DC-DC电源管理芯片的设计

合集下载

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解DC-DC电源芯片是一种特殊的集成电路,用于将直流电(DC)转换为所需的不同电压的直流电。

它通常由许多不同的部分组成,每个部分都具有特定的功能,可以实现高效的电能转换。

接下来,我将对DC-DC电源芯片的内部结构进行详细解释。

1.输入滤波器:电源芯片的第一个部分是输入滤波器,用于过滤输入电源的干扰和噪声,确保输入电源干净稳定,以提供可靠的工作电压。

2.整流桥:在输入电压经过滤波器后,进入整流桥。

整流桥由四个二极管组成,可以将交流电(AC)转换为直流电(DC),以供后续电路使用。

3.拉电感器:拉电感器是一种具有高电感值的元件,用于存储电能并滤波电流。

拉电感器通过存储能量,使电源芯片能够提供稳定的输出电流。

4.开关管/开关MOS管:开关管是DC-DC电源芯片的核心部分之一、它负责控制电源的开关周期,调整输出电压。

开关管通常是MOSFET管,其具有低导通电阻和快速开关速度,以提供高效的能量转换。

5.控制电路:控制电路是DC-DC电源芯片的另一个重要组成部分,负责监测并控制输出电压。

它包括一个反馈回路,用于调整开关管的开关频率和占空比,以确保输出电压达到预期值。

控制电路还可以包括一些保护功能,如过压保护和过载保护,以防止电源芯片受到损害。

6.输出滤波器:输出滤波器用于滤波输出电压,去除可能存在的高频噪声,并提供干净稳定的输出电压。

输出滤波器通常由电容器和电感器组成,能够平滑输出电压并减少纹波。

除了上述主要部分外,DC-DC电源芯片还可能包括其他辅助功能,如温度保护、短路保护和过流保护等。

这些保护功能能够保护电源芯片不受外部故障和不恰当使用的影响。

总之,DC-DC电源芯片内部结构的主要组成部分包括输入滤波器、整流桥、拉电感器、开关管、控制电路和输出滤波器。

这些部分通过协同工作实现电源的高效转换和稳定的输出电压。

同时,电源芯片可能还包括一些辅助功能,如保护功能,以确保电源芯片的安全运行。

dcdc芯片手册

dcdc芯片手册

DC-DC芯片手册1. 引言DC-DC芯片作为电源管理系统中的核心组件之一,扮演着将直流电压转换为其他直流电压的重要角色。

本文将深入探讨DC-DC芯片的技术特点、应用场景以及手册的编写与使用。

1.1 DC-DC芯片的基本概念介绍DC-DC芯片的基本概念,阐述其在电源管理中的作用,以及在不同电子设备中的广泛应用。

1.2 DC-DC芯片手册的重要性强调DC-DC芯片手册在设计、调试和维护电源系统中的重要性,以及为用户提供准确信息的必要性。

2. 技术特点与规格详细介绍DC-DC芯片的技术特点和规格,使读者对该芯片有一个全面的了解。

2.1 输入与输出电压范围阐述DC-DC芯片所支持的输入和输出电压范围,以及在不同工作条件下的稳定性和性能。

2.2 效率与功率密度探讨DC-DC芯片的能效表现,包括效率的计算方法和功率密度的重要性。

2.3 转换拓扑与控制方式介绍不同DC-DC芯片的转换拓扑结构和控制方式,以及它们在实际应用中的优劣和适用场景。

3. 电路连接与布局建议提供DC-DC芯片在电路中的连接方式和布局建议,以确保最佳性能和稳定性。

3.1 输入输出电容的选择详细讨论在设计中如何选择适当的输入和输出电容,以保障电源系统的稳定性。

3.2 输入输出滤波电感的应用阐述滤波电感在DC-DC芯片电路中的作用,以及如何选择和应用合适的滤波电感。

3.3 PCB布局与散热设计探讨PCB布局对DC-DC芯片性能的影响,以及良好的散热设计对延长芯片寿命的重要性。

4. 保护特性与故障诊断详细介绍DC-DC芯片的保护特性,以及在故障发生时的诊断方法。

4.1 过流与过压保护讨论DC-DC芯片在过流和过压情况下的保护机制,确保电源系统的安全稳定运行。

4.2 温度保护与限流功能阐述芯片的温度保护机制和限流功能,以应对在高温或过载情况下可能出现的问题。

5. DC-DC芯片手册的编写与更新探讨编写DC-DC芯片手册的步骤和要点,以及在新版本发布时如何进行更新。

少外围短路的dcdc降压型电源芯片

少外围短路的dcdc降压型电源芯片

少外围短路的dcdc降压型电源芯片摘要:一、引言二、DC-DC降压型电源芯片的工作原理三、少外围短路的DC-DC降压型电源芯片的优势四、如何选择合适的少外围短路DC-DC降压型电源芯片五、应用实例六、结论正文:一、引言在电子设备中,电源系统是至关重要的一环。

