人教版七年级数学下册《相交线》精品课件
合集下载
七年级数学下册 第五章《相交线》精品课件 人教版

=65°
E D
O B
布置作业
教材7页习题5.1第1、2题.
谢谢观看!
∵ ∠1与∠2是邻补角 A
∴ ∠1+∠2=1800
互补
12 O3
B
4
D
一对邻补角的和等于1800.
探究2
∠1与∠3有怎样的数量关系?
C
符号语言
∵ ∠1与∠3是对顶角 A
∴ ∠1 =∠3
12 O3 4
相等
B D
对顶角的性质:对顶角相等.
例1
如图,直线a,b相交于点O,∠1=400,求 ∠2 ,∠3 ,∠4 的度数.
达标测评 1.如图1,三条直线AB、CD、 EF两两相交,在这个图形中,有
对顶角__6___对,邻补角_1__2_ 对.
2.如图2,直线AB、CD 相交于O,OE是射线。则 ∠3的对顶角是__∠__A__O_D______, ∠1的对顶角是__∠__B__O_D______, ∠1的邻补角是__∠__3_、__∠__A__O_D_, ∠2的邻补角是__∠__C__O_E______.
C A
E B
F 图1 D
E
A
1 O2
C
3
D
B
图2
达标测评
3.直线AB、CD交于点O,∠AOE= ∠DOE, ∠AOC=50°求∠DOE的度数.
解: 由邻补角的定义,可得
∠AOD=180°-∠AOC
A
=180°-50° =130°
C
因为∠AOE= ∠DOE(已知)
所以∠DOE=∠AOD÷2
=130°÷2
探究1
C
2
A
1
O 4
3
பைடு நூலகம்图中还有其他 的对顶角吗?
人教版七年级数学下册第五章511相交线课件共35张

交点的个数
两条直线相交,最多有 ___1____ 个交点 三条直线相交,最多有 _1__+_2___ 个交点 四条直线相交,最多有1_+__2_+__3_ 个交点 …… n条直线相交,最多有 _1_+__2_+__3_+__·_··_+_(___n_-_1_)_ 个交点
公式: 1+2+3+···+( n-1)= n(n-1)/2
探究
∠1与∠2有怎样的数量关系? 互补
探究
∠1与∠3有怎样的数量关系? 相等
证明
你能说出∠1=∠3的道理吗? 请你用数学的语言写出这个过程.
因为 ∠1与∠2 互补, ∠3与∠2 互补 (邻补角的定义),
所以 ∠1=∠3(同角的补角相等), 同理 ∠2=∠4 .
例题
如图,直线a,b相交于点O,∠1=40°,求∠2 ,∠3 ,∠4 的度数.
∠1与∠3的边所在的位置有什么特点? 两边互为反向延长线
对顶角
对顶角的定义:∠1和∠3有 一个公共顶点O,并且∠1的两边分别 是∠3的两边的反向延长线 ,具有这种位置关系的两个角,互为 对顶角.
图中还有哪些对顶角? ∠2和∠4
例题
下列各图中,∠1和∠2是 邻补角吗?为什么?
例题
下列各图中,∠1和∠2是对顶角吗?为什么?
相交线
教学目标
理解邻补角和对顶角的概念. 掌握“对顶角相等”的性质.
教学重点
对顶角相等的探索过程.
教学难点
学生推理能力和表达能力的培养.
观察这些图片,你能否看到相交线、平行线?
思考
这里有一把剪刀,握紧剪刀的把手,就能剪开物体,你能说出
其中的道理吗?
人教版七年级下册数学课件:5.1.1相交线(共29张PPT)

3.判断的关键是看这两个角的两边,其中 一边是否为公共边,另一边是否互为反向 延长线。
考考你
下列各图中∠1、∠2是邻补角吗?为什么?
4、类比∠1和∠2,看∠1和∠3有怎样的位置关系?
C
A
12 O3
B
探 究
4
与
D
发
形如∠1 与∠3有一个公共顶点O,并且∠1 的 现
两边分别是∠3的两边的反向延长线,具有这 2
3、观察∠1和∠2的顶点和两边,有怎样的位置关系?
C
A
12 O3
B
4
探 究
D
与
形如∠1 与∠2有一条公共边OC,它们的另一边
发
互为反向延长线,具有这种关系的两个角,互为 现
邻补角.
1
图中有哪些角是邻补角呢?
∠1 和∠2, ∠2 和∠3,∠3 和∠4,∠4 和∠1
1.两条直线相交形成4对邻补角。
2.邻补角定义既包含位置关系,又包含数 量关系。
三条直线相交于一点,有几对对顶角? 四条直线相交于一点,有几对对顶角? n 条直线相交于一点,有几对对顶角?
教师寄语:
人生重要的不是脚下所站的位置,而 是所朝的方向,只要我们在每一节课中, 一点点的积累,就会不断地进步、升华, 数学成绩就会有很大的提高,老师祝愿同 学们都有一个完美的人生!
2
1
A
B
C
D
概念总结:
邻补角:如果两个角有一条公共边,它 们的另一边互为反向延长线,具有这种 关系的两个角,互为邻补角.
