2019年襄阳市中考数学试卷(解析版)
专题04 分式-湖北省2019-2021年3年中考真题数学分项汇编(解析版)
专题04 分式一、单选题1.(2021·湖北黄石市·中考真题)函数()02y x =+-的自变量x 的取值范围是( ) A .1x ≥- B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠【答案】C 【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解. 【详解】 解:函数()02y x =+-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠, 故选:C . 【点睛】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.2.(2021·湖北随州市·中考真题)下列运算正确的是( ) A .22a a -=- B .235a a a +=C .236a a a ⋅=D .()326a a =【答案】D 【分析】根据负指数运算法则可判断A ,根据同类项的定义可判断B ,根据同底数幂的乘法可判断C ,根据幂的乘方可判断D 【详解】 A . 2221aa a -=≠-,故选项A 计算不正确; B . 2a 与3a 不是同类项不能合并,235a a a +≠,故选项B 计算不正确;C . 232356a a a a a +⋅==≠,故选项C 计算不正确;D . ()23236a a a ⨯==,故选项D 正确.故选择D . 【点睛】本题考查负整指数运算,同类项识别与合并,同底数幂的乘法,幂的乘方,掌握负整指数运算,同类项识别与合并,同底数幂的乘法,幂的乘方是解题关键.3.(2020·湖北黄石市·中考真题)函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠D .2x >,且3x ≠【答案】A 【分析】根据分式与二次根式的性质即可求解. 【详解】依题意可得x -3≠0,x -2≥0 解得2x ≥,且3x ≠ 故选A . 【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质. 4.(2020·湖北随州市·中考真题)222142x x x÷--的计算结果为( ) A .2x x + B .22xx + C .22xx - D .2(2)x x +【答案】B 【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果. 【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+--=()()()2·222x x x x -+-=22xx +. 故选:B . 【点睛】本题主要考查了分式的除法,约分是解答的关键.5.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D 【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可. 【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11 故答案为D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 6.(2020·湖北荆门市·中考真题)下列等式中成立的是( ) A .()326339x yx y -=-B .2221122x x x +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭C .2+=+D .111(1)(2)12x x x x =-++++【答案】D 【分析】根据幂的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则计算即可. 【详解】 解:A 、()3263327x yx y -=-,故选项A 错误;B 、22222122411412x x x x x x +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭++-+=- 2221214x x x x ++-+-=x =,故选项B 错误;C⎫=+===6=-故选项C 错误; D 、112112(1)(2)(1)(2)x x x x x x x x ++-=-++++++ 21(1)(2)x x x x +--=++1(1)(2)x x =++,故选项D 正确, 故选:D . 【点睛】本题考查了的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则,熟练掌握相关运算法则是解决本题的关键.7.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=+y x 自变量x 的取值范围是( ) A .23x ≤B .23x ≥C .23x <且1x ≠- D .23x ≤且1x ≠-【答案】D 【分析】根据分式及二次根式有意义的条件解答即可. 【详解】∵11=-+y x ∵x+1≠0,2-3x≥0, 解得:23x ≤且1x ≠-, 故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.8.(2019·湖北黄石市·在实数范围内有意义,则x 的取值范围是( ) A .1≥x 且2x ≠ B .1x ≤C .1x >且2x ≠D .1x <【答案】A 【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数. 【详解】依题意,得x -1≥0且x -2≠0, 解得x≥1且x≠2. 故选A . 【点睛】本题考查了二次根式有意义的条件,分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C 【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②, 2②-①×得,27y =,解得72y =, 把72y =代入①得,712x +=,解得52x =-,∵222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+, 故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键.二、填空题10.(2021·湖北荆州市·中考真题)已知:(1012a -⎛⎫=+ ⎪⎝⎭,b =_____________. 【答案】2 【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解. 【详解】解:∵(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,=2=,故答案是:2.本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键.11.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设12a =,12b =,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.【答案】10 【分析】先根据1ab =求出1111n n nS a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】 解:1ab =,111111()1nn n n n n na S ab a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++, 111nnna a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10. 【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键. 12.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________.【答案】1x y-先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得. 【详解】 解:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭()()yx y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()yyx y x y x y=÷+-+ ()()yx yx y x y y+=⋅+- 1x y=-, 故答案为:1x y-.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 13.(2020·湖北武汉市·中考真题)计算2223m nm n m n--+-的结果是________. 【答案】1m n- 【分析】根据分式的减法法则进行计算即可. 【详解】 原式2()3()()()()m n m nm n m n m n m n ---+=+--223()()m n m nm n m n --=++-()()m nm n m n =++-1m n=- 故答案为:1m n-. 【点睛】本题考查了分式的减法运算,熟记运算法则是解题关键. 14.(2019·湖北武汉市·中考真题)计算221164a a a ---的结果是___________ 【答案】14a + 【分析】先通分,然后根据同分母分式加减法法则进行计算即可. 【详解】原式=()()()()244444a a a a a a +-+-+- =()()()2444a a a a -++-=()()444a a a -+- =14a +, 故答案为14a +. 【点睛】本题考查了异分母分式的加减法,熟练掌握异分母分式加减法的运算法则是解题的关键.三、解答题15.(2021·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.【答案】22-+a ,【分析】先对分式进行化简,然后再代入进行求解即可. 【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a =代入得:原式==【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键.16.(2021·湖北黄石市·中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a.