随着科技的不断发展,对电源系统的要求也越来越高。

DC-DC降压型电源芯片作为一种常见的电源转换器,其性能和外围电路的简洁性成为了人们关注的重点。

本文将介绍少外围短路的DC-DC降压型电源芯片,分析其优势及应用方法。

二、DC-DC降压型电源芯片的工作原理DC-DC降压型电源芯片是一种采用开关管控制,将输入的高电压转换为较低电压的电源模块。

在工作过程中,通过开关管的开通和关断,实现输入电压与输出电压之间的能量传递。

其中,外围电路包括电感、电容、二极管等元件,对电源系统的性能有很大影响。

三、少外围短路的DC-DC降压型电源芯片的优势1.减少电路复杂度:少外围短路意味着简化电路设计,降低产品成本,提高生产效率。

2.提高系统稳定性:减少外围电路的元件数量,有助于降低故障率,提高系统可靠性。

3.减小体积和重量:少外围电路有利于缩小电源模块的体积和重量,满足便携式设备的需求。

4.降低电磁干扰:简化电路设计有助于降低电磁干扰,提高设备的电磁兼容性。

四、如何选择合适的少外围短路DC-DC降压型电源芯片1.确定输出电压和电流:根据设备需求,选择符合输出电压和电流要求的芯片。

2.考虑输入电压范围:确保芯片的输入电压范围与设备电源适配。

3.了解转换效率:选择转换效率较高的芯片,以提高电源系统的整体性能。

4.评估输出电压纹波和噪声:较少纹波和噪声的芯片可提高设备的稳定性和可靠性。

5.考虑封装和尺寸:根据设备空间限制,选择合适的封装和尺寸。

五、应用实例智能手机、平板电脑等便携式设备中,少外围短路的DC-DC降压型电源芯片得到了广泛应用。

这类芯片具有较高的转换效率和较低的输出电压纹波,能够满足设备对电源系统的高性能要求。

DC-DC转换器芯片的技术参数

DC-DC转换器芯片的技术参数

DC-DC转换器芯片的技术参数一个优秀电源电路是电子产品的可靠性保障,什么样的电源电路才算是优秀的电源呢?一些有经验的工程师使用稳压器电源时,都会考虑如何减小稳压器的纹波,降低功耗,提高电源转换效率,产品尺寸等问题,因为这些问题都是衡量电源好坏的关键。

随着半导体技术的发展,电源稳压器的纹波越来越小,转换效率越来越高,输入电压越来越低,输出电压范围越来越广,功能日趋强大,其应用范围覆盖仪表、通信、安防及消费类电子等诸多领域,下面以DC-DC转换器芯片的技术参数进行说明。

输入、输出与效率DC-DC转换器的输入电压要求在特定的范围里,输入电压太低,无法提供足够的能量,输入电压太高,芯片无法承受。

LDO工作效率随着输入电压增加而减少,而DC-DC芯片效率与输入电压关系不大,这是DC-DC最大的优点之一。

输出电流能力是内含FET的DC-DC转换器的的最重要的参数,ON的DC-DC器件NCP3102能输出高达10A的电流,可满足您对电源的苛刻要求。

效率定义为输出功率除以输入功率,而更高的效率意味着高效的电源管理,ON的DC-DC器件NCP1595效率高达95%。

软启动硬启动电路刚开始工作时,由于输出电容上并没有积蓄能量,因此电压很低,电路的反馈回路检测到低电压值时,将会采用最宽的PWM来尽快使输出电压上升,但是此过程由于反馈回路反应很快,因此容易造成电流过冲,损坏电路元件。

应用软启动技术,优点在于:输出电压上升的速度减慢,启动电流得到控制,从而保护了负载;大大降低了对前级电源瞬输出态功率的要求;ON大部分的器件支持软启动技术。

上下电顺序控制建立和维持合适的电源环境对系统的正常运行至关重要,特别是FPGA、DSP、ARM等处理器的设计中,为了避免闩锁、浪涌电流或I/O争用等问题,可能需要多达4到5路或更多个电源按照规定的顺序和斜率进行上下电。

此外,许多应用还要求上电顺序和缓上电斜率可调节,以适应各种不同的情况。

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现一、Buck型DC-DC开关电源的原理Buck型DC-DC开关电源采用PWM(脉宽调制)技术实现降压功率转换。

其基本原理是通过开关管(MOSFET)的开关控制,使电源源电压经过电感产生瞬间高压脉冲,然后经过二极管和电容进行滤波,从而得到较低的输出电压。

1.选取合适的芯片2.电路设计在电路设计中,需要考虑以下关键元件:(1)开关管(MOSFET):选择合适的MOSFET型号,使其能够承受输入电压和输出电流,并具有低导通压降和低开关损耗。

(2)电感:选择合适的电感器件,使其具有足够的电感值,以满足电路的输出电流要求,同时要考虑其饱和电流和电流纹波等参数。

(3)二极管:选用具有较高效率和低电压降的二极管,以减小功率损耗。

(4)滤波电容:选择适当的电容容值和工作电压,以保证输出电压的稳定性和滤波效果。

3.控制电路设计(1)比较器:用于比较输出电压反馈和参考电压,生成PWM信号。

(2)误差放大器:通过调节反馈电压和参考电压之间的差值,实现输出电压的稳定控制。

(3)反馈电路:将输出电压反馈给误差放大器,使其可以实时调节PWM信号。

4.输出过压保护与过流保护为了确保开关电源在异常工作条件下能够保持安全可靠的操作,需要添加过压保护和过流保护电路。

过压保护电路通常通过监测输出电压,当输出电压超过设定阈值时,立即切断开关管的导通。

过流保护电路通过监测输出电流,当输出电流超过设定阈值时,同样会切断开关管的导通。

5.PCB布局与散热设计在设计过程中,需要合理布局电路元件,以减小元件之间的相互干扰,并降低热量产生。

合理进行散热设计,确保开关管和散热器的有效散热,以保证开关电源的稳定工作。

三、BUCK型DC-DC开关电源的测试与调试完成电路设计后,需要进行测试和调试来验证设计的正确性和可靠性。

主要包括以下测试:(1)输入电压测试:测试开关电源在不同输入电压下的输出电压和效率。

(2)输出电压稳定性测试:测试开关电源在稳定工作状态下,输出电压随负载变化的情况。

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解DC/DC电源芯片是一种将电源输入电压转换为所需输出电压的器件,常用于各种电子设备中。