对顶角:如果两个角有一个公共顶点,并 且一个角的两边分别是另一个角两边的反 向延长线,具有这种位置关系两个角互为 对顶角.
探究二:
邻补角和对顶角的性质
考考你
下列各图中∠1、∠2是邻补角吗?为什么?
4、类比∠1和∠2,看∠1和∠3有怎样的位置关系?
C
A
12 O3
B
探 究
4
与
D
发
形如∠1 与∠3有一个公共顶点O,并且∠1 的 现
两边分别是∠3的两边的反向延长线,具有这 2
3、观察∠1和∠2的顶点和两边,有怎样的位置关系?
C
A
12 O3
B
4
探 究
D
与
形如∠1 与∠2有一条公共边OC,它们的另一边
发
互为反向延长线,具有这种关系的两个角,互为 现
邻补角.
1
图中有哪些角是邻补角呢?
∠1 和∠2, ∠2 和∠3,∠3 和∠4,∠4 和∠1
1.两条直线相交形成4对邻补角。
2.邻补角定义既包含位置关系,又包含数 量关系。
三条直线相交于一点,有几对对顶角? 四条直线相交于一点,有几对对顶角? n 条直线相交于一点,有几对对顶角?
教师寄语:
人生重要的不是脚下所站的位置,而 是所朝的方向,只要我们在每一节课中, 一点点的积累,就会不断地进步、升华, 数学成绩就会有很大的提高,老师祝愿同 学们都有一个完美的人生!
2
1
A
B
C
D
概念总结:
邻补角:如果两个角有一条公共边,它 们的另一边互为反向延长线,具有这种 关系的两个角,互为邻补角.
对顶角:如果两个角有一个公共顶点,并 且一个角的两边分别是另一个角两边的反 向延长线,具有这种位置关系两个角互为 对顶角.
探究二:
邻补角和对顶角的性质
人教版七年级数学下册 《相交线》PPT教育课件

180°
想一想∠2与∠3, ∠1与∠4之间有什么关系吗?
相互交流,所测量数据是否和上述结果相同?
第四页,共十六页。
邻补角概念
如果两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为
邻补角。
3
2
1
想一想:∠1与那个角互为邻补角?∠2呢?
4
第五页,共十六页。
对顶角概念
如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这两
∠DOB,若∠AOC=40º,求∠AOE的度数.
解:∵∠AOC=40°,
∴∠AOD=180°−∠AOC=140°,∠DOB=∠AOC=40°,
∵OE平分∠DOB,
∴∠DOE=1/2∠DOB=20°,
∴∠AOE=∠AOD+∠DOE=140°+20°=160°.
第十三页,共十六页。
练一练(提高题)
7.(2019·西藏自治区左贡县中学初一期末)直线AB、CD相交于点O,OE⊥AB于O,且
∠DOB=2∠COE,求∠AOD的度数.
解:∵∠EOB=90°
∴∠DOB+∠COE=90°
又∵∠DOB是∠EOC的两倍,
∴∠EOC=30°
∴∠AOD=∠BOC=∠EOC+∠BOE=30°+90°=120°
第十四页,共十六页。
课堂互动
课后回顾
1. 理解邻补角的概念
2. 理解对顶角的概念和性质
3. 利用邻补角和对顶角的知识
个角叫对顶角。
3
A
1
C
尝试证明:∠1=∠2?
D
∵直线AB、CD相交于点O
2
O
4
∴∠1+∠3=180°,∠2+∠3=180°
想一想∠2与∠3, ∠1与∠4之间有什么关系吗?
相互交流,所测量数据是否和上述结果相同?
第四页,共十六页。
邻补角概念
如果两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为
邻补角。
3
2
1
想一想:∠1与那个角互为邻补角?∠2呢?
4
第五页,共十六页。
对顶角概念
如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这两
∠DOB,若∠AOC=40º,求∠AOE的度数.
解:∵∠AOC=40°,
∴∠AOD=180°−∠AOC=140°,∠DOB=∠AOC=40°,
∵OE平分∠DOB,
∴∠DOE=1/2∠DOB=20°,
∴∠AOE=∠AOD+∠DOE=140°+20°=160°.
第十三页,共十六页。
练一练(提高题)
7.(2019·西藏自治区左贡县中学初一期末)直线AB、CD相交于点O,OE⊥AB于O,且
∠DOB=2∠COE,求∠AOD的度数.
解:∵∠EOB=90°
∴∠DOB+∠COE=90°
又∵∠DOB是∠EOC的两倍,
∴∠EOC=30°
∴∠AOD=∠BOC=∠EOC+∠BOE=30°+90°=120°
第十四页,共十六页。
课堂互动
课后回顾
1. 理解邻补角的概念
2. 理解对顶角的概念和性质
3. 利用邻补角和对顶角的知识
个角叫对顶角。
3
A
1
C
尝试证明:∠1=∠2?
D
∵直线AB、CD相交于点O
2
O
4
∴∠1+∠3=180°,∠2+∠3=180°
人教版七年级下册《相交线》.ppt.ppt

B O
∠BOC=__9_0_°___; D
此时我们说,AB与CD互相垂直.