【答案】11a +【分析】先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可. 【详解】 解:原式=1(1)(1)()a a a a a a1(1)(1)a aa a a1=1a +,将31a 代入,原式===. 【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键.17.(2021·湖北襄阳市·中考真题)先化简,再求值:2211x x x x x ++⎛⎫÷- ⎪⎝⎭,其中1x =.【答案】11x x +-;1+【分析】将被除数中分子因式分解,括号里先通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,然后约分,得到最简结果,代入x 的值计算即可.【详解】解:原式()2211x x xx x +⎛⎫=÷- ⎪⎝⎭, ()2211x x xx+-=÷,()()()2111x xx x x +=⋅+-,11x x +=-.当1x =时,原式1===【点睛】此题主要考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式因式分解后再约分.18.(2021·湖北中考真题)(1)计算:0(346)⨯- (2)解分式方程:212112x x x+=--. 【答案】(1)8;(2)1x =. 【分析】(1)先计算零指数幂、去括号、立方根、化简二次根式,再计算实数的混合运算即可得; (2)先将分式方程化成整式方程,再解一元一次方程即可得. 【详解】解:(1)原式1462⨯--+=44=+,8=;(2)212112xx x+=--, 方程两边同乘以21x -得:221x x -=-, 移项、合并同类项得:33x -=-,系数化为1得:1x =,经检验,1x =是原分式方程的解, 故方程的解为1x =. 【点睛】本题考查了零指数幂、立方根、化简二次根式、解分式方程,熟练掌握各运算法则和方程的解法是解题关键.19.(2021·湖北鄂州市·中考真题)先化简,再求值:2293411x x x x x x-+÷+--,其中2x =.【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可. 【详解】 解:原式()()()313341x x x x x xx -=⨯++--+1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.20.(2021·湖北荆州市·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =【答案】1a a + 【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把a =代入求值即可. 【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+当a =6【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】 解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键. 22.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】 解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵当2x =时,原式1=. 或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键. 23.(2021·湖北十堰市·中考真题)化简:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭. 【答案】21(2)a -【分析】先算分式的减法,再把除法化为乘法运算,进行约分,即可求解. 【详解】 解:原式=221(2)(2)4a a aa a a a ⎛⎫+--⋅⎪---⎝⎭=()()()22221(2)(2)4a a a a a a a a a a +--⎛⎫-⋅ ⎪---⎝⎭ =2224(2)4a a a a a a a --+⋅-- =24(2)4a aa a a -⋅--=21(2)a -【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.24.(2020·湖北荆州市·中考真题)先化简,再求值2211121a a a a -⎛⎫-÷ ⎪++⎝⎭:其中a 是不等式组22213a a a a -≥-⎧⎨-<+⎩①②的最小整数解; 【答案】1a a +,32先利用分式的混合运算法则化简分式,再解不等式组的解集求出最小整数解,代入即可解之. 【详解】解:原式=21(1)(1)(1)a a a a a -+⋅+-1a a +=,解不等式组22213a a a a -≥-⎧⎨-<+⎩①②,解不等式①得:2a ≥, 解不等式②得:4a <, ∵不等式组的解集为24a ≤<, ∵a 的最小值为2 ∵原式=21322+=. 【点睛】本题考查了分式的化简求值、解一元一次不等式组的解集,熟练掌握分式的混合运算法则,会求一元一次不等式组的整数解是解答的关键.25.(2020·湖北黄石市·中考真题)先化简,再求值:222111x x xx x ++---,其中5x =. 【答案】11x -,14. 【分析】先根据分式的减法法则进行化简,再将5x =代入求值即可. 【详解】原式2(1)(1)(1)1x xx x x +=-+-- 111x xx x +=--- 11x x x +--=11x =- 将5x =代入得:原式11514==-.本题考查了分式的减法运算与求值,熟练掌握分式的减法运算法则是解题关键.26.(2020·湖北省直辖县级行政单位·中考真题)(1)先化简,再求值:22244422a a a a a a -+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.【答案】(1)22a +,2;(2)24x -<≤,数轴见解析 【分析】(1)首先把分式的分子和分母分解因式,把除法去处转化成乘法运算,再把a 代入计算即可; (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 【详解】(1)22244422a a a a a a-+-÷- 2(2)2(2)(2)(2)a a a a a a -=⋅-+- 22a =+, 当1a =-时, 原式2212==-+;(2)解:由322x x +>-得:2x >-, 由35733x x --得:4x ≤, ∵不等式组的解集为:24x -<≤. 在数轴上表示如下:【点睛】本题考查了解一元一次不等式组以及分式的化简求值,正确对分式进行通分、约分是关键.27.(2020·湖北中考真题)先化简,再求值:22221244a b a b a b a ab b---÷+++,其中3,3a b ==.【答案】ba b-+, 【分析】利用完全平方公式、平方差公式和通分等方法将原分式化简成ba b-+,再将a 、b 的值代入化简后的分式中即可得出结论. 【详解】 解:原式()()()2122a b a b a b a b a b +--=-÷++ ()()()2212a b a ba b a b a b +-=-⨯++- 21a ba b+=-+ ba b=-+,当3,3a b ==时,原式==【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.28.(2020·湖北宜昌市·中考真题)先化简,再求值:20441(1)12x x x x x x ++----+,其中2020x =.【答案】1x +;2021 【分析】先把244x x ++分解因式,再进行约分化简,最后把x=2020代入进行计算即可. 【详解】20441(1)12x x x x x x ++-⋅---+2(2)1112x x x x +-=⋅--+21x =+-1x =+当2020x =时, 原式20201=+2021=.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值,在化简过程中要注意运算顺序和分式的化简,注意运算的结果要化成最简分式或整式.29.(2020·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭,其中m =.【答案】1m 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可. 【详解】222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭ 22(3)(3)33(3)3m m m m m m ⎡⎤+--=-⋅⎢⎥--⎣⎦ 2333()33m m m m m +-=-⋅-- 233m m m m -=⋅- 1m =;当m =2==. 【点睛】本题主要考查了分式的化简求值以及二次根式的化简,熟练掌握分式的混合运算法则是解答的关键.30.(2020·湖北鄂州市·中考真题)先化简2224421111x x x x x x x -+-÷+-+-,再从2-,1-,0,1,2中选一个合适的数作为x 的值代入求值. 【答案】2x,-1. 【分析】先化简分式,然后在确保分式有意义的前提下,确定x 的值并代入计算即可. 【详解】解:2224421111x x x x x x x -+-÷+-+- =()()()()22111121x x x x x x x -+⨯++---=()2111x x x x -+--=()()211x x x x x x-+--=()221x x x -- =()()211x x x --=2x在2-、1-、0、1、2中只有当x=-2时,原分式有意义,即x 只能取-2 当x=-2时,2212x ==--. 【点睛】本题考查了分式的化简求值和分式有意义的条件,正确将分式化简和选取合适的x 的值是解答本题的关键. 31.(2019·湖北鄂州市·中考真题)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭. 【答案】x+2;当1x =-时,原式=1.【分析】先化简分式,然后将x 的值代入计算即可. 【详解】解:原式()()22244242x x x x x x ⎡⎤--=-÷⎢⎥---⎢⎥⎣⎦ 244224xx x x x -⎡⎤=-÷⎢⎥---⎣⎦()()22424x x x x x -+-=⋅-- 2x =+∵20x -≠,40x -≠, ∵2x ≠且4x ≠, ∵当1x =-时, 原式121=-+=. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.32.(2019·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:22111211+÷-++++x x x x x,其中1x .【答案】21x +【分析】把被除式分母利用完全平方公式因式分解,按照分式除法的运算法则计算,再通分整理可得最简结果,把x 的值代入计算即可. 【详解】 原式()()()221111x x x x +=⨯+--+()()211111x x x x x +-+=-++22111x x x +-+=+ 21x =+当1x =时,原式==. 【点睛】本题考查分式的计算——化简求值,熟练掌握运算法则是解题关键.33.(2019·湖北省直辖县级行政单位·中考真题)(1)计算:20(2)|3|(6)----; (2)解分式方程:22511x x =--. 【答案】(1)6;(2)x=32【解析】【分析】(1)先计算乘方、去绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x 的值,再检验即可得.【详解】解:(1)原式=43416-++=;(2)两边都乘以()()11x x +-,得:()215x +=, 解得:32x =, 检验:当32x =时,()()51104x x +-=≠, ∴原分式方程的解为32x =. 【点睛】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.34.(2019·湖北荆州市·中考真题)先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值.【答案】-1【分析】 先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.35.(2019·湖北宜昌市·中考真题)已知:x y ≠,8y x =-+,求代数式22x y x y y x+--的值. 【答案】8【分析】先根据分式加减运算法则化简原式,再将8y x =-+代入计算可得.【详解】 原式2222x y x y x y y x x y x y =+=-----()()22x y x y x y x y x y x y+--===+--, 当x y ≠,8y x +=-时,原式()88x x +-+==.【点睛】本题主要考查分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.36.(2019·湖北黄石市·中考真题)先化简,再求值:2321222x x x x x -+⎛⎫+-÷ ⎪++⎝⎭,其中2x =. 【答案】11x x +-,3. 【分析】 根据分式的运算法则即可求出答案.【详解】原式=2234(1)222x x x x x ⎛⎫--+÷ ⎪+++⎝⎭=221(1)22x x x x --÷++=2(1)(1)22(1)x x x x x +-+⋅+-=11x x +-, ∵|x|=2时,∵x=±2,由分式有意义的条件可知:x=2,∵原式=3.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.37.(2019·湖北荆门市·中考真题)先化简,再求值:2222224333a b a b a a a b a b a bb +-⎛⎫-÷ ⎪-+-⎝⎭•,其中a b = 【答案】103【分析】先根据分式混合运算的法则把原式进行化简,再把a b 、的值代入进行计算即可.【详解】 原式2()43()3()()a b ab a b a b a b +=--+- 22()43()()a b ab a b a b +-=+-,()2223()()a b a b a b +=+-,当a b == 原式103==. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.38.(2019·湖北中考真题)先化简,再求值:21112a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中1a =.【分析】 根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】21112a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 2112a a a a a-+-=÷ 21(1)a a a a -=⋅- 11a =-,当1a =时,原式== 【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.39.(2019·湖北黄冈市·中考真题)先化简,再求值.2222225381a b b a b b a a b ab+⎛⎫+÷ ⎪--+⎝⎭,其中a =1b =.【答案】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=()225381a b b a b ab a b +-÷-+ ()()()()5a b ab a b a b a b -=⋅++- 5ab =,当a =1b =时,原式=.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则.。
2019年陕西省中考数学试卷含答案解析
2019年陕西省中考数学试卷含答案解析一、选择题(共10小题,每小题3分,共30分)1.(3分)计算:(﹣3)0=()A.1B.0C.3D.﹣2.(3分)如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A.B.C.D.3.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°4.(3分)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1B.0C.1D.25.(3分)下列计算正确的是()A.2a2•3a2=6a2B.(﹣3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a26.(3分)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37.(3分)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)8.(3分)如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE =2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1B.C.2D.49.(3分)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°10.(3分)在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6D.m=1,n=﹣2二、填空题(共4小题,每小题3分,共12分)11.(3分)已知实数﹣,0.16,,π,,,其中为无理数的是.12.(3分)若正六边形的边长为3,则其较长的一条对角线长为.13.(3分)如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为.14.(3分)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.三、解答题(共78分)15.(5分)计算:﹣2×+|1﹣|﹣()﹣216.(5分)化简:(+)÷17.(5分)如图,在△ABC中,AB=AC,AD是BC边上的高.请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)18.(5分)如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD,求证:CF =DE.19.(7分)本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为.(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.20.(7分)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB.(小平面镜的大小忽略不计)21.(7分)根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知在距离地面11km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃)(1)写出距地面的高度在11km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km时,飞机外的气温.22.(7分)现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A 袋装有2个白球,1个红球;B袋装有2个红球,1个白球.(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.23.(8分)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB 并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.24.(10分)在平面直角坐标系中,已知抛物线L:y=ax2+(c﹣a)x+c经过点A(﹣3,0)和点B(0,﹣6),L关于原点O对称的抛物线为L′.(1)求抛物线L的表达式;(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.25.(12分)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)2019年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)计算:(﹣3)0=()A.1B.0C.3D.﹣【考点】6E:零指数幂.【分析】直接利用零指数幂的性质计算得出答案.【解答】解:(﹣3)0=1.故选:A.【点评】此题主要考查了零指数幂的性质,正确掌握零指数幂的性质是解题关键.2.