它内部结构复杂,包括输入滤波电容、整流电路、开关电路、控制芯片等多个模块。

下面将从这些模块的功能和结构逐一解析DC/DC电源芯片的内部结构。

1.输入滤波电容:DC/DC电源芯片通常会在输入端接入滤波电容,用于滤除输入端的高频噪声和纹波。

这样可以保证输入电源的稳定性和提高整个系统的抗干扰能力。

2.整流电路:在DC/DC电源芯片内部,输入端的电压需要经过整流电路转换为直流电压。

整流电路通常由二极管桥或者MOS管组成,用于将输入的交流电压转换为直流电压。

3.输入滤波电感:在整流后,输入端的直流电压会带有一定的纹波。

为了进一步减小输入端的纹波,通常在芯片内部添加输入滤波电感。

输入滤波电感一般为一个线圈,具有高频电流衰减的特性。

4. 开关电路:DC/DC电源芯片内部会包含一个开关电路,用于将输入端的直流电压转换为所需的输出电压。

开关电路通常由MOS管组成,通过开关动作来控制输入电压的频率和占空比。

常见的开关电路包括降压型(Buck)和升压型(Boost)等,用于实现不同的电压转换。

5.控制芯片:DC/DC电源芯片内部的控制芯片用于对开关电路进行控制和调节。

控制芯片通常具有高精度的反馈电路,能够实时监测输出电压,并通过控制开关电路的频率和占空比来调节输出电压的稳定性和精度。

6.输出滤波电感和电容:在输出端,为了滤除输出电压的纹波和噪声,DC/DC电源芯片内部通常会添加输出滤波电感和电容。

输出滤波电感和电容主要起到平滑输出电压的作用,提供稳定的电源给外部负载。

7.保护电路:为了保护电源芯片和外部负载免受过电流、过压、过温等异常情况的影响,DC/DC电源芯片内部通常会包含一些保护电路。

例如过流保护、过压保护、过温保护等。

这些保护电路能够在异常情况下及时切断电源输出,并发出相应的警报信号。

总之,DC/DC电源芯片内部结构由输入滤波电容、整流电路、输入滤波电感、开关电路、控制芯片、输出滤波电感和电容以及保护电路等多个模块组成。

基于GaN器件的高功率密度DC-DC模块电源设计

基于GaN器件的高功率密度DC-DC模块电源设计

基于GaN器件的高功率密度DC-DC模块电源设计随着电子设备的快速发展,对于高功率密度DC/DC模块电源的需求越来越迫切。

为了满足这一需求,基于GaN(氮化镓)器件的高功率密度DC/DC模块电源设计成为了一种新的选择。

GaN器件是一种新型的半导体材料,相比传统的硅材料具有更好的导电性和热传导性能。

这使得GaN器件能够实现更高的开关频率和更低的开关损耗,从而提高了整个电源系统的效率。

同时,GaN器件的小尺寸和轻量化特点也使得电源模块更加紧凑,适用于各种紧凑空间的应用场景。

在设计基于GaN器件的高功率密度DC/DC模块电源时,需要考虑以下几个关键因素:首先,需要选择合适的GaN器件。

不同型号的GaN器件具有不同的特性,如功率容量、开关频率和导通电阻等。

根据具体应用需求选择适合的GaN器件非常重要。

其次,需要设计合理的电路拓扑。

常见的拓扑结构有升压、降压和升降压等。

根据输入输出电压的关系,选择合适的拓扑结构,并合理设计电路参数,以提高整个系统的转换效率。

此外,还需要考虑散热问题。

GaN器件的热传导性能较好,但在高功率密度的应用中,仍然需要合理设计散热系统,以确保器件的稳定工作温度。

可以采用散热片或者风扇等散热措施,有效降低温度。

最后,还需要进行系统级的优化。

通过合理的电源管理策略和控制算法,提高整个系统的稳定性和可靠性。

同时,还可以考虑应用软开关技术等进一步提高系统的效率和性能。

综上所述,基于GaN器件的高功率密度DC/DC模块电源设计具有很大的潜力。

通过选择合适的GaN器件、设计合理的电路拓扑和散热系统,以及进行系统级的优化,可以实现高效、紧凑和可靠的电源模块。

这将为电子设备的发展提供更多可能性,并推动技术的进步。

dcdc开关电源管理芯片的设计

dcdc开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计引言电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性;而开关电源更为如此,越来越受到人们的重视;目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源;目前电力电子与电路的发展主要方向是模块化、集成化;具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便;从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点;在这样的前提下,设计开发开关电源DC-DC 控制芯片,无论是从经济,还是科学研究上都是是很有价值的;1. 开关电源控制电路原理分析DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压;在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制PWM法;PWM从控制方式上可以分为两类,即电压型控制voltage mode control和电流型控制current mode control ;电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号;从控制理论的角度来讲,电压型控制方式是一种单环控制系统;电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流;二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作;图1即为电压型控制的原理框图;图1 电压型控制的原理框图电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化;电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统;是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统;信号;从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成;在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值;电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压;因此电流型控制模式具有比起电压型控制模式大得多的带宽;图2 电流型控制原理框图电流型控制模式有不少优点:线性调整率电压调整率非常好;整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积;具有瞬时峰值电流限流功能;简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义;当然了也有缺点,例如占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压—升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差;对噪声敏感,抗噪声性差等等;对于这样的缺点现在已经有了解决的方案,斜波补偿是很必要的一种方法;2.芯片内部模块的设计本目的是设计一个基于PWM控制的boost升压式DC-DC电源转换芯片,该芯片实现基于双环电压环和电流环一阶控制系统的电流模式PWM控制电路, 在该集成模块内将包括控制、驱动、保护、检测电路等;最后在电路系统基本框架的基础上,结合电力电子技术与微电子技术,采用采用BiCMOS工艺,具体针对DC-DC变换电路的实现进行研究;系统方面的设计以及系统框图和各个功能模块的设计思想图3 系统模块原理框图下面分别的介绍系统各个功能模块:①误差放大电路误差是用于调整变换器的高增益差分放大器;放大器产生误差信号,他被供给PWM比较器;当输出电压样本与内部电压基准比较并放大差值时产生误差信号;误差放大器的2号脚Vref就是基准电压产生的固定基准;② PWM比较器当来自电流取样信号,当然是电感电流和振荡器产生的补偿谐波想加后的电流信号,超过误差信号时,PWM比较器翻转,复位驱动锁存器断开电源开关,以此来控制开关管的开通与关断;③振荡器模块振荡器电路提供一定频率的时钟信号,以设置变换器工作频率,以及用于斜率补偿的定时斜升波;时钟波形为脉冲,而定时斜升波就是用于斜波补偿的,在电感取样端相加;④驱动器锁存器锁存器包括RS触发器与相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态;来自锁存器的低输出电平把它断开;正常工作方式下,在时钟脉冲期间触发器被置为高电平,当PWM比较器输出变为高电平时锁存器复位;⑤软启动电路模块当整个系统刚启动时,电感产生一个很大的冲击电流,软启动让系统开始时不能在全占空比下启动,使输出电压以受控的上升速率增加至额定稳压点;设计思想是利用外接电容的充放电使得占空比慢慢提高,达到输出稳定的目的;⑥电流采样电路提供斜率补偿电流灵敏电压给PWM比较器;⑦保护电路模块监视电源开关的电流,若该值超过额定峰值,则该电路作用,重新开始软启动周期;3.设计中必须要考虑的几点细节问题①关于斜波补偿这是在上文提到过的电流控制型开关变换器中存在的根本性问题;电流控制型就是将实际的电感电流和电压外环设定的电流值分别接到PWM比较器的两端进行比较,用来控制开关管;下面分析斜波补偿的原因;如下图分别是占空比大于50%和小于50%的尖峰电流控制的电感电流波形图;图4 斜坡补偿原理分析其中Ve是电压放大器输出的电流设定值,ΔI0是扰动电流,m1,m2分别是电感电流的上升沿及下降沿斜率;由图可知,当占空比小于50%时扰动电流引起的电流误差ΔI l变小了,而占空比大于50%时扰动电流引起的电流误差ΔI l变大了;所以尖峰电流模式控制在占空比大于50%时,经过一个周期会将扰动信号扩大,从而造成工作不稳定,这时需给删比较器加坡度补偿以稳定电路,加了坡度补偿,即使占空比小于50%,电路性能也能得到改善;因此斜坡补偿能很好的增加电路稳定性,使电感电流平均值不随占空比变化,并减小峰值和平均值的误差,斜坡补偿还能抑制次谐波振荡和振铃电感电流;这里就不再详细地说明,斜波补偿方面必须要确定补偿波形的斜率的精确大小,采用的方法就是建立系统模型,导出传递函数,计算出补偿斜率的值;这是很关键的一步;②关于软启动问题DC/ DC开关电源在启动过程中 ,容易产生浪涌电流 ,可能对电子系统产生损伤;为避免启动时输入电流过大,输出电压过冲,在设计中必须采用软启动电路,该方法的不足之处是 ,当输出电压的阈值未达到时 ,发生浪涌电流现象可能对电子系统造成损伤 ,而且在输出电压达到阈值之后 ,也可能因为偶然的过流使得电源多次重新启动;因此应采用基于周期到周期的电流限制门限来限制上电时的浪涌电流,并防止电源多次重新启动;如图5图5 软启动电路4.总结本文对开关电源工作原理进行了详细的分析,对芯片内部模块进行了设计,最后采用BiCMOS工艺对芯片进行实现;,对芯片系统方面的设计又整体的把握,详细的论述了芯片设计的思想,这种方法对其他领域的芯片系统设计又很大帮助,因此有很大意义;。