当∠BOD=α°( α≠90°)时.
∠AOD=( 180- α )°
∠AOC=( α )°
A
∠BOC=( 180- α )°
CBΒιβλιοθήκη OD当α ≠90°时,AB与CD不垂直,此时我们说 AB与CD斜交.
两条直线相交
斜交
垂直——相交的特殊情况
A
2
DA
O
1 O3
1O
4
C
4
BC
C
B
图中,∠1和∠2、∠2和∠3、∠3和∠4,∠1 和∠4都是邻补角,它们是相互的、成对出现的, 如∠2是∠3的邻补角,∠1是∠4的邻补角,单独的 一个∠1或单独的一个∠4都不能叫邻补角.
下列图中∠1、∠2还是邻补角吗?
12
12
1
2
如图1所示,∠1与∠3有什么特点?
D.2
3.如图,一辆汽车在一段笔直的公路上从A村 开往B村,P村不在路AB 上.
(1)如果有一人想在A、B两村之间下车,前 往P村,他在哪里下车走的路程最短?请画出图形, 并说明原因.
(2)汽车在哪一段路上行驶时,与P村的距离越 来越近?汽车在哪一段路上行驶时,与P村的距离越 来越远?
P
┓
A
B
O
答案:(1)在O点下车走的路程最短. 原因:垂线段最短.
因为AB⊥OE (已知)
D
所以 ∠EOB=90°(垂直的定义)
因所所为以以∠∠∠DADOOOECB===54∠00°°DO((互B=已余4知0的°)定(义对) 顶A角C相等)O
B F
又因为OB平分∠DOF
人教版七年级数学下册:5.1.1相交线课件(共16张PPT)

和∠BOC是 什么关系的角?
互为邻补角
A
C
·
O
B
2、图中∠1的邻补角有几个?
2
哪几个?它们的大小关系? 1
3
2个,∠2和∠4, 相等。
4
由今天所学知识知:∠2和∠4是对顶角
是不是对顶角都会相等?
对顶角的性质: 对顶角相等
∵∠1+∠2=180° ∠1+∠4=180°
∴∠2=∠4(同角的补角相等)
D
A
B O
C
小结
(1)相交是同一平面内两条直线的一种位置关系。 而垂直是相交的一种特殊情况.
(2)对顶角 对顶角相等
(3)邻补角 互为邻补角的两个角一定互补,但是互 为补角的两个角不一定是邻补角
互为对顶角
B
1.顶点相同.
C
20
2.角的两边互为反向延长线. 1
3
4
A
D
∠1 与∠3、 ∠2与 ∠4 互为对顶角
请判断:下列的∠1与∠2是否是对顶角?
1 2
(1) 1
2 (3)
1
2 (5)
12 (4)
12 (6)
1 2 (2)
(7) 21
3、 ∠1 与∠2在位置上有何联系?
互为邻补角
A
2
D
1
3
1.有一条公共边
例1:如图,直线 a与直线b相交,∠1=40°,
求∠2,∠3,∠4的度数。
a
2
1
3
4 b
练一练 1、课本P3 练习
2、下列说法正确的是( A ) A、对顶角的角平分线在一条直线上 B、相等的角是对顶角 C、一个角的邻补角只有一个 D、补角即为邻补角
互为邻补角
A
C
·
O
B
2、图中∠1的邻补角有几个?
2
哪几个?它们的大小关系? 1
3
2个,∠2和∠4, 相等。
4
由今天所学知识知:∠2和∠4是对顶角
是不是对顶角都会相等?
对顶角的性质: 对顶角相等
∵∠1+∠2=180° ∠1+∠4=180°
∴∠2=∠4(同角的补角相等)
D
A
B O
C
小结
(1)相交是同一平面内两条直线的一种位置关系。 而垂直是相交的一种特殊情况.
(2)对顶角 对顶角相等
(3)邻补角 互为邻补角的两个角一定互补,但是互 为补角的两个角不一定是邻补角
互为对顶角
B
1.顶点相同.
C
20
2.角的两边互为反向延长线. 1
3
4
A
D
∠1 与∠3、 ∠2与 ∠4 互为对顶角
请判断:下列的∠1与∠2是否是对顶角?
1 2
(1) 1
2 (3)
1
2 (5)
12 (4)
12 (6)
1 2 (2)
(7) 21
3、 ∠1 与∠2在位置上有何联系?
互为邻补角
A
2
D
1
3
1.有一条公共边
例1:如图,直线 a与直线b相交,∠1=40°,
求∠2,∠3,∠4的度数。
a
2
1
3
4 b
练一练 1、课本P3 练习
2、下列说法正确的是( A ) A、对顶角的角平分线在一条直线上 B、相等的角是对顶角 C、一个角的邻补角只有一个 D、补角即为邻补角
人教版七年级数学下册《相交线》ppt

解:(1)如图①所示.
以下几个方面由学生自己总结: ① 垂线的定义及垂直的符号表示; ② 垂线的有关性质; ③ 过一点作已知直线的垂线的方法.
