.8.抛物线的标准方程(1) 22222,2,2,2,(0)y px y px x py x py p ==-==->.对应的焦点分别为:(,0),(,0),(0,),(0,)2222p p p p F F F F --. (2)离心率1e =.三.【题型归纳】 (一)斜率问题 (二)面积问题(三)参数的范围问题 (四)轨迹问题 (五)最值(六)圆锥曲线的性质 (七)与向量的综合 (八)轨迹方程与面积 (九)定值问题(十)圆与圆锥曲线 (十一)最值 四.【题型方法】 (一)斜率问题例1.设M ,N 是抛物线2y x =上的两个不同的点,O 是坐标原点,若直线OM 与ON 的斜率之积为12-,则( )A.||||42OM ON +≥B.O 到直线MN 的距离不大于2C.直线MN 过抛物线2y x =的焦点D.MN 为直径的圆的面积大于4π【答案】B【解析】当直线MN 的斜率不存在时,设,由斜率之积为12-,可得20112y -=-,即202y =,∴MN 的直线方程为2x =;当直线的斜率存在时,设直线方程为y kx m =+,联立2y kx m y x=+⎧⎨=⎩,可得20ky y m -+=.设()1122(),,M x y N x y ,,则,∴121212OM ON y y k k k x x m ==-⋅=, 即2m k =-.∴直线方程为()22y kx k k x =-=-. 则直线MN 过定点()2,0.则O 到直线MN 的距离不大于2.故选B .练习1.已知点(),P x y 在圆()()22:111C x y -+-=上,则2y x+的最小值是( ) A .23B .34C .43 D .32【答案】C【解析】由题意,设2y k x+=,整理得20kx y --=, 又由圆()()22:111C x y -+-=的圆心坐标为(1,1),半径为1, 当直线20kx y --=与()()22:111C x y -+-=有交点时,2231(1)k k -≤+-,解得43k ≥,即2y x +的最小值为43,故选C.(二)面积问题例2.已知有相同焦点1F 、2F 的椭圆()2211x y m m +=>和双曲线()2210x y n n-=>,点P 是它们的一个交点,则12F PF ∆面积的大小是( ) A.122 C.1 D.2【答案】C【解析】如图所示,不妨设两曲线的交点P 位于双曲线的右支上,设1PF s =,2PF t =.由双曲线和椭圆的定义可得 2s t m s t n⎧+=⎪⎨-=⎪⎩解得2222 s t m n st m n⎧+=+⎨=-⎩,在12PF F △中,()2221222414cos 222m n m s t c F PF st m n +--+-∠==-, ∵11m n -=+,∴2m n -=,∴12cos 0F PF ∠=,∴1290F PF ∠=︒.∴12F PF △面积为1 12st =, 故选:C .练习1.设12,F F 是椭圆的两个焦点,点P 在椭圆上,且128F F =,1210PF PF +=,则12PF F ∆面积的最大值为 ( )A .6B .12C .15D .20【答案】B【解析】根据128F F =,1210PF PF +=可知28,210c a ==,故2229b a c =-=,所以3b =.由于12PF F ∆底边12F F 长度一定,故高最高的时候取得最大值,高最高为3b =,所以三角形面积的最大值为121122F F b ⋅⋅=.故选B. 练习2.设经过点M(2,1)的等轴双曲线的左、右焦点分别为F 1,F 2,若此双曲线上的一点N 满足12NF NF ⊥u u u v u u u u v ,则△NF 1F 2的面积为_______. 【答案】3【解析】设该等轴双曲线的方程为()220x y λλ-=≠,Q 该双曲线经过点()2,1,41M λ∴-=,即3λ=,该双曲线的方程为223x y -=,易得())126,0,6,0F F -,Q 该双曲线上的一点N 满足12NF NF ⊥u u u v u u u u v ,设()00,N x y ,可得2200220036x y x y ⎧-=⎨+=⎩,062y ∴=,则12NF F ∆的面积1322S =⨯=,故答案为3. 练习3.椭圆22221x y a b+=(a>b>0)中,F 1,F 2分别为其左、右焦点,M 为椭圆上一点且MF 2⊥x 轴,设P 是椭圆上任意一点,若△PF 1F 2面积的最大值是△OMF 2面积的3倍(O 为坐标原点),则该椭圆的离心率e=____.