DCDC电源设计方案

DCDC电源设计方案

DCDC电源设计方案一、选取DC-DC电源拓扑结构在进行DC-DC电源设计之前,首先需要选择合适的拓扑结构。

常见的DC-DC拓扑结构有Buck(降压)、Boost(升压)、Buck-Boost(升降压)及SEPIC等。

具体选择哪种拓扑结构,需要根据实际应用需求来决定。

以Buck为例,其具有简单、稳定、高效的特点,适合输出电压低于输入电压的场合。

二、计算输入输出参数根据实际需求,计算DC-DC电源的输入输出参数,包括输入电压、输出电压、输出电流等。

这些参数将决定了电源所需的功率、电流和电压范围,为选择合适的元器件提供了依据。

三、选择元器件选择合适的电容器、电感器、开关管、二极管等元器件。

其中,在选择电容器和电感器时,需要考虑元器件的电流和电压容量、频率响应等特性,以保证电源设计的可靠性和稳定性。

在选择开关管和二极管时,需要考虑其导通压降、频率响应和损耗等特性,以提高DC-DC电源的效率和稳定性。

四、设计控制电路根据所选择的拓扑结构,设计出合适的控制电路。

其中,关键的元件是PWM控制器,它能够控制开关管的开关频率和占空比,从而实现对输出电压的调整和稳定。

在设计控制电路时,需要考虑电源的稳定性、保护功能和过载能力等。

五、PCB布线设计PCB布线设计是DC-DC电源设计的重要环节,它影响着电路的高频特性和噪声干扰。

在进行布线设计时,需要注意元器件之间的布局、功率地和信号地的分离、降低线路的传输损耗和改善信号完整性,以提高电路的性能和稳定性。

六、电源性能测试与验证在完成DC-DC电源的设计之后,需要进行性能测试和验证。

通过测试电源的输出电压、输出电流、负载调整能力、效率等参数,验证电源设计的稳定性和可靠性,以确保电源符合设计要求。

七、优化与改进对已完成的DC-DC电源设计进行评估和改进。

如果存在性能不足或不稳定的情况,需要进行优化和改进,调整电源的拓扑结构和元器件选择,优化PCB布线和控制电路,提高电源的效率和可靠性。

常用dcdc芯片内部原理

常用dcdc芯片内部原理

常用dcdc芯片内部原理
DC/DC电源芯片的内部原理主要包括以下几个方面:
1. 电压调节:DC/DC电源芯片通常通过反馈电压与内部基准电压的比较,调节MOS管的驱动波形占空比,以保持输出电压的稳定。