同学们, 下节课见!
解: 如图①,当OC,OD 在直线AB 的同侧时,因为OC⊥OD,所以∠COD =90°.因为∠AOC=30°,所以∠BOD=180°-∠COD-∠AOC=60°.如 图②,当OC,OD 在直线AB 的一侧时,因为OC⊥OD,所以∠COD= 90°.因为∠AOC=30°,所以∠AOD=90°-∠AOC=60°. 所以∠BOD=180°-∠AOD=120°.
解:因为OE⊥CD,所以∠DOE=90°(垂直定义). 因为∠BOE=50°, 所以∠AOC=∠BOD=∠DOE-∠BOE=
90°-50°=40°.
因为OD 平分∠BOF, 所以∠BOF=2∠BOD=80°. 所以∠EOF=∠BOF+∠BOE=80°+50°=130°, ∠AOF=∠AOB-∠BOF=180°-80°=100°.
1 当两条直线相交所成的四个角都相等时,这两条 直线有什么位置关系?为什么?
解:当两条直线相交,所成的四个角都相等时,这两条 直线互相垂直.理由:设所成的四个角中有一个角
的度数为m°,则其余三个角的度数分别为180°- m°,m°,180°-m°,由题意知,m°=180°-m°, 得m°=90°,所以180°-m°=90°,所以这两条直
A.36° B.54° C.55° D.44°
5 如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD 的
度数是( C ) A.117° B.127° C.153° D.163°
6 如图,直线AB,CD 相交于点O,射线OM 平分∠AOC,ON⊥OM. 若∠AOM=35°,则∠CON 的度数为( C )
以下几个方面由学生自己总结: ① 垂线的定义及垂直的符号表示; ② 垂线的有关性质; ③ 过一点作已知直线的垂线的方法.
同学们, 下节课见!
解: 如图①,当OC,OD 在直线AB 的同侧时,因为OC⊥OD,所以∠COD =90°.因为∠AOC=30°,所以∠BOD=180°-∠COD-∠AOC=60°.如 图②,当OC,OD 在直线AB 的一侧时,因为OC⊥OD,所以∠COD= 90°.因为∠AOC=30°,所以∠AOD=90°-∠AOC=60°. 所以∠BOD=180°-∠AOD=120°.
解:因为OE⊥CD,所以∠DOE=90°(垂直定义). 因为∠BOE=50°, 所以∠AOC=∠BOD=∠DOE-∠BOE=
90°-50°=40°.
因为OD 平分∠BOF, 所以∠BOF=2∠BOD=80°. 所以∠EOF=∠BOF+∠BOE=80°+50°=130°, ∠AOF=∠AOB-∠BOF=180°-80°=100°.
1 当两条直线相交所成的四个角都相等时,这两条 直线有什么位置关系?为什么?
解:当两条直线相交,所成的四个角都相等时,这两条 直线互相垂直.理由:设所成的四个角中有一个角
的度数为m°,则其余三个角的度数分别为180°- m°,m°,180°-m°,由题意知,m°=180°-m°, 得m°=90°,所以180°-m°=90°,所以这两条直
A.36° B.54° C.55° D.44°
5 如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD 的
度数是( C ) A.117° B.127° C.153° D.163°
6 如图,直线AB,CD 相交于点O,射线OM 平分∠AOC,ON⊥OM. 若∠AOM=35°,则∠CON 的度数为( C )
人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1
人教版七年级数学下册《相交线》相交线与平行线PPT优质课件

160°
人教版数学七年级下学期(5.1.1相交线)
三、练习
3. 如图,直线a、b相交于点O,如果∠1+∠2=60∘,那么∠3的度数是( A )
A. 150∘
C. 60∘
B. 120∘ D. 30∘
人教版数学七年级下学期(5.1.1相交线)
三、练习
4. 已知∠AOB与∠BOC互为邻补角,且∠BOC > ∠AOB
小结:今天学了哪些内容?
一、邻补角的定义及性质 二、对顶角的定义及性质 三、邻补角和对顶角的识别方法
人教版数学七年级下学期(5.1.1相交线)
谢谢观看
一、邻补角
邻补角的识别方法: 1.两个角有公共顶点。 2.两角的一边为公共边,另一边互为反向延长线。
人教版数学七年级下学期(5.1.1相交线)
二、对顶角
A 2
1 O3 C
D B
概念:两个角有公共顶点且它们的两边分别互为反向延长线,具有这种 位置关系的两个角,互为对顶角。
人教版数学七年级下学期(5.1.1相交线)
为
。
人教版数学七年级下学期(5.1.1相交线)
三、练习
如图,直线AB,CD,EF相交于点O,∠1 = 20°,∠BOC = 80°,求∠2的
度数?