【解析】由题意,可得2b Mc a(,), ∵△PF 1F 2面积的最大值是△OMF 2面积的3倍,211223223b c b c b a a ⨯⨯=⨯⨯⨯∴=,,,∴c ==, ∴e c e a ==.(三)参数的范围问题例3.若函数||1y x =-的图像与曲线22:1C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( ) A.[1,1)-B.(1,0)-C.(,1][0,1)-∞-UD.[1,0](1,)-+∞U【答案】A【解析】由y =|x |﹣1可得,x ≥0时,y =x ﹣1;x <0时,y =﹣x ﹣1, ∴函数y =|x |﹣1的图象与方程x 2+λy 2=1的曲线必相交于(±1,0)所以为了使函数y =|x |﹣1的图象与方程x 2+λy 2=1的曲线恰好有两个不同的公共点,则 y =x ﹣1代入方程x 2+λy 2=1,整理可得(1+λ)x 2﹣2λx +λ﹣1=0 当λ=﹣1时,x =1满足题意, 由于△>0,1是方程的根,∴11λλ-+<0,即﹣1<λ<1时,方程两根异号,满足题意; y =﹣x ﹣1代入方程x 2+λy 2=1,整理可得(1+λ)x 2+2λx +λ﹣1=0 当λ=﹣1时,x =﹣1满足题意, 由于△>0,﹣1是方程的根,∴11λλ-+<0,即﹣1<λ<1时,方程两根异号,满足题意; 综上知,实数λ的取值范围是[﹣1,1) 故选:A .练习1.已知椭圆222:1x M y a+=,圆222:6C x y a +=-在第一象限有公共点P ,设圆C 在点P 处的切线斜率为1k ,椭圆M 在点P 处的切线斜率为2k ,则12k k 的取值范围为( ) A.(1,6) B.(1,5)C.(3,6)D.(3,5)【答案】D【解析】因为椭圆222:1x M y a +=和圆222:6C x y a +=-在第一象限有公共点P ,所以222661a a a ⎧>-⎨->⎩,解得235a <<.设椭圆222:1x M y a+=和圆222:6C x y a +=-在第一象限的公共点()00,P x y ,则椭圆M在点P 处的切线方程为0021x x y y a +=,圆C 在点P 处的切线方程为2006x x y y a +=-,所以010x k y =-,0220x k a y =-,所以()2123,5k a k =∈,故选D.(四)轨迹问题例4.已知动点M的坐标满足方程12512x y =+-,则动点M 的轨迹为( ) A.抛物线 B.双曲线C.椭圆D.以上都不对【答案】A【解析】由题意,动点M的坐标满足方程12512x y +-,1251213x y +-=,可得上式表示动点(,)M x y 到定点(0,0)的距离与到定直线125120x y +-=的距离相等,且定点不在定直线上,结合抛物线的定义可知:动点M 轨迹是以定点为焦点,定直线为准线的抛物线. 故选A.练习1.已知两点()12,0F -、()22,0F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程为( ) A .22143x y +=B .22184x y +=C .221164x y +=D .2211612x y +=【答案】D 【解析】由题设可得121228PF PF F F +==,即2216,16412a b ==-=,应选答案D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题16 解析几何大题部分【训练目标】1、 理解斜率、倾斜角的概念,会利用多种方法计算斜率,掌握斜率与倾斜角之间的变化关系;2、 掌握直线方程的5种形式,熟练两直线的位置关系的充要条件,并且能够熟练使用点到直线的距离,两点间的距离,两平行间的距离公式;3、 识记圆的标准方程和一般方程,掌握两个方程的求法;4、 掌握直线与圆的位置关系的判断,圆与圆的位置关系判断;5、 掌握圆的切线求法,弦长求法,切线长的求法。
6、 掌握椭圆,双曲线,抛物线的定义及简单几何性质;7、 掌握椭圆,双曲线的离心率求法;8、 掌握直线与圆锥曲线的位置关系;9、 掌握圆锥曲线中的定值问题,定点问题,最值与范围问题求法; 【温馨小提示】本专题在高考中属于压轴题,文科相对简单,只需掌握常见的方法,有一定的计算能力即可;对于理科生来讲,思维难度加大,计算量加大,因此在复习时应该多总结,对于常见的一些小结论加以识记,并采用一些诸如特殊值法,特殊点法加以验证求解。