2. 同步整流技术:为了提高DC/DC电源芯片的效率,通常会采用同步整流技术。

当二极管导通时存在管压降,因此续流二极管所消耗的功率将会成为DC/DC电源主要功耗。

为了解决这个问题,通常会使用导通电阻极小的MOS管取代续流二极管,然后通过控制器同时控制开关管和同步整流管,保证两个MOS管不能同时导通,以防止短路。

3. 频率控制:DC/DC电源芯片中一般有RT引脚,改变RT引脚与地之间的电阻即可改变DCDC的频率。

改变RT的电阻,其实是通过改变电容充电恒流源的大小改变振荡器的频率。

4. 使能电路:使能电路的基本原理是基于斯密特触发器。

当Vi 大于Vt1时,输出为高门限,当小于Vt2时,为低门限。

设置好电阻比例以及输出门限值,即可得到输入门限电压。

此外,DC/DC电源芯片内部还可能包含误差放大器、温度保护、限流保护和软启动电路等部分,以确保电源芯片的稳定性和可靠性。

以上信息仅供参考,如有需要,建议咨询专业技术人员。

dc-dc芯片 低静态电流

dc-dc芯片 低静态电流

dc-dc芯片低静态电流低静态电流是指在待机或休眠状态下,电子设备所消耗的电流非常低的现象。

在很多电子设备中,为了延长电池寿命或降低功耗,低静态电流是一个非常重要的指标。

在DC-DC芯片中,也需要考虑低静态电流的特性,以满足电子设备对低功耗的需求。

DC-DC芯片是一种用于电源管理的集成电路,它可以将输入电压转换为稳定的输出电压。

在一些电子设备中,尤其是便携式设备中,DC-DC芯片非常常见。

为了满足这些设备对低功耗的需求,DC-DC芯片需要具备低静态电流的特性。

低静态电流的实现可以通过多种方法。

首先,设计师可以选择低功耗的材料和器件,以减少电流的损耗。

其次,采用合适的电路拓扑结构,例如降压型、升压型或反激型等,也可以有效降低静态电流。

此外,优化芯片的电源管理电路,减少不必要的能量损耗,也是降低静态电流的重要手段。

在DC-DC芯片的设计中,降低静态电流的同时,还需要保持较高的转换效率。

这是一个挑战性的任务,需要在功耗和效率之间寻找一个平衡点。

为了实现低静态电流和高转换效率,设计师需要结合电路设计和优化算法,进行全面考虑。

除了在便携式设备中的应用,低静态电流的需求还广泛存在于其他领域。

例如,无线传感器网络、物联网设备等都需要长时间待机的能力,这就要求DC-DC芯片具备低静态电流的特性。

此外,在一些特殊应用中,如医疗设备、航空航天设备等,低静态电流也是一个重要的指标。

总结起来,低静态电流是DC-DC芯片设计中非常重要的一个指标。

通过选择合适的材料和器件,优化电路拓扑结构,设计高效的电源管理电路,可以实现低静态电流和高转换效率的平衡。

在不同的应用领域中,低静态电流的需求都非常普遍,对于延长电池寿命、降低功耗具有重要意义。

未来,随着电子设备对低功耗的需求越来越高,DC-DC芯片的低静态电流特性将会得到更加广泛的应用和研究。

DC-DC设计注意事项

DC-DC设计注意事项

反馈电路
• 输出电压可调的DC-DC, 反馈电阻必须是高精密的电阻。一般 DC-DC电路是靠反馈电压来调整工作模式, 反馈电压如果波动太 大, 则振荡的占空比也是一直变化。根据傅立叶分析方法, 占空比变 化将增加电压、电流的谐波分量, 对EMC测试就不利。
如何选择电解容
• 一般温度变化引起电视机不稳定的问题跟电容的特性有很大的关系 。常见的问题是低温噪波,干扰增加,甚至低温无法开机。一个很 主要的原因是我司的电容入库前并没有在不同温度下测试,同时, 不同厂家的电容共用一个编号。另一个更主要的原因是设计师本身 在最初设计时没有考虑这个问题,或者考虑到但没有条件测试。这 里有个比较简单可行的方法:在体积一样的条件下,选择耐压高, 容量大的电容(为什么? 自己思考);条件允许的情况下,选择高 纹波电容。以下是电解容的一些知识:
滤波电容
• 可分为输入电容和输出电容。实际应用中, 我们都选择电解电容作 为储能滤波电容, 但一定要在每个电解容傍边增加一个100nf的磁 介容来“保护”该电解容(原因请自己思考)。对于输入输出 电 容一般来说都是越大越好, 但应考虑过大的输入电容将增加前端电 路的压力(特别是前端是二极管+电容的稳压电路), 过小则起不 到储能作用, 一般470uF-680uF 为宜。对于输出电容一般也 是越 大越好, 但过大将导致上电慢, 对于有些CPU的上电可能无 法满足 要求, 过小则纹波电压大。一般选择470uf-1000uf.
输出的纹波电流哪里来?
• 输出电容的改变能改变流过该电容的纹波电流吗?

经过对比发现,对于电解电容,流过该电容的纹波电流几乎
不随不同的电容而改变,换句话说,电解电容上的纹波电流是由
电路本身决定! 为什么?
• 滤波电感可以改变纹波电流

DCDC 电源芯片内部结构全解

DCDC 电源芯片内部结构全解

作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到Datasheet 的应用页面,按照推荐设计搭建外围完事。

如此一来即使应用没有问题,却也忽略了更多的技术细节,对于自身的技术成长并没有积累到更好的经验。

今天以一颗DC/DC 降压电源芯片LM2675 为例,尽量详细讲解下一颗芯片的内部设计原理和结构,IC 行业的同学随便看看就好,欢迎指教!LM2675-5.0 的典型应用电路打开LM2675 的DataSheet,首先看看框图这个图包含了电源芯片的内部全部单元模块,BUCK 结构我们已经很理解了,这个芯片的主要功能是实现对MOS 管的驱动,并通过FB 脚检测输出状态来形成环路控制PWM 驱动功率MOS 管,实现稳压或者恒流输出。

这是一个非同步模式电源,即续流器件为外部二极管,而不是内部MOS 管。

下面咱们一起来分析各个功能是怎么实现的一、基准电压类似于板级电路设计的基准电源,芯片内部基准电压为芯片其他电路提供稳定的参考电压。

这个基准电压要求高精度、稳定性好、温漂小。

芯片内部的参考电压又被称为带隙基准电压,因为这个电压值和硅的带隙电压相近,因此被称为带隙基准。

这个值为1.2V 左右,如下图的一种结构:这里要回到课本讲公式,PN 结的电流和电压公式:可以看出是指数关系,Is 是反向饱和漏电流(即PN 结因为少子漂移造成的漏电流)。