解:∵ ∠1 = 20°,∠BOC = 80°
,
∴ ∠BOF = ∠BOC − ∠1 = 60°,
根据对顶角相等得:
∠2 = ∠BOF = 60°
人教版数学七年级下学期(5.1.1相交线)
二、对顶角
A
2
1
3 O
C
D B
规律: 1.对顶角是成对出现,一个角的对顶角只有一个 2.对顶角相等,但相等的角不一定是对顶角
人教版数学七年级下学期(5.1.1相交线)
三、练习
3. 如图,直线a、b相交于点O,如果∠1+∠2=60∘,那么∠3的度数是( A )
A. 150∘
C. 60∘
B. 120∘ D. 30∘
人教版数学七年级下学期(5.1.1相交线)
三、练习
4. 已知∠AOB与∠BOC互为邻补角,且∠BOC > ∠AOB
小结:今天学了哪些内容?
一、邻补角的定义及性质 二、对顶角的定义及性质 三、邻补角和对顶角的识别方法
人教版数学七年级下学期(5.1.1相交线)
谢谢观看
一、邻补角
邻补角的识别方法: 1.两个角有公共顶点。 2.两角的一边为公共边,另一边互为反向延长线。
人教版数学七年级下学期(5.1.1相交线)
二、对顶角
A 2
1 O3 C
D B
概念:两个角有公共顶点且它们的两边分别互为反向延长线,具有这种 位置关系的两个角,互为对顶角。
人教版数学七年级下学期(5.1.1相交线)
为
。
人教版数学七年级下学期(5.1.1相交线)
三、练习
如图,直线AB,CD,EF相交于点O,∠1 = 20°,∠BOC = 80°,求∠2的
度数?
解:∵ ∠1 = 20°,∠BOC = 80°
,
∴ ∠BOF = ∠BOC − ∠1 = 60°,
根据对顶角相等得:
∠2 = ∠BOF = 60°
人教版数学七年级下学期(5.1.1相交线)
二、对顶角
A
2
1
3 O
C
D B
规律: 1.对顶角是成对出现,一个角的对顶角只有一个 2.对顶角相等,但相等的角不一定是对顶角
人教版七年级下册数学《相交线》教学课件

引导: 找一个角的邻补角时,可先固定一边,反向延长另一边,则由固定的一边和
另一边的反向延长线组成的角即是原角的邻补角.∠AOC的邻补角有两个: 固定射线OA,反向延长射线OC得到∠AOD;固定射线OC,反向延长射线 OA得到∠BOC,它们都是∠AOC的邻补角.同理,∠EOB的邻补角也有两 个,为∠BOF和∠AOE.
课堂练习
如图,三条直线交于点O,则∠1+∠2+∠3等于 ( C)
A.90° B.120° C.180° D.360°
课堂练习
如图,直线AB,CD相交于点O,OE平分∠AOD, 若∠DOE=36°,则∠BOC的度数为( A )
A.72° B.90° C.108° D.144°
课堂总结
角的名称
特征
反向延长线的两个角
课堂练习
下列选项中,∠1与∠2互为邻补角的是( D )
课堂练习
如图,∠1的邻补角是( B )
A.∠BOC B.∠BOE和∠AOF C.∠AOF D.∠BOC和∠AOF
课堂练习
如图,∠α的度数等于( A )
A.135° B.125° C.115° D.105°
PART.02
对顶角的定义及性质
探索新知
例3: 如图,直线a, b相交,∠1 = 40°, 求∠2, ∠3, ∠4的度数.
解: 由邻补角的定义,得
∠2 = 180°-∠1 = 180°-40°=140°
由对顶角相等,得 ∠3= ∠1=40° ∠4= ∠2 = 140°
课堂总结
归纳总结
对顶角和邻补角经常在求角的度数的题目中同时用 到,只要分清楚对顶角、邻补角的性质,就是对顶 角相等、邻补角互补,此类题目容易解答.
像这样的两个角叫做邻补角。
另一边的反向延长线组成的角即是原角的邻补角.∠AOC的邻补角有两个: 固定射线OA,反向延长射线OC得到∠AOD;固定射线OC,反向延长射线 OA得到∠BOC,它们都是∠AOC的邻补角.同理,∠EOB的邻补角也有两 个,为∠BOF和∠AOE.
课堂练习
如图,三条直线交于点O,则∠1+∠2+∠3等于 ( C)
A.90° B.120° C.180° D.360°
课堂练习
如图,直线AB,CD相交于点O,OE平分∠AOD, 若∠DOE=36°,则∠BOC的度数为( A )
A.72° B.90° C.108° D.144°
课堂总结
角的名称
特征
反向延长线的两个角
课堂练习
下列选项中,∠1与∠2互为邻补角的是( D )
课堂练习
如图,∠1的邻补角是( B )
A.∠BOC B.∠BOE和∠AOF C.∠AOF D.∠BOC和∠AOF
课堂练习
如图,∠α的度数等于( A )
A.135° B.125° C.115° D.105°
PART.02
对顶角的定义及性质
探索新知
例3: 如图,直线a, b相交,∠1 = 40°, 求∠2, ∠3, ∠4的度数.
解: 由邻补角的定义,得
∠2 = 180°-∠1 = 180°-40°=140°
由对顶角相等,得 ∠3= ∠1=40° ∠4= ∠2 = 140°
课堂总结
归纳总结
对顶角和邻补角经常在求角的度数的题目中同时用 到,只要分清楚对顶角、邻补角的性质,就是对顶 角相等、邻补角互补,此类题目容易解答.