(3分)如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上往下看,所以小正方形应在大正方形的右上角.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°【考点】JA:平行线的性质.【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.4.(3分)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1B.0C.1D.2【考点】F8:一次函数图象上点的坐标特征.【分析】由正比例函数图象过点O,可知点O的坐标满足正比例函数的关系式,由此可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵正比例函数y=﹣2x的图象经过点O(a﹣1,4),∴4=﹣2(a﹣1),解得:a=﹣1.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是将点O的坐标代入正比例函数关系得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,将点的坐标代入函数解析式中找出方程是关键.5.(3分)下列计算正确的是()A.2a2•3a2=6a2B.(﹣3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2【考点】4I:整式的混合运算.【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【解答】解:∵2a2•3a2=6a4,故选项A错误,∵(﹣3a2b)2=9a4b2,故选项B错误,∵(a﹣b)2=a2﹣2ab+b2,故选项C错误,∵﹣a2+2a2=a2,故选项D正确,故选:D.【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.6.(3分)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.3【考点】KF:角平分线的性质.【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2,故选:A.【点评】本题考查了角平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.7.(3分)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)【考点】F9:一次函数图象与几何变换.【分析】根据“上加下减”的原则求得平移后的解析式,令y=0,解得即可.【解答】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移6个单位长度所得函数的解析式为y=3x+6,∵此时与x轴相交,则y=0,∴3x+6=0,即x=﹣2,∴点坐标为(﹣2,0),故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.8.(3分)如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE =2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1B.C.2D.4【考点】L7:平行四边形的判定与性质;LB:矩形的性质.【分析】由题意可证EG∥BC,EG=2,HF∥AD,HF=2,可得四边形EHFG为平行四边形,即可求解.【解答】解:∵BE=2AE,DF=2FC,∴,=∵G、H分别是AC的三等分点∴,=∴∴EG∥BC∴,且BC=6∴EG=2,同理可得HF∥AD,HF=2∴四边形EHFG为平行四边形,且EG和HF间距离为1∴S四边形EHFG=2×1=2,故选:C.【点评】本题考查了矩形的性质,平行四边形的判定和性质,证明四边形EHFG为平行四边形是本题的关键.9.(3分)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【考点】M4:圆心角、弧、弦的关系;M5:圆周角定理.【分析】连接FB,得到∠FOB=140°,求出∠EFB,∠OFB即可.【解答】解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.【点评】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6D.m=1,n=﹣2【考点】H6:二次函数图象与几何变换.【分析】根据关于y轴对称,a,c不变,b变为相反数列出方程组,解方程组即可求得.【解答】解:∵抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,∴,解之得,故选:D.【点评】本题考查了二次函数图象与几何变换,根据题意列出方程组是解题的关键.二、填空题(共4小题,每小题3分,共12分)11.(3分)已知实数﹣,0.16,,π,,,其中为无理数的是,π,.【考点】22:算术平方根;24:立方根;26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,、0.16是有理数;无理数有、π、.故答案为:、π、.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…相邻两个2之间0的个数逐次加1,等有这样规律的数.12.(3分)若正六边形的边长为3,则其较长的一条对角线长为6.【考点】MM:正多边形和圆.【分析】根据正六边形的性质即可得到结论.【解答】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.13.(3分)如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为(,4).【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质;R4:中心对称.【分析】根据矩形的性质求得C(6,4),由D是矩形AOBC的对称中心,求得D(3,2),设反比例函数的解析式为y=,代入D点的坐标,即可求得k的值,然后根据反比例函数图象上点的坐标特征即可求得M点的坐标.【解答】解:∵A(0,4),B(6,0),∴C(6,4),∵D是矩形AOBC的对称中心,∴D(3,2),设反比例函数的解析式为y=,∴k=3×2=6,∴反比例函数的解析式为y=,把y=4代入得4=,解得x=,故M的坐标为(,4).故答案为(,4).【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得D点的坐标是解题的关键.14.(3分)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【考点】LE:正方形的性质;PA:轴对称﹣最短路线问题.【分析】作以BD为对称轴作N的对称点N',连接PN',MN',依据PM﹣PN=PM﹣PN'≤MN',可得当P,M,N'三点共线时,取“=”,再求得==,即可得出PM∥AB ∥CD,∠CMN'=90°,再根据△N'CM为等腰直角三角形,即可得到CM=MN'=2.【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.【点评】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(共78分)15.(5分)计算:﹣2×+|1﹣|﹣()﹣2【考点】2C:实数的运算;6F:负整数指数幂.【分析】直接利用立方根的性质以及负指数幂的性质和绝对值的性质分别化简得出答案.【解答】解:原式=﹣2×(﹣3)+﹣1﹣4=1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.(5分)化简:(+)÷【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=[•=•=a.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.(5分)如图,在△ABC中,AB=AC,AD是BC边上的高.请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)【考点】KH:等腰三角形的性质;MA:三角形的外接圆与外心;N3:作图—复杂作图.【分析】作线段AB的垂直平分线,交AD于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.【解答】解:如图所示:⊙O即为所求.【点评】本题考查作图﹣复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(5分)如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD,求证:CF =DE.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得到∠CAF=∠DBE,证明△ACF≌△BDE,根据全等三角形的性质证明结论.【解答】证明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE,∵AC∥BD,∴∠CAF=∠DBE,在△ACF和△BDE中,,∴△ACF≌△BDE(SAS)∴CF=DE.【点评】本题考查的是全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.19.(7分)本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为3.(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;W2:加权平均数;W5:众数.【分析】(1)根据统计图可知众数为3;(2)平均数=;(3)四月份“读书量”为5本的学生人数=1200×=120(人).【解答】解:(1)根据统计图可知众数为3,故答案为3;(2)平均数=;(3)四月份“读书量”为5本的学生人数=1200×=120(人),答:四月份“读书量”为5本的学生人数为120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB.(小平面镜的大小忽略不计)【考点】SA:相似三角形的应用;TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点C作CH⊥AB于点H,则CH=BD,BH=CD=0.5.