这个电流和PN 结的面积成正比!即Is-》S。

如此就可以推导出Vbe=VT*ln(Ic/Is)!回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3 和M4 的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1)N 是Q1 Q2 的PN 结面积之比!回到上图,由运放分析VX=VY,那么就是I1*R1+Vbe1=Vbe2,这样可得:I1=△Vbe/R1,而且因为M3 和M4 的栅极电压相同,因此电流I1=I2,所以推导出公式:I1=I2=VT*ln(N/R1)N 是Q1 Q2 的PN 结面积之比!这样我们最后得到基准Vref=I2*R2+Vbe2,关键点:I1 是正温度系数的,而Vbe 是负温度系数的,再通过N 值调节一下,可是实现很好的温度补偿!得到稳定的基准电压。

大功率dc一dc降压电路芯片

大功率dc一dc降压电路芯片

大功率dc一dc降压电路芯片大功率DC-DC降压电路芯片是电源管理系统中的一种重要应用,其功能是将高电压DC 输入转换为低电压DC输出。

在各种工业和商业领域中,这种芯片广泛应用于电子设备、电视机、电影设备、计算机等各种电子产品中。

目前,市场上有许多种大功率DC-DC降压电路芯片,包括200W、300W、400W等各种功率的产品。

这些芯片采用单、双、多路输出方式,具备较高转换效率、较高输出精度、较高输出稳定性等优点,能满足各种电子设备电源管理的需求。

以下是一款大功率DC-DC降压电路芯片的设计方案:1.芯片选用本次设计选用TI公司的TMS320F28335芯片作为主控芯片,其主要性能参数为:(1)高速浮点运算能力;(2)丰富的外设接口;(3)低功耗模式。

2.硬件接口设计(1)电源电压:输入电压为230V AC,输出电压为12V DC;(2)电源开关:采用开关电源,选择CD4060的计数器输出驱动三极管开关,实现电源开关。

(3)限流电路:采用电阻限流方式,将电流限制在2.2A 以内,以防止过载。

(4)过载保护:当输出电流超过2.2A时,芯片控制开关关断,以保护系统。

(5)输出电压监测:采用AD7718 ADC芯片完成对输出电压的实时监测,以保证输出电压的稳定性。

(6)通信接口:芯片内置了UART、SPI、I2C等多种通信接口,可以与其他设备进行通信。

3.软件设计(1)软件框架:采用TI公司提供的DSP/BIOS操作系统作为软件框架,保证实时性和可靠性。

(2)PWM参数设置:根据不同的输出电压和输入电压,设置不同的PWM参数,以实现高效的功率转换。

(3)PID控制算法:采用PID控制算法,实现电压闭环控制,提高输出电压的精度和稳定性。

总之,大功率DC-DC降压电路芯片是一种能够实现高效、精确、稳定转换的电源管理芯片,其应用广泛,不断在不同领域得到重视和开发。

对于电子设备的制造商和使用者,掌握这种技术,选择合适的芯片和设计方案,将能大幅提高产品质量和竞争力。

DC-DC电源的设计考虑:在成本、尺寸和性能之间取得平衡

DC-DC电源的设计考虑:在成本、尺寸和性能之间取得平衡
它们会使转换 器而变 得不稳定 。在此情 况下 ,铝 电解 、聚 合体或钽点解 电容器 是常见的选择 。后二者 由于尺寸小 、纹 波电流承受高和低的E R而交前者性能 S 更加 优秀 ,但价格也更贵 。钽 电容器的 规 定电压应 当至少高2 N并首选防 电 ~3 涌等级 足够的产 品,因为 它们 比陶瓷或 铝 电解类型的 电容器对过 电压 更加 敏感
输 入和 输 出 电压 相 差很 大 时效 率 非 常
瓷 电 容 器 、 小 型 磁 性 元 件 和 铁 氧体 磁 珠
这 些 元件 的焊 盘 连 接 到 平 面 。
低。在一些情 况下 ,最佳选择是使用开 使用时 对低功耗器件特别有用 。稳 压器
关 式 降 压 、升 压 或 降 压 一升 压 型 转 换 器
电源上的数字 器件 所产生的任何噪声 的
干扰 。而使 用一 个无源 的LC 滤波 器来 从3 3 .V数字 电源产生 3 3 .V模拟 电源可
元件 布 局 和 布线
电源 解决 方案具 有的所有优点。 由内置
在 电源预算 、拓扑建立和详细设计 数 字控制 器支持的PMBu N用于 配置 s 完成后 ,接 下来 需要注意的就是印刷 电
进行预稳压 ,随后 再使用针对每个功率 轨的单独 LDO。现今的集成 电路常 常
频率意 味着可以使用更小 、更便宜 的磁
性元件 ,并 可利 用小的 电容器和铁氧体 磁珠实现输 出滤波 。
需要 大量延伸到 电路板 上每个芯片的数
字电压电源。小型L O可让设计人 员将 D 这些降压稳压 器分 布在电路板上并将其
路板的元件布局 和布线。每个项 目都有 各 自的参数需要考虑 ,一般情况如下 : 各种参数 ,以适应具体 应用要 求。可 以 对各种参数进行监测并 将其 存储 在板 载 非 易失存 储器中 ,而且 和现 今的大多数 先进模块一样 ,几乎所有分立元件都是 集成 的。优点包括缩短上市时 间、最小 化物料用量和提高长期可靠性 。全封 闭