像这样的两个角叫做邻补角。
新人教版七年级下5.1相交线19张课件

1( (2
12
12
新人教版七年级下5.1相交线(19 张)
3、找出图中∠AOE的邻补角及对顶角,若没有请画出.
A
E D
O
C
B
F
新人教版七年级下5.1相交线(19 张)
4、如图,直线AB,CD,EF相交于点O. (1)写出∠AOC, ∠BOE的邻补角; (2)写出∠DOA, ∠EOC的对顶角; (3)如果∠AOC =50°,求∠BOD ,∠COB的度数。 D E
A
B
O
F
C
新人教版七年级下5.1相交线(19 张)
5. (应用题)在下图中,花坛转角按图纸要求这个角 (红色标注的角)为135°;施工结束后,要求你检测它是 否合格?请你设计检测的方法.
1 新人教版七年级2下5.1相交线(19
张)
合作探究
当堂检测 6、如图,直线AB,CD相交于点O, ∠EOC=70°,
OA平分∠EOC,求∠BOD的度数。
E
D
A
B
O
C
新人教版七年级下5.1相交线(19 张)
合作探究
拓展题:观察下列各图,寻找对顶角(不含平角)
A
C
图a
a O
D
b
AO
BC
图b
DG BA C
c E
O F
图c
D B
H
⑴ 如图a,图中共有 对对顶角;
⑵ 如图b,图中共有 对对顶角;
⑶ 如图c,图中共有 对对顶角;
名称
邻 补 角
数量 关系
对 顶 角 相 等
D
邻
∠1和∠3、
1、有公共顶点 2、没有公共边
对 顶
人教版七年级数学课件《相交线》

人教版数学七年级下册
第五章第1节——相交线
PEOPLE EDUCATION VERSION OF THE SEVEN GRADE MATH VOLUME
学校:XXXX
老师:XXXX
情景引入
人教版数学七年级下册
1.理解两条直线相交的特征及邻补角与对顶角的概念.
2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计
针对练习
人教版数学七年级下册
1.如图,直线AB、CD、EF相交,若∠1+∠5=180°,找出图中与
∠1相等的角.
2
解:∵ ∠1= ∠3(对顶角相等)
1
∠5+∠8=180 °且∠1 +∠5=180°
4
∴∠8= ∠1
∵ ∠8= ∠6(对顶角相等)
∴∠6= ∠1.
3
A
C
5
7
6
8
F
针对练习
人教版数学七年级下册
∠BOC
8.如图(2),直线AC和BD相交于点O,那么∠AOD的对顶角是________,
∠AOD,∠BOC
∠AOB的邻补角是__________________.
148°
32° ∠4=______.
148°
9.如图(3),直线a,b相交,∠1=32°,则∠2=______,∠3=____,
达标检测
人教版数学七年级下册
典例解析
人教版数学七年级下册
例1.下列四个图形中,∠1和∠2是对顶角的是( D ).
A.
B.
C.
D.
【分析】解:A.两角只有一条边互为反向延长线,另一条边没有互为反向延长线,不符
合题意;
B.两角没有公共顶点,两角也是只有一条边互为反向延长线,另一条边没有互为反向延
第五章第1节——相交线
PEOPLE EDUCATION VERSION OF THE SEVEN GRADE MATH VOLUME
学校:XXXX
老师:XXXX
情景引入
人教版数学七年级下册
1.理解两条直线相交的特征及邻补角与对顶角的概念.
2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计
针对练习
人教版数学七年级下册
1.如图,直线AB、CD、EF相交,若∠1+∠5=180°,找出图中与
∠1相等的角.
2
解:∵ ∠1= ∠3(对顶角相等)
1
∠5+∠8=180 °且∠1 +∠5=180°
4
∴∠8= ∠1
∵ ∠8= ∠6(对顶角相等)
∴∠6= ∠1.
3
A
C
5
7
6
8
F
针对练习
人教版数学七年级下册
∠BOC
8.如图(2),直线AC和BD相交于点O,那么∠AOD的对顶角是________,
∠AOD,∠BOC
∠AOB的邻补角是__________________.
148°
32° ∠4=______.
148°
9.如图(3),直线a,b相交,∠1=32°,则∠2=______,∠3=____,
达标检测
人教版数学七年级下册
典例解析
人教版数学七年级下册
例1.下列四个图形中,∠1和∠2是对顶角的是( D ).
A.
B.
C.
D.
【分析】解:A.两角只有一条边互为反向延长线,另一条边没有互为反向延长线,不符
合题意;
B.两角没有公共顶点,两角也是只有一条边互为反向延长线,另一条边没有互为反向延
人教版七年级数学下册《同位角、内错角、同旁内角》相交线与平行线PPT精品课件

巩固练习
如图,(1)∠1和∠4是直线__A__B_与直线__C_D_被直线___B_D__所截 形成的____内__错__角__.