【名校试题荟萃】 1、已知圆和圆.(1)若直线l 过点)0,4(A 且被圆1C 截得的弦长为32,求直线l 的方程;(2)设平面上的点P 满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标。
【答案】 (1)0y=或(2)313(,)22-或51(,)22-【解析】(1)设直线l 的方程为:(4)y k x =-,即由垂径定理,得:圆心1C 到直线l 的距离,点到直线距离公式,得:求直线l 的方程为:0y =或,即y =或;故有:,化简得:关于k 的方程有无穷多解,有:,或解之得:点P 坐标为313(,)22-或51(,)22-。
2、已知椭圆与抛物线共交点2F ,抛物线上的点M 到y 轴的距离等于21MF -,且椭圆与抛物线的交点Q 满足52QF =. (1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点P 做抛物线的切线y kx m =+交椭圆于A ,B 两点,设线段AB 的中点为00(,)C x y ,求0x 的取值范围.【答案】(1)24y x =,22198x y +=(2)(1,0)-(2)显然0k ≠,0m ≠,由24y kx my x =+⎧⎨=⎩,消去x ,得,由题意知,得1km =,由22198y kx mx y =+⎧⎪⎨+=⎪⎩,消去y ,得,其中,化简得,又1k m=,得,解得209m <<.设11(,)A x y ,22B(,)x y ,则.由22119k m =>,得01x >-.∴0x 的取值范围是(1,0)-. 3、已知椭圆C :12222=+by a x )0(>>b a 的离心率21=e ,点)0,(b A ,点F B 、 分别为椭圆的上顶点和左焦点,且.(1)求椭圆C 的方程;(2)若过定点)2,0(M 的直线l 与椭圆C 交于H G ,两点(G 在H M ,之间)设直线l 的斜率0>k ,在x 轴上是否存在点)0,(m P ,使得以PH PG ,为邻边的平行四边形为菱形?如果存在,求出m 的取值范围?如果不存在,请说明理由. 【答案】(1)13422=+y x (2)(Ⅱ)设直线l 的方程为,设,则,, ,由于菱形对角线垂直,则,解得,即,,(当且仅当k k43=时,等号成立). 所以存在满足条件的实数m ,m 的取值范围为.4、已知椭圆.(1)若椭圆C的离心率为12,求n的值;(2)若过点(2,0)N 任作一条直线l与椭圆C交于不同的两点,A B,在x轴上是否存在点M,使得,若存在,求出点M的坐标;若不存在,请说明理由.【答案】(1)32(2)(-1,0)5、在平面直角坐标系xOy中,椭圆C:的短轴长为22,离心率63.(1)求椭圆C的方程;(2)已知A为椭圆C的上顶点,点M为x轴正半轴上一点,过点A作AM的垂线AN与椭圆C交于另一点N,若,求点M的坐标.【答案】(1) (2)【解析】(1)因为椭圆C 的短轴长为22,离心率为63, 所以22222263b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩解得622a b c ⎧=⎪⎪=⎨⎪=⎪⎩,所以椭圆C 的方程为22162x y +=.在直角AMN △中,由60AMN ∠=︒,得,所以,解得63m =,所以点M 的坐标为6,03⎛⎫ ⎪ ⎪⎝⎭. 6、已知点F 是椭圆x 21+a 2+y 2=1(a>0)的右焦点,点M (m ,0),N (0,n )分别是x 轴,y 轴上的动点,且满足MN →·NF →=0.若点P 满足OM →=2ON →+PO →(O 为坐标原点). (1)求点P 的轨迹C 的方程;(2)设过点F 任作一直线与点P 的轨迹交于A ,B 两点,直线OA ,OB 与直线x =-a 分别交于点S ,T ,试判断以线段ST 为直径的圆是否经过点F ?请说明理由. 【答案】(1)y 2=4ax (2)经过 【解析】(1) ∵椭圆x 21+a 2+y 2=1(a>0)右焦点F 的坐标为(a ,0), ∴NF →=(a ,-n ).∵MN →=(-m ,n ), ∴由MN →·NF →=0,得n 2+am =0.设点P 的坐标为(x ,y ),由OM →=2ON →+PO →,有(m ,0)=2(0,n )+(-x ,-y ), ⎩⎪⎨⎪⎧m =-x ,n =y2.代入n 2+am =0,得y 2=4ax.即点P 的轨迹C 的方程为y 2=4ax.