解Rt△ACH,得出AH=CH=BD,那么AB=AH+BH=BD+0.5.再证明△EFG∽△ABG,根据相似三角形对应边成比例求出BD=17.5,进而求出AB即可.【解答】解:如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=0.5.在Rt△ACH中,∠ACH=45°,∴AH=CH=BD,∴AB=AH+BH=BD+0.5.∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由题意,易知∠EGF=∠AGB,∴△EFG∽△ABG,∴=即=,解之,得BD=17.5,∴AB=17.5+0.5=18(m).∴这棵古树的高AB为18m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,相似三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.21.(7分)根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知在距离地面11km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃)(1)写出距地面的高度在11km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km时,飞机外的气温.【考点】FH:一次函数的应用.【分析】(1)根据气温等于该处的温度减去下降的温度列式即可;(2)根据(1)的结论解答即可.【解答】解:(1)根据题意得:y=m﹣6x;(2)将x=7,y=﹣26代入y=m﹣6x,得﹣26=m﹣42,∴m=16∴当时地面气温为16℃∵x=12>11,∴y=16﹣6×11=﹣50(℃)假如当时飞机距地面12km时,飞机外的气温为﹣50℃.【点评】本题考查了一次函数的应用以及函数值的求解,要注意自变量的取值范围和高于11千米时的气温几乎不再变化的说明.22.(7分)现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A 袋装有2个白球,1个红球;B袋装有2个红球,1个白球.(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.【考点】X6:列表法与树状图法;X7:游戏公平性.【分析】(1)P(摸出白球)=;(2)由上表可知,共有9种等可能结果,其中颜色不相同的结果有4种,颜色相同的结果有5种P(颜色不相同)=,P(颜色相同)=,<这个游戏规则对双方不公平【解答】解:(1)共有3种等可能结果,而摸出白球的结果有2种∴P(摸出白球)=;(2)根据题意,列表如下:由上表可知,共有9种等可能结果,其中颜色不相同的结果有4种,颜色相同的结果有5种∴P(颜色不相同)=,P(颜色相同)=∵<∴这个游戏规则对双方不公平【点评】本题考查了概率,根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率23.(8分)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB 并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.【考点】MC:切线的性质;S9:相似三角形的判定与性质.【分析】(1)根据切线的性质得出∠EAM=90°,等腰三角形的性质∠MAB=∠AMB,根据等角的余角相等得出∠BAE=∠AEB,即可证得AB=BE;(2)证得△ABC∽△EAM,求得∠C=∠AME,AM=,由∠D=∠C,求得∠D=∠AMD,即可证得AD=AM=.【解答】(1)证明:∵AP是⊙O的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEB+∠AMB=90°.又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE(2)解:连接BC∵AC是⊙O的直径,∴∠ABC=90°在Rt△ABC中,AC=10,AB=6,∴BC=8,∵BE=AB=BM,∴EM=12,由(1)知,∠BAE=∠AEB,∴△ABC∽△EAM∴∠C=∠AME,=,即=,∴AM=又∵∠D=∠C,∴∠D=∠AMD∴AD=AM=.【点评】本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,熟练掌握性质定理是解题的关键.24.(10分)在平面直角坐标系中,已知抛物线L:y=ax2+(c﹣a)x+c经过点A(﹣3,0)和点B(0,﹣6),L关于原点O对称的抛物线为L′.(1)求抛物线L的表达式;(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.【考点】HF:二次函数综合题.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)分△POD∽△BOA、△OPD∽△AOB两种情况,分别求解.【解答】解:(1)将点A、B的坐标代入抛物线表达式得:,解得:,∴L:y=﹣x2﹣5x﹣6(2)∵点A、B在L′上的对应点分别为A′(3,0)、B′(0,6),∴设抛物线L′的表达式y=x2+bx+6,将A′(﹣3,0)代入y=x2+bx+6,得b=﹣5,∴抛物线L′的表达式为y=x2﹣5x+6,A(﹣3,0),B(0,﹣6),∴AO=3,OB=6,设:P(m,m2﹣5m+6)(m>0),∵PD⊥y轴,∴点D的坐标为(0,m2﹣5m+6),∵PD=m,OD=m2﹣5m+6,Rt△POD与Rt△AOB相似,①△PDO∽△BOA时,,即m=2(m2﹣5m+6),解得:m=或4;②当△ODP∽△AOB时,同理可得:m=1或6;∵P1、P2、P3、P4均在第一象限,∴符合条件的点P的坐标为(1,2)或(6,12)或(,)或(4,2).【点评】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似等,其中(2),要注意分类求解,避免遗漏.25.(12分)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)【考点】LO:四边形综合题.【分析】(1)利用平行四边形的判定方法画出图形即可.(2)以点O为圆心,OB长为半径作⊙O,⊙O一定于AD相交于P1,P2两点,点P1,P2即为所求.(3)可以,如图所示,连接BD,作△BDE的外接圆⊙O,则点E在优弧上,取的中点E′,连接E′B,E′D,四边形BC′DE′即为所求.【解答】解:(1)如图记为点D所在的位置.(2)如图,∵AB=4,BC=10,∴取BC的中点O,则OB>AB.∴以点O为圆心,OB长为半径作⊙O,⊙O一定于AD相交于P1,P2两点,连接BP1,P1C,P1O,∵∠BPC=90°,点P不能再矩形外;∴△BPC的顶点P1或P2位置时,△BPC的面积最大,作P1E⊥BC,垂足为E,则OE=3,∴AP1=BE=OB﹣OE=5﹣3=2,由对称性得AP2=8.(3)可以,如图所示,连接BD,∵A为▱BCDE的对称中心,BA=50,∠CBE=120°,∴BD=100,∠BED=60°作△BDE的外接圆⊙O,则点E在优弧上,取的中点E′,连接E′B,E′D,则E′B=E′D,且∠BE′D=60°,∴△BE′D为正三角形.连接E′O并延长,经过点A至C′,使E′A=AC′,连接BC′,DC′,∵E′A⊥BD,∴四边形E′D为菱形,且∠C′BE′=120°,作EF⊥BD,垂足为F,连接EO,则EF≤EO+OA﹣E′O+OA=E′A,∴S△BDE=•BD•EF≤•BD•E′A=S△E′BD,∴S平行四边形BCDE≤S平行四边形BC′DE′=2S△E′BD=1002•sin60°=5000(m2)所以符合要求的▱BCDE的最大面积为5000m2.【点评】本题属于四边形综合题,考查了平行四边形的判定和性质,圆周角定理,三角形的面积等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考压轴题.。
湖北省襄阳市2019年中考[数学]考试真题和参考答案
湖北省襄阳市2019年中考[数学]考试真题与答案解析一、选择题本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是( )A.﹣2 B.2 C.﹣D.【知识考点】绝对值.【思路分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解题过程】解:|﹣2|=2.故选:B.【总结归纳】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是( )A.132° B.128° C.122° D.112°【知识考点】平行线的性质.【思路分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=∠BEF=58°,由平行线的性质即可得到结论.【解题过程】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.【总结归纳】此题考查了平行线的性质与角平分线的定义.解题的关键是掌握两直线平行,同旁内角互补与两直线平行,内错角相等的知识点.3.下列运算一定正确的是( )A.a+a=a2B.a2•a3=a6C.(a3)4=a12D.(ab)2=ab2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a+a=2a,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a3)4=a12,故本选项符合题意;D.(ab)2=a2b2,故本选项不合题意.故选:C.【总结归纳】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定【知识考点】算术平均数;方差;随机事件;概率的意义;概率公式.【思路分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【解题过程】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;故选:D.【总结归纳】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.5.如图所示的三视图表示的几何体是( )A.B.C.D.