(2)∠2和∠3是直线__A_D__与直线_B_C__被直线__B_D___所截形成的
内__错__角___.
A
D
33 44
11 22
B
C
探究新知 知识点 3
同旁内角的概念
5
6
1
43
12
探究新知 观察∠1和∠5两角:
另一边在截线的同旁, 方向同向.
5
87
5
6
1
43
12
探究新知
观察∠1和∠5两角: 5
一边都在截线上而且同向,另 一边在截线同侧的两个角.
1 同位角
分别在截线的左侧(同侧)在 被截直线的下方(同方向)
探究新知
变式图形:图中的∠1与∠2都是同位角.
2
1
12
探究新知
变式图形:图中的∠1与∠2都是内错角.
1
1
2
2
12
2 1
图形特征:在形如“Z”的图形中有内错角.
探究新知
87 56 43 12
图中的内错角除∠3和∠5外, 还有……
探究新知 考 点 1 内错角的识别
如图,与∠1是内错角的是( B )
1 23
45
A. ∠2 C. ∠4
B. ∠3 D. ∠5
巩固练习
找出图中的同位角、内错角、同旁内角:
b
c
解:同位角: ∠1与∠3,∠2与∠4; 同旁内角:∠2与∠3.
2 34
a
探究新知
考 点 3 在复杂图形中识别同位角、内错角、同旁内角
人教版初中数学七年级下册 5.1相交线 课件 (共31张PPT)

探究升级
l1
l2
O
l3
探究升级
l2
O
l3
探究升级
l2
O
l3
l2
O
l3
探究升级
l1
l2
O
l3
l2
O
l3
探究升级
l1
O l3
l2
O
l3
探究升级
l1
O l3
l2
O
l3
l1
O l3
探究升级
l1
l2
O
l3
l2
O
l3
l1
O l3
探究升级
l1
l2
O
l3
l2
O
l3
l1
O l3
探究升级
l1
l2
O
l2
对顶角相等.
(邻补角定义)
∴∠1=∠3 (同角的补角相等)
同理可得:∠2=∠4
学以致用
1.生活中应用“对顶角相等”的例子.
B
C
O
A
D
学以致用
2.判断下列说法是否正确:
(1)有一边互为反向延长线,且相等的两个角是对顶角;( × ) (2)两条直线相交,有公共顶点的两个角是对顶角;( × ) (3)两条直线相交,有公共顶点,没有公共边的两个角是对顶
D
AEB源自CFba
(1
(2 ) 4 )3
变式1:若∠2是∠1的3倍,求∠3的度数. 变式2:若∠2-∠1=400, 求∠4的度数.
变式3:若 1: 2 = 2: 7 ,求各个角的度数.
探究升级
思考:
两条直线相交于一点,有几对邻补角?几对对顶角? 三条直线相交于一点,有几对邻补角?几对对顶角? 四条直线相交于一点呢? n 条直线相交于一点呢?
七年级数学下册教学课件《相交线》

归纳总结 邻补角互补(两角之和为180°),对顶角相等.
例1 如图所示,直线 a,b 相交,∠1 = 40°,
求∠2,∠3,∠4 的度数.
【教材P3 例1】
分析: 已知角
邻补角的定义 对顶角的性质
未知角
解:由邻补角的定义,得
∠2 = 180°-∠1
40° 140°
=180°- 40°= 140°; 由对顶角相等,得
A
4
D ∠3
∠4
∠1 和 ∠2;
∠1 和 ∠4; 相邻
∠2 和 ∠3; ∠3 和 ∠4.
∠1 +∠2=180° ; ∠1 +∠4=180°; ∠2 +∠3=180°; ∠3 +∠4=180°.
∠1 和 ∠3; ∠2 和 ∠4.
相对
∠1 = ∠3; ∠2 = ∠4.
概念引入 有一条公共边,(位置相邻)
对顶角
C
2O
B
1
3
∠1 的对顶角是__∠__3__.
A
4
D ∠2 的对顶角是__∠__4__.
对应训练
1.下图中,∠2 的邻补角是 ( A )
A.∠1
B.∠3
C.∠4
D. ∠5
5
思路点拨:紧扣邻补角定义做题.
2. 下列图形中, ∠1与∠2互为对顶角的是 ( C ) 思路点拨:遇到角的辨析,需抓住定义做题.
解:由对顶角相等,得∠1=∠2,
因为∠1+∠2=80°, 所以∠1=∠2= 1 ×80°=40°,
2
由邻补角的定义,得
∠AOD=180°-∠1=180°-40°=140°.
因为OE平分∠AOD,
所以∠AOE= 1∠AOD= 1×140°=70°.
2
例1 如图所示,直线 a,b 相交,∠1 = 40°,
求∠2,∠3,∠4 的度数.
【教材P3 例1】
分析: 已知角
邻补角的定义 对顶角的性质
未知角
解:由邻补角的定义,得
∠2 = 180°-∠1
40° 140°
=180°- 40°= 140°; 由对顶角相等,得
A
4
D ∠3
∠4
∠1 和 ∠2;
∠1 和 ∠4; 相邻
∠2 和 ∠3; ∠3 和 ∠4.