DC-DC电源芯片电流保护及稳定性研究

DC-DC电源芯片电流保护及稳定性研究

DC-DC电源芯片电流保护及稳定性研究DC-DC电源芯片电流保护及稳定性研究随着电子设备的不断发展,对电源的需求越来越高。

DC-DC电源芯片是一类重要的电源管理器件,广泛应用于手机、平板电脑、笔记本电脑等电子产品中。

在使用电源芯片时,电流保护和稳定性是两个关键的研究方向。

本文将探讨DC-DC电源芯片电流保护及稳定性的研究进展。

在使用电子设备过程中,保护电源芯片的电流是至关重要的。

电流过大会导致芯片热量过高,进而影响设备的正常运行。

电流过大还会造成电源系统的效率降低,能量损失较大。

因此,电流保护是DC-DC电源芯片设计中需要解决的核心问题之一。

电流保护的主要目标是保护电源芯片免受过载和短路等异常情况的影响。

首先,过载保护是指在电源芯片输出电流超出额定范围时,自动切断输出,以保护芯片免受过大电流的伤害。

其次,短路保护是指在输出端出现短路时,迅速切断电流,以保护电源芯片和其他电子元件的安全。

为实现电流保护,研究者采用了多种技术手段,如过流保护电路、电流限制电路和热保护电路等。

过流保护电路通过监测电源芯片输出电流的大小,一旦检测到超过设定值的电流,立即切断电源芯片工作。

常见的过流保护电路有电流变压器、电感电流限制器和电阻等。

其中,电感电流限制器被广泛应用于DC-DC电源芯片设计中,其通过电感耗能,将过大的电流吸收和分散,以达到保护电源芯片的目的。

电流限制电路通过限制电源芯片的输出电流,保证其在额定范围内工作。

电流限制电路主要有电压比较器、电流反馈电路和电阻等组成。

电压比较器通过比较输出电流与设定电流的大小,实现对电流的限制。

电流反馈电路则通过将一部分的输出电流反馈给芯片内部,调节芯片的工作状态,最终达到对电流的限制。

热保护电路是一种常用的保护电源芯片的方式。

热保护电路通过监测芯片温度,当温度超过设定值时,立即切断电源芯片工作,以保护芯片免受高温的影响。

热保护电路常采用热敏电阻、热敏电流开关等元件来实现,其优点是简单可靠,能够有效保护电源芯片。

DC开关电源芯片的设计与实现的开题报告

DC开关电源芯片的设计与实现的开题报告

BUCK型DC/DC开关电源芯片的设计与实现的开题报告前言DC-DC转换技术是现代电源电子学的一个重要分支。

而BUCK型DC-DC转换器由于其构造简单、效率高、成本低、适合于On-Chip实现等特点,成为了集成电源电子学领域中最常用的DC-DC转换器之一。

基于BUCK型DC-DC转换器的芯片广泛应用于移动设备、电子产品、汽车电子、通信等领域。

在BUCK型DC-DC芯片的设计和实现过程中,需要考虑如何提高转换效率、降低电磁干扰和成本,同时满足不同应用场景的需求。

本文将介绍BUCK型DC-DC芯片的设计和实现,并讨论其中的一些关键问题。

一、BUCK型DC-DC转换器原理简介BUCK型DC-DC转换器是一种降压型DC-DC转换器。

它将高电压直流输入转变为低电压直流输出。

脉宽调制技术(PWM)是BUCK型DC-DC转换器控制的一种常用方法。

其基本工作原理如下:1. 开始时,开关管S1导通,电感L充电,电容C放电。

2. S1关闭,电感L磁场储能,电容C充电。

3. 当S1再次导通时,电荷从电容C和电感L流向负载。

4. 循环复制以上过程,控制S1导通和关闭时间的不同,可以达到不同的输出电压。

斩波器的输出电压可以用下面的公式计算:Vo=Vin*D其中Vin为输入电压,D为占空比,因为斩波器是以固定的时间单位进行工作,占空比就是导通时间占一个时间单位的比例。

二、BUCK型DC-DC芯片的设计和实现1.芯片的电路拓扑BUCK型DC-DC芯片的电路拓扑如下图所示:BUCK型DC-DC芯片通常由开关管、电感、二极管、输入电容和输出电容组成。

在BUCK型DC-DC芯片中,电阻通常被忽略。

电感和电容通常是离线元件。

输入和输出电容的大小和开关频率将影响BUCK型DC-DC芯片的稳定性和效率。

2.芯片的控制方式BUCK型DC-DC芯片的控制通常由PWM控制器实现,根据上述原理,通过调整斩波器的占空比来得到不同的输出电压。

同样的,斩波器的频率也是一个非常重要的参数。

降压式DC-DC开关电源管理芯片的研究与设计的开题报告

降压式DC-DC开关电源管理芯片的研究与设计的开题报告

降压式DC-DC开关电源管理芯片的研究与设计的开题报告一、选题背景与意义随着信息化与智能化的发展,智能手机、平板等消费电子设备逐渐成为生活中必不可少的一部分,因此,如何提高这类产品的使用时间,续航时间、发挥其性能是很重要的问题。

而DC-DC开关电源管理芯片的应用则是在具备高效能的同时降低电源噪声和传输功率的误差,从而提高设备的使用寿命与使用效果。

本次选题根据市场需求,选取了一款降压式DC-DC开关电源管理芯片的研究与设计,为消费电子设备的续航时间提供更加有力的保障。

二、研究目标本次选题旨在研究和设计一款降压式DC-DC开关电源管理芯片,使得其在实现更高的效率和降低传输功率误差的同时,可以具备更加广泛的应用场景。

具体目标如下:1.设计出降压式DC-DC开关电源管理芯片的电路原理图,并在PCB 上实现设计。

2.对该芯片的性能进行测试,验证其输出稳定性和效率,检查电源噪声和传输功率误差是否达到预期目标。

3.通过对芯片结构的分析和实验研究,进一步优化其设计,提高芯片的性能。

三、研究方法和步骤本次选题的研究方法主要采用以下几种方法:1.文献调研法:收集和阅读相关文献资料,了解和掌握降压式DC-DC开关电源管理芯片的基本理论和技术原理。

2.仿真模拟法:采用SPICE等模拟软件进行仿真模拟,验证设计方案的可行性。

3.电路实验法:通过构建实验电路,验证设计方案的正确性。

具体步骤如下:1.调研:收集和整理相关的降压式DC-DC开关电源管理芯片设计文献资料,了解技术原理和应用场景。

2.仿真:采用SPICE等模拟软件进行仿真模拟,验证设计方案的可行性。

3.电路设计:根据仿真结果进行电路设计,绘制电路原理图和PCB 图,进行电路布局和封装。

4.焊接:按照设计要求焊接元器件到PCB板上。

5.测试:根据测试要求,对电路进行测试,检查电源噪声和传输功率误差是否符合设计要求。

6.结果分析和反馈:对测试结果进行分析总结,反馈与设计方案的改进等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:本文通过对开关电源原理的分析阐述了DC-DC电源管理芯片内部的各个模块的工作原理,提出了设计思想,详细的解释了功能模块的工作原理,最终采用BiCMOS工艺实现此芯片。