【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解题过程】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.【总结归纳】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.6.不等式组中两个不等式的解集在数轴上表示正确的是( )A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】根据不等式组可以得到该不等式组的解集,从而可以在数轴上表示出来,本题得以解决.【解题过程】解:由不等式组得﹣2≤x<1,该不等式组的解集在数轴表示如下:故选:A.【总结归纳】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C【知识考点】作图—基本作图.【思路分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC =∠BAC即可.【解题过程】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【总结归纳】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是( )A.B.C.D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】根据“3匹小马能拉1片瓦,1匹大马能拉3片瓦”,即可得出关于x,y的二元一次方程组,此题得解.【解题过程】解:根据题意可得:,故选:C.【总结归纳】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是( )A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形【知识考点】平行四边形的判定与性质;菱形的性质;菱形的判定;矩形的判定;正方形的判定.【思路分析】根据正方形的判定,矩形的判定、菱形的判定方法分别判断后即可确定正确的选项.【解题过程】解:A、根据平行四边形的性质得到OA=OC,OB=OD,该结论正确;B、当AB=CD时,四边形ABCD还是平行四边形,该选项错误;C、根据有一个角是直角的平行四边形是矩形可以判断该选项正确;D、当AC=BD且AC⊥BD时,根据对角线相等可判断四边形ABCD是矩形,根据对角线互相垂直可判断四边形ABCD 是菱形,故四边形ABCD是正方形,该结论正确;故选:B.【总结归纳】本题考查了正方形的判定,矩形的判定、平行四边形的性质及菱形的判定方法,牢记判定方法是解答本题的关键.10.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有( )A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系.【思路分析】二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【解题过程】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.【总结归纳】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.二、填空题本大题共6个小题,每小题3分,共18分.11.函数y=中自变量x的取值范围是 .【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解题过程】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【总结归纳】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= °.【知识考点】三角形内角和定理;三角形的外角性质.【思路分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解题过程】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【总结归纳】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为 .【知识考点】概率公式.【思路分析】从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,由概率公式即可得出答案.【解题过程】解:从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,∴这一卦中恰有2根和1根的概率为=;故答案为:.【总结归纳】本题考查了概率公式、古典概率;熟练掌握概率公式是解题的关键.14.汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t ﹣6t2.则汽车从刹车到停止所用时间为 秒.【知识考点】二次函数在给定区间上的最值.【思路分析】利用配方法求二次函数最值的方法解答即可.【解题过程】解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.【总结归纳】考查了二次函数最值的应用,此题主要利用配方法求最值的问题,根据已知得出顶点式是解题关键.15.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 °.【知识考点】线段垂直平分线的性质;垂径定理;圆周角定理.【思路分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.【解题过程】解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.【总结归纳】本题考查了圆周角定理、垂径定理、线段垂直平分线的性质,解决本题的关键是掌握圆周角定理.16.如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为 .【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠的性质得出∠BNF=∠BEF,由条件得出tan∠BEF=,设BF=x,BE =2x,由勾股定理得出EF=3x,得出AB=BF,则可得出答案.【解题过程】解:∵将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,∴AF⊥DE,AE=EF,∵矩形ABCD中,∠ABF=90°,∴B,E,N,F四点共圆,∴∠BNF=∠BEF,∴tan∠BEF=,设BF=x,BE=2x,∴EF==3x,∴AE=3x,∴AB=5x,∴AB=BF.∴S矩形ABCD=AB•AD=BF•AD=×15=15.故答案为:15.【总结归纳】本题考查了折叠的性质,矩形的性质,锐角三角函数,勾股定理等知识,熟练掌握折叠的性质是解题的关键.三、解答题本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.【知识考点】整式的混合运算—化简求值.【思路分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解题过程】解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy,当x=,y=﹣1时,原式=6××(﹣1)=6﹣6.【总结归纳】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD =140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】求出∠E的度数,再在Rt△BDE 中,依据三角函数进行计算即可.【解题过程】解:∵A、C、E三点在一条直线上,∠ABD=140°,∠D=50°,∴∠E=140°﹣50°=90°,在Rt△BDE中,DE=BD•cos∠D=560×cos50°≈560×0.64=358.4(米).答:点E与点D间的距离是358.4米.【总结归纳】考查直角三角形的边角关系,构造直角三角形是解决问题的关键.19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?【知识考点】分式方程的应用.【思路分析】设原来每天用水量是x吨,则现在每天用水量是x吨,根据现在120吨水比以前可多用3天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解题过程】解:设原来每天用水量是x吨,则现在每天用水量是x吨,依题意,得:﹣=3,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴x=8.答:现在每天用水量是8吨.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为 人.【知识考点】用样本估计总体;频数(率)分布直方图;中位数;众数.【思路分析】(1)计算出第2组60~70组的人数,即可补全频数分布直方图;(2)根据中位数、众数的意义,分别求出第3组的众数,样本中位数;(3)样本估计总体,样本中80分以上的占,因此估计总体1500人的是80分以上的人数.【解题过程】解:(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如图所示:(2)第3组数据出现次数最多的是76,共出现3次,因此众数是76,抽取的50人的成绩从小到大排列处在第25、26位的两个数的平均数为=78,因此中位数是78,故答案为:76,78;(3)1500×=720(人),故答案为:720.【总结归纳】考查频数分布直方图的意义和制作方法,理解中位数、众数的意义和计算方法是正确解答的前提.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m= ,n= ;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 .【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;(3)根据反比例函数系数k的几何意义即可求得.【解题过程】解:(1)∵把A(1,4)代入y1=(x>0)得:m=1×4=4,∴y=,∵把B(n,2)代入y=得:2=,解得n=2;故答案为4,2;(2)把A(1,4)、B(2,2)代入y2=kx+b得:,解得:k=﹣2,b=6,即一次函数的解析式是y=﹣2x+6.