∠1 +∠2=180° ; ∠1 +∠4=180°; ∠2 +∠3=180°; ∠3 +∠4=180°.
∠1 和 ∠3; ∠2 和 ∠4.
相对
∠1 = ∠3; ∠2 = ∠4.
概念引入 有一条公共边,(位置相邻)
对顶角
C
2O
B
1
3
∠1 的对顶角是__∠__3__.
A
4
D ∠2 的对顶角是__∠__4__.
对应训练
1.下图中,∠2 的邻补角是 ( A )
A.∠1
B.∠3
C.∠4
D. ∠5
5
思路点拨:紧扣邻补角定义做题.
2. 下列图形中, ∠1与∠2互为对顶角的是 ( C ) 思路点拨:遇到角的辨析,需抓住定义做题.
解:由对顶角相等,得∠1=∠2,
因为∠1+∠2=80°, 所以∠1=∠2= 1 ×80°=40°,
2
由邻补角的定义,得
∠AOD=180°-∠1=180°-40°=140°.
因为OE平分∠AOD,
所以∠AOE= 1∠AOD= 1×140°=70°.
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C A
E B
F 图1 D
E
A
1 O2
C
3
D
B
图2
达标测评
3.直线AB、CD交于点O,∠AOE= ∠DOE, ∠AOC=50°求∠DOE的度数.
解: 由邻补角的定义,可得
∠AOD=180°-∠AOC
A
=180°-50° =130°
C
因为∠AOE= ∠DOE(已知)
所以∠DOE=∠AOD÷2
=130°÷2
1 3 40 4=2 140
b
12
a
43
练习7
如图,直线a,b相交于点O, 1: 2 = 2: 7 , 求∠1, ∠2 ,∠3 ,∠4 的度数.
1 3 40 4=2 140b12a Nhomakorabea43
体验收获
今天我们学习了哪些知识?
1.什么是邻补角?邻补角与补角有什么 区别?
2.什么是对顶角?对顶角有什么性质?
=65°
E D
O B
布置作业
教材7页习题5.1第1、2题.
谢谢观看!
解:由邻补角定义,可得
2=180 1
b
180 40 140;
12
a
43
由对顶角相等,可得
3=1 40,4=2 140.
练习5
如图,直线a,b相交于点O,∠1+∠3=800, 求∠1, ∠2 ,∠3 ,∠4 的度数.
1 3 40 4=2 140
b
12
a
43
练习6
如图,直线a,b相交于点O,∠2是∠1的 3.5 倍, 求∠1, ∠2 ,∠3 ,∠4 的度数.
【义务教育教科书人教版七年级下册】
相交线
情境引入
观察这些图片,你能否看到相交线、平行线?
探究1
这里有一把剪刀,握紧剪刀的把手,就 能剪开物体,这是为什么呢?
探究1
如果把剪子的构造抽象成一个几何图形, 会是什么样的图形?请你画一画.
探究1
C
2
A
1
O 4
3
图中还有其他 的邻补角吗?
B
D
形如∠1 与∠2有一条公共边OC,它们的 另一边互为反向延长线,具有这种关系的两 个角,互为邻补角.
达标测评 1.如图1,三条直线AB、CD、 EF两两相交,在这个图形中,有
对顶角__6___对,邻补角_1__2_ 对.
2.如图2,直线AB、CD 相交于O,OE是射线。则 ∠3的对顶角是__∠__A__O_D______, ∠1的对顶角是__∠__B__O_D______, ∠1的邻补角是__∠__3_、__∠__A__O_D_, ∠2的邻补角是__∠__C__O_E______.
1 2
(1)
1 2
(2)
1 2
(3)
12 (4)
2 1
(5)
练习3
请分别画出图中∠1的对顶角和∠2的邻补角.
1
2
练习4
如图,三条直线AB ,CD ,EF相交于点O, ∠AOE的对顶角是∠FOB ,
∠EOD的邻补角是 ∠FOD、∠COE .
A
F
C
O
D
E
B
探究2
∠1与∠2有怎样的数量关系?
C
符号语言
∵ ∠1与∠2是邻补角 A
∴ ∠1+∠2=1800
互补
12 O3
B
4
D
一对邻补角的和等于1800.
探究2
∠1与∠3有怎样的数量关系?
C
符号语言
∵ ∠1与∠3是对顶角 A
∴ ∠1 =∠3
12 O3 4
相等
B D
对顶角的性质:对顶角相等.
例1
如图,直线a,b相交于点O,∠1=400,求 ∠2 ,∠3 ,∠4 的度数.
探究1
C
2
A
1
O 4
3
图中还有其他 的对顶角吗?
B
D
形如∠1 与∠3有一个公共顶点O,并且 ∠1 的两边分别是∠3的两边的反向延长线,具 有这种位置关系的两个角,互为对顶角.
练习1
下列各图中,∠1和∠2是邻补角吗?为什么?
12 (1)
12 (2)
12 (3)
练习2
下列各图中,∠1和∠2是对顶角吗?为什么?