关键词:开关电源电流模式PWM控制升压转换器引言电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。

而开关电源更为如此,越来越受到人们的重视。

目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。

目前电力电子与电路的发展主要方向是模块化、集成化。

具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。

从另一方面说在开关电源DC- DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。

在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。

1. 开关电源控制电路原理分析DC-DC 变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。

在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法.PWM 从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control) 。

电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。

从控制理论的角度来讲,电压型控制方式是一种单环控制系统。

电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。

二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。

图1即为电压型控制的原理框图。

图1 电压型控制的原理框图电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。

电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。

是在传统的PWM 电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。

信号。

从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。

在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。

电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。

因此电流型控制模式具有比起电压型控制模式大得多的带宽。

图2 电流型控制原理框图电流型控制模式有不少优点:线性调整率(电压调整率)非常好;整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积;具有瞬时峰值电流限流功能;简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义。

当然了也有缺点,例如占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压—升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差。

对噪声敏感,抗噪声性差等等。

对于这样的缺点现在已经有了解决的方案,斜波补偿是很必要的一种方法。

2.芯片内部模块的设计本目的是设计一个基于PWM 控制的boost升压式DC-DC电源转换芯片,该芯片实现基于双环(电压环和电流环)一阶控制系统的电流模式PWM控制电路, 在该集成模块内将包括控制、驱动、保护、检测电路等。

最后在电路系统基本框架的基础上,结合电力电子技术与微电子技术,采用采用BiCMOS工艺,具体针对DC-DC变换电路的实现进行研究。

系统方面的设计以及系统框图和各个功能模块的设计思想图3 系统模块原理框图下面分别的介绍系统各个功能模块:①误差放大电路误差是用于调整变换器的高增益差分放大器。

放大器产生误差信号,他被供给PWM比较器。

当输出电压样本与内部电压基准比较并放大差值时产生误差信号。

误差放大器的2号脚Vref就是基准电压产生的固定基准。

② PWM比较器当来自电流取样信号,当然是电感电流和振荡器产生的补偿谐波想加后的电流信号,超过误差信号时,PWM比较器翻转,复位驱动锁存器断开电源开关,以此来控制开关管的开通与关断。

③振荡器模块振荡器电路提供一定频率的时钟信号,以设置变换器工作频率,以及用于斜率补偿的定时斜升波。

时钟波形为脉冲,而定时斜升波就是用于斜波补偿的,在电感取样端相加。

④驱动器锁存器锁存器包括RS触发器与相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态。

来自锁存器的低输出电平把它断开。

正常工作方式下,在时钟脉冲期间触发器被置为高电平,当PWM比较器输出变为高电平时锁存器复位。

⑤软启动电路模块当整个系统刚启动时,电感产生一个很大的冲击电流,软启动让系统开始时不能在全占空比下启动,使输出电压以受控的上升速率增加至额定稳压点。

设计思想是利用外接电容的充放电使得占空比慢慢提高,达到输出稳定的目的。

⑥电流采样电路提供斜率补偿电流灵敏电压给PWM比较器。

⑦保护电路模块监视电源开关的电流,若该值超过额定峰值,则该电路作用,重新开始软启动周期。

3.设计中必须要考虑的几点细节问题①关于斜波补偿这是在上文提到过的电流控制型开关变换器中存在的根本性问题。

电流控制型就是将实际的电感电流和电压外环设定的电流值分别接到PWM比较器的两端进行比较,用来控制开关管。

下面分析斜波补偿的原因。

如下图分别是占空比大于50%和小于50%的尖峰电流控制的电感电流波形图。

图4 斜坡补偿原理分析其中Ve 是电压放大器输出的电流设定值,ΔI0是扰动电流,m1,m2分别是电感电流的上升沿及下降沿斜率。

由图可知,当占空比小于50%时扰动电流引起的电流误差ΔI l变小了,而占空比大于50%时扰动电流引起的电流误差ΔI l变大了。

所以尖峰电流模式控制在占空比大于50%时,经过一个周期会将扰动信号扩大,从而造成工作不稳定,这时需给删比较器加坡度补偿以稳定电路,加了坡度补偿,即使占空比小于50%,电路性能也能得到改善。

因此斜坡补偿能很好的增加电路稳定性,使电感电流平均值不随占空比变化,并减小峰值和平均值的误差,斜坡补偿还能抑制次谐波振荡和振铃电感电流。

这里就不再详细地说明,斜波补偿方面必须要确定补偿波形的斜率的精确大小,采用的方法就是建立系统模型,导出传递函数,计算出补偿斜率的值。

这是很关键的一步。

②关于软启动问题DC/ DC开关电源在启动过程中 ,容易产生浪涌电流 ,可能对电子系统产生损伤。

为避免启动时输入电流过大,输出电压过冲,在设计中必须采用软启动电路,该方法的不足之处是 ,当输出电压的阈值未达到时 ,发生浪涌电流现象可能对电子系统造成损伤 ,而且在输出电压达到阈值之后 ,也可能因为偶然的过流使得电源多次重新启动。

因此应采用基于周期到周期的电流限制门限来限制上电时的浪涌电流,并防止电源多次重新启动。

如图5图5 软启动电路4.总结本文对开关电源工作原理进行了详细的分析,对芯片内部模块进行了设计,最后采用BiCMOS工艺对芯片进行实现。

,对芯片系统方面的设计又整体的把握,详细的论述了芯片设计的思想,这种方法对其他领域的芯片系统设计又很大帮助,因此有很大意义。

参考文献[1]Ridley, R. B., A New Continuous-Time Model for Current-Mode Control, IEEE Transactionson Power Electronics, April, 1991[2]R. D. Middlebrook, Modelling a Current-Programmed Buck Regulator, IEEE Applied PowerElectronics Conference[3]R. D. Middlebrook, Topics in Multiple-Loop Regulators and Current-Mode Programming, IEEE Power Electronics Specialists Conference - 1985 Record[4]R.Jocob Baker, Harry W.li, David E.Boyce :CMOS Circuit Design,Layout,andSimulation北京机械工业出版社 2003[5]Phillip E.Allen, Douglas R.Holberg. CMOS Analog Circuit Design(Second Edition)BEIJING Publishing House of Electronics Industry 2003。

相关文档
最新文档