解法二:①当AB ⊥x 时,A (a ,2a ),B (a ,-2a ),则l OA :y =2x ,l OB :y =-2x.由⎩⎪⎨⎪⎧y =2x ,x =-a ,得点S 的坐标为S (-a ,-2a ),则FS →=(-2a ,-2a ). 由⎩⎪⎨⎪⎧y =-2x ,x =-a ,得点T 的坐标为T (-a ,2a ),则FT →=(-2a ,2a ). ∴FS →·FT →=(-2a )×(-2a )+(-2a )×2a =0.②当AB 不垂直x 轴时,设直线AB 的方程为y =k (x -a )(k ≠0),A ⎝ ⎛⎭⎪⎫y 214a ,y 1,B ⎝ ⎛⎭⎪⎫y 224a ,y 2, 同解法一,得FS →·FT →=4a 2+16a 4y 1y 2.由⎩⎪⎨⎪⎧y =k (x -a ),y 2=4ax ,得ky 2-4ay -4ka 2=0,∴y 1y 2=-4a 2.则FS →·FT →=4a 2+16a 4(-4a 2)=4a 2-4a 2=0. 因此,以线段ST 为直径的圆经过点F.7、如图,已知抛物线C :y 2=x 和⊙M :(x -4)2+y 2=1,过抛物线C 上一点H (x 0,y 0) (y 0≥1)作两条直线与⊙M 分别相切于A 、B 两点,分别交抛物线于E 、F 两点. (1)当∠AHB 的角平分线垂直x 轴时,求直线EF 的斜率; (2)若直线AB 在y 轴上的截距为t ,求t 的最小值.【答案】(1)-14(2)-11法二:∵当∠AHB 的角平分线垂直x 轴时,点H (4,2),∴∠AHB =60°,可得k HA =3,k HB =-3,∴直线HA 的方程为y =3x -43+2,联立方程组⎩⎨⎧y =3x -43+2,y 2=x ,得3y 2-y -43+2=0,∵y E +2=33,∴y E =3-63,x E =13-433. 同理可得y F =-3-63,x F =13+433,∴k EF =-14.(2)法一:设点H (m 2,m )(m ≥1),HM 2=m 4-7m 2+16,HA 2=m 4-7m 2+15.以H 为圆心,HA 为半径的圆方程为:(x -m 2)2+(y -m )2=m 4-7m 2+15,① ⊙M 方程:(x -4)2+y 2=1.②①-②得:直线AB 的方程为(2x -m 2-4)(4-m 2)-(2y -m )m =m 4-7m 2+14. 当x =0时,直线AB 在y 轴上的截距t =4m -15m(m ≥1),∵t 关于m 的函数在[1,+∞)单调递增,∴t min =-11. 法二:设A (x 1,y 1),B (x 2,y 2),∵k MA =y 1x 1-4,∴k HA =4-x 1y 1, 可得,直线HA 的方程为(4-x 1)x -y 1y +4x 1-15=0, 同理,直线HB 的方程为(4-x 2)x -y 2y +4x 2-15=0,∴(4-x 1)y 20-y 1y 0+4x 1-15=0,(4-x 2)y 20-y 2y 0+4x 2-15=0, ∴直线AB 的方程为(4-y 20)x -y 0y +4y 20-15=0, 令x =0,可得t =4y 0-15y 0(y 0≥1),∵t 关于y 0的函数在[1,+∞)单调递增,∴t min =-11. 8、已知椭圆的一个焦点(6,0)F ,点()2,1M 在椭圆C 上.(1)求椭圆C 的方程;(2)直线l 平行于直线OM (O 坐标原点),且与椭圆C 交于A ,B 两个不同的点,若AOB ∠为钝角,求直线l 在y 轴上的截距m 的取值范围. 【答案】(1)22182x y += (2)(2)由直线l 平行于OM 得直线l 的斜率为,又l 在y 轴上的截距m ,故l 的方程为12y x m =+. 由得,又线与椭圆C 交于A ,B 两个不同的点,设()11A x y ,,()22B x y ,,则,.所以,于是22m -<<.AOB ∠为钝角等价于0OA OB ⋅<,且0m ≠,则,即22m <,又0m ≠,所以m 的取值范围为.9、椭圆C :22221x y a b+=(0a b >>)的离心率为12,其左焦点到点()2,1P 的距离为10.不过原点O 的直线l 与椭圆C 相交于A 、B 两点,且线段AB 被直线OP 平分. (1) 求椭圆C 的方程;(2) 求ABP ∆的面积取最大时直线l 的方程. 【答案】(1)22143x y +=(2)(2)易得直线OP 的方程12y x =,设()11,A x y ,()22,B x y ,AB 中点()00,R x y ,其中0012y x =,因为 ,A B 在椭圆上,所以2211143x y +=,2222143x y +=,相减得,即,故,,其中且0m ≠.