由图象可知:y1<y2时x的取值范围是1<x<2;(3)∵点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,∴S△POM=|m|==2,故答案为2.【总结归纳】本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.【知识考点】勾股定理;垂径定理;圆周角定理;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)连接OC,根据=,求得∠CAD=∠BAC,根据等腰三角形的性质得到∠BAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥CD,于是得到CD是⊙O 的切线;(2)连接OE,连接BE交OC于F,根据垂径定理得到OC⊥BE,BF=EF,由圆周角定理得到∠AEB=90°,根据矩形的性质得到EF=CD=,根据勾股定理得到AE===2,求得∠AOE=60°,连接CE,推出CE∥AB,根据三角形和扇形的面积公式即可得到结论.【解题过程】(1)证明:连接OC,∵=,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵=,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=,∴BE=2,∴AE===2,∴AE=AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵=,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE是等边三角形,∴∠ECO=∠BOC=60°,∴CE∥AB,∴S△ACE=S△COE,∵∠OCD=90°,∠OCE=60°,∴∠DCE=30°,∴DE=CD=1,∴AD=3,∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.【总结归纳】本题考查了直线与圆的位置关系,勾股定理,垂径定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.【知识考点】一元一次不等式组的应用;一次函数的应用.【思路分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a 的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.(3)根据(2)的结论分情况讨论.【解题过程】解:(1)当0≤x≤50时,设y=kx,根据题意得50k=1500,解得k=30;∴y=30x;当x>50时,设y=k1x+b,根据题意得,,解得,∴y=24x+3000.∴y=,(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.当a=40 时.w min=2700 元,当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.当a=60时,w min=2740 元,∵2740>2700,∴当a=40时,总费用最少,最少总费用为2700 元.此时乙种水果100﹣40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.(3)由题意可设甲种水果为千克,乙种水果为千克当时,即0≤a≤125,则甲种水果的进货价为30元/千克,(40﹣30)×a+(36﹣25)×≥1650,解得a≥,与0≤a≤125矛盾,故舍去;当时,即a>125,则甲种水果的进货价为24元/千克,≥1650,解得x≥150,∴a的最小值为150.【总结归纳】本题主要考查了一次函数的图象以及一元一次不等式组的应用.借助函数图象表达题目中的信息,读懂图象是关键.24.(11分)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE= °;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当=时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=,求DF的长.【知识考点】三角形综合题.【思路分析】(1)①证明△ABD≌△ACF(AAS)可得结论.②利用四点共圆的性质解决问题即可.(2)结论不变.利用四点共圆证明即可.(3)如图3中,连接EK.首先证明AB=AC=3EC,设EC=a,则AB=AC=3a,在Rt△KCE中,利用勾股定理求出a,再求出DP,PF即可解决问题.【解题过程】(1)①证明:如图1中,∵AB=AC,∴∠B=∠ACF,∵AD=AF,∴∠ADF=∠AFD,∴∠ADB=∠AFC,∴△ABD≌△ACF(AAS),∴BD=CF.②结论:∠ACE=90°.理由:如图1中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.故答案为90.(2)结论:∠ACE=90°.理由:如图2中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.(3)如图3中,连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴==,设EC=a,则AB=AC=3a,AK=3a﹣,∵DA=DE,DK⊥AE,∴AP=PE,∴AK=KE=3a﹣,∵EK2=CK2+EC2,∴(3a﹣)2=()2+a2,解得a=4或0(舍弃),∴EC=4,AB=AC=12,∴AE===4,∴DP=PA=PE=AE=2,EF=AE=,∴PF=PE=2,∵∠DPF=90°,∴DF===4.【总结归纳】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.(12分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.【知识考点】二次函数综合题.【思路分析】(1)令x=0,由y=﹣x+2,得A点坐标,令y=0,由y=﹣x+2,得C点坐标,将A、C的坐标代入抛物线的解析式便可求得抛物线的解析式,进而由二次函数解析式令y=0,便可求得B点坐标;(2)过M点作MN⊥x轴,与AC交于点N,设M(a,),则N(a,),由三角形的面积公式表示出四边形的面积关于a的函数关系式,再根据二次函数的性质求得最大值,并求得a的值,便可得M点的坐标;(3)根据旋转性质,求得O′点和A′点的坐标,令O′点和A′点在抛物线上时,求出m 的最大和最小值便可.【解题过程】解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得,x=4,∴C(4,0),把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为,令y=0,得=0,解得,x=4,或x=﹣2,∴B(﹣2,0);(2)过M点作MN⊥x轴,与AC交于点N,如图1,设M(a,),则N(a,),∴=,∵,∴S四边形ABCM=S△ACM+S△ABC=,∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2);(3)∵将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图2,∴PO′=PO=m,O′A′=OA=2,∴O′(m,m),A′(m+2,m),当A′(m+2,m)在抛物线上时,有,解得,m=﹣3,当点O′(m,m)在抛物线上时,有,解得,m=﹣4或2,∴当﹣3﹣≤m≤﹣4或﹣3+≤m≤2时,线段O′A′与抛物线只有一个公共点.。
2019年湖北省襄阳市中考数学试卷(含解析)完美打印版
2019年湖北省襄阳市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答1.(3分)计算|﹣3|的结果是()A.3B.C.﹣3D.±32.(3分)下列运算正确的是()A.a3﹣a2=a B.a2•a3=a6C.a6÷a2=a3D.(a2)﹣3=a﹣63.(3分)如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°4.(3分)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.7.(3分)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形8.(3分)下列说法错误的是()A.必然事件发生的概率是1 B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.(3分)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3B.5x+45=7x+3C.=D.=10.(3分)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在答题卡的相应位置上11.(3分)习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为.12.(3分)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.13.(3分)从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.(3分)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是(只填序号).15.(3分)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h =20t﹣5t2,则小球从飞出到落地所用的时间为s.16.(3分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.三、解答题:本大题共9个小题,共72分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内。
2019年湖北省襄阳中考数学试卷-答案
湖北省襄阳市2019年初中毕业生学业水平考试数学答案解析一、选择题1.【答案】A 【解析】解:33-=.故选:A .根据绝对值的性质进行计算.【考点】绝对值的性质2.【答案】D【解析】解:A .32a a -,无法计算,故此选项错误;B .235a a a ⋅=,故此选项错误;C .624a a a ÷=,故此选项错误;D .()326a a --=,正确.故选:D .直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【考点】合并同类项,同底数幂的乘除运算3.【答案】B【解析】解:∵CD AB ⊥于点D ,40BCD =︒∠,∴90CDB =︒∠.∴90BCD DBC +=︒∠∠,即4090BCD +︒=︒∠.∴50DBC =︒∠.∵直线BC AE ∥,∴150DBC ==︒∠∠.故选:B .先在直角CBD △中可求得DBC ∠的度数,然后平行线的性质可求得1∠的度数.【考点】平行线的性质,垂线的定义,直角三角形两锐角互余的性质4.【答案】D【解析】解:由:“Z ”字型对面,可知春字对应的面上的字是奋;故选:D .正方体展开图的“Z ”字型找对面的方法即可求解;【考点】正方体的展开图5.【答案】B【解析】解:A .是轴对称图形,不是中心对称图形,故此选项错误;B .是轴对称图形,也是中心对称图形,故此选项正确;C .不是轴对称图形,是中心对称图形,故此选项错误;D .不是轴对称图形,是中心对称图形,故此选项错误.故选:B .根据轴对称图形与中心对称图形的概念求解.【考点】中心对称图形与轴对称图形的概念6.【答案】C【解析】解:不等式组整理得:43x x ⎧⎨-⎩<≤, ∴不等式组的解集为3x -≤,故选:C .求出不等式组的解集,表示出数轴上即可.【考点】解一元一次方程组7.【答案】D【解析】解:由作图可知:AC AD BC BD ===,∴四边形ACBD 是菱形,故选:D .根据四边相等的四边形是菱形即可判断.【考点】基本作图,菱形的判定8.【答案】C【解析】解:A .必然事件发生的概率是1,正确;B .通过大量重复试验,可以用频率估计概率,正确;C .概率很小的事件也有可能发生,故错误;D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C .不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【考点】本题考查了概率的意义9.【答案】B【解析】解:设合伙人数为x 人,依题意,得:54573x x +=+.故选:B .设合伙人数为x 人,根据羊的总价钱不变,即可得出关于x 的一元一次方程,此题得解.【考点】由实际问题抽象出一元一次方程10.【答案】A【解析】解:∵AD 为直径,∴90ACD =︒∠,∵四边形OBCD 为平行四边形,∴CD OB ∥,CD OB =,在Rt ACD △中,1sin 2CD A AD ==, ∴30A =︒∠,在Rt AOP △中,AP =,所以A 选项的结论错误;∵OP CD ∥,CD AC ⊥,∴OP AC ⊥,所以C 选项的结论正确;∴AP CP =,∴OP 为ACD △的中位线,∴2CD OP =,所以B 选项的结论正确;∴2OB OP =,∴AC 平分OB ,所以D 选项的结论正确.故选:A . 利用圆周角定理得到90ACD =︒∠,再根据平行四边形的性质得到CD OB ∥,CD OB =,则可求出30A =︒∠,在Rt AOP △中利用含30度的直角三角形三边的关系可对A 选项进行判断;利用OP CD ∥,CD AC ⊥可对C 选项进行判断;利用垂径可判断OP 为ACD △的中位线,则2CD OP =,原式可对B 选项进行判断;同时得到2OB OP =,则可对D 选项进行判断.【考点】圆周角定理,垂径定理,平行四边形的性质.二、填空题11.【答案】81.210⨯【解析】解:81.2 1.210=⨯亿.故答案为:81.210⨯.科学记数法就是将一个数字表示成(10a ⨯的n 次幂的形式),其中110a ≤<,n 表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.【考点】科学记数法的理解和运用,单位的换算12.【答案】1x =【解析】解:2*(3)1*(2)x x +=,2132x x=+, 43x x =+,1x =,经检验:1x =是原方程的解,故答案为:1x =.根据新定义列分式方程可得结论.【考点】解分式方程,新定义的理解13.【答案】13【解析】解:画树状图如图所示,一共有6种情况,2b a =的有(2,4)和(3,6)两种,所以点(,)a b 在直线2y x =上的概率是2163=, 故答案为:13.画出树状图,找到2b a =的结果数,再根据概率公式解答【考点】列表法与树状图法14.【答案】②【解析】解:∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC DCB △≌△;若添加②AC DB =,则属于边边角的顺序,不能判定ABC DCB △≌△;若添加③AB DC =,则属于边角边的顺序,可以判定ABC DCB △≌△.故答案为:②.一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解. 【考点】全等三角形的几种基本判定方法15.【答案】4【解析】解:依题意,令0h =得20205t t =-得(205)0t t -=解得0t =(舍去)或4t =即小球从飞出到落地所用的时间为4s故答案为4.根据关系式,令0h =即可求得t 的值为飞行的时间【考点】二次函数的性质在实际生活中的应用16【解析】解:如图,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N ,∵1BD =,5AD =,∴6AB BD AD =+=,∵在Rt ABC △中,30BAC ∠=︒,9060B BAC ∠=︒-∠=︒,∴132BC AB ==,AC ==, 在Rt BCA △与Rt DCE △中,∵30BAC DEC =∠=︒,∴tan tan BAC DEC ∠=∠, ∴BC DC AC EC=, ∵90BCA DCE =∠=︒,∴BCA DCA DCE DCA -∠=∠-∠∠,∴BCD ACE ∠=∠,∴BCD ACE △∽△,∴60CAE B ∠=∠=︒, ∴BC BD AC AE=, ∴306090DAE DAC CAE ∠=∠+∠=︒+︒=︒1AE,∴AE =,在Rt ADE △中,DE==在Rt DCE△中,30DEC∠=︒,∴60EDC∠=︒,12DC DE==,在Rt DCM△中,MC=,在Rt AEN△中,32NE AE==,∵MFC NFE∠=∠,90FMC FNE∠=∠=,∴MFC NFE△∽△+,∴232CF MCEF NE==,.过点C作CM DE⊥于点M,过点E作EN AC⊥于点N,先证BCD ACE△∽△,求出AE的长及60CAE∠=︒,推出90DAE∠=︒,在Rt DAE△中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt DCM△和Rt AEN△中,求出MC和NE的长,再证MFC NFE△∽△,利用相似三角形对应边的比相等即可求出CF 与EF的比值.【考点】相似三角形的判定与性质,勾股定理,解直角三角形三、解答题17.【答案】解:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭ 22121111x x x x x x x -++⎛⎫=-÷ ⎪---⎝⎭ 21(1)(1)1(1)x x x x +-=⨯-+ 11x =+,当1x =-时,原式==. 【解析】根据分式的混合运算法则把原式化简,代入计算即可.【考点】分式的化简求值18.【答案】(1)20︒0.2︒(2)7080x ︒≤<(3)正确(4)72︒(5)900【解析】解:(1)调查学生总数:150.350÷=(名),7080x ≤<的频数:501510520---=,即20a =。
2022年湖北省襄阳市中考数学试卷(学生版+解析版)
2022年湖北省襄阳市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答.1.(3分)若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.(3分)襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.3.(3分)2021年,襄阳市经济持续稳定恢复,综合实力显著增强,人均地区生产总值再上新台阶,突破100000元大关.将100000用科学记数法表示为()A.1×104B.1×105C.10×104D.0.1×1064.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°5.(3分)襄阳市正在创建全国文明城市,某社区从今年6月1日起实施垃圾分类回收.下列图形分别是可回收物、厨余垃圾、有害垃圾及其它垃圾的标志,其中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.(3分)下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D.若抽奖活动的中奖概率为150,则抽奖50次必中奖1次7.(3分)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形8.(3分)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为()A.900x+3=2×900x−1B.900x−3=2×900x+1C.900x−1=2×900x+3D.900x+1=2×900x−39.(3分)若点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=2x的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定10.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c和反比例函数y=a x在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上。
2019年湖北省襄阳市中考数学试题及参考答案
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.
1.﹣3的相反数是( )
A.3 B.﹣3 C. D.﹣
【解答】解:﹣3的相反数是3,
故选:A.
2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( )
13.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.
【解答】解:由题意可得,
摸到