令,则,令()0f m '=得17m =-,(因4和17+不满足且0m ≠,舍去)当时,()0f m '>,当时,()0f m '<,所以,当17m =-时,ABPS ∆取得最大值,此时直线l 的方程为.10、已知抛物线的焦点为F ,抛物线C 上存在一点E ()2,t 到焦点F 的距离等于3.(1)求抛物线C 的方程;(2)已知点P 在抛物线C 上且异于原点,点Q 为直线1x =-上的点,且FP FQ ⊥.求直线PQ 与抛物线C 的交点个数,并说明理由.【答案】(1)24y x = (2)1个 【解析】(1)抛物线的准线方程为2px =-, 所以点E ()2t ,到焦点的距离为232p+=.解得2p =.所以抛物线C 的方程为24y x =.故直线PQ 的斜率.故直线PQ 的方程为,即.①又抛物线C 的方程24y x =,② 联立消去x 得,故0y y =,且204y x =.故直线PQ 与抛物线C 只有一个交点.11、已知圆1C 与y 轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l 上. (1)求圆1C 的方程; (2)圆1C 与圆2C :相交于M 、N 两点,求两圆的公共弦MN 的长.【答案】(1)(x ﹣4)2+(y ﹣3)2=16 (2)27 【解析】(1)经过点(2,1)与点(﹣2,﹣3)的直线方程为,即y=x ﹣1.由题意可得,圆心在直线y=3上, 联立,解得圆心坐标为(4,3),故圆C 1的半径为4.则圆C 1的方程为(x ﹣4)2+(y ﹣3)2=16;12、已知圆C 的半径为2,圆心在x 轴的正半轴上,直线与圆C 相切.(1)求圆C 的方程;(2)过点Q (0,-3)的直线l 与圆C 交于不同的两点A11,)x y (、B 22(,)x y ,当时,求△AOB的面积. 【答案】(1) (2)372【解析】 (1)设圆心为,因为圆C 与相切,所以,解得(舍去),所以圆C 的方程为设,则, ①,将①代入并整理得,解得k = 1或k =-5(舍去), 所以直线l 的方程为圆心C 到l 的距离,13、已知B A ,是椭圆C :上两点,点M 的坐标为()0,1.(1)当B A ,两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (2)当B A ,两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.【答案】(1)9314 (2)见解析⑵根据题意可知,直线AB 斜率存在.设直线AB :y =kx +m ,A (x 1,y 1),B (x 2,y 2),AB 中点为N (x 0,y 0),联立,消去y 得(2+3k 2)x 2+6kmx +3m 2-9=0,由△>0得2m 2-9k 2-6<0,① 所以x 1+x 2=-2326k km +,y 1+y 2=k (x 1+x 2)+2m =2324k m +, 所以N (-2323k km+,2322km+),又M (1, 0), 假设△MAB 为等边三角形,则有MN ⊥AB ,所以k MN ×k =-1,即×k =-1,化简得3k 2+2+km =0,② 由②得m =-k k 232+,代入①得2222)23(k k +-3(3k 2+2)<0, 化简得3k 2+4<0,矛盾,所以原假设不成立, 故△MAB 不可能为等边三角形. 14、已知圆,点A 为圆1C 上的一个动点,AN x ⊥轴于点N ,且动点M 满足,设动点M 的轨迹为曲线C .(1)求动点M 的轨迹曲线C 的方程;(2)若直线l 与曲线C 相交于不同的两点P 、Q 且满足以PQ 为直径的圆过坐标原点O , 求线段PQ 长度的取值范围. 【答案】 (1)(2)(2)当直线l 的斜率不存在时,因以PQ 为直径的圆过坐标原点O ,故可设直线OP 为x y =,联立22,1,84y x x y =⎧⎪⎨+=⎪⎩解得 同理求得所以364=PQ ; 当直线l 的斜率存在时,设其方程为m kx y +=,设联立,可得由求根公式得(*) ∵以PQ 为直径的圆过坐标原点O ,即即化简可得,将(*)代入可得,即 即,又将代入,可得∴当且仅当2241kk =,即22±=k 时等号成立.又由,,;综上,得.15、如图,椭圆经过点A (0,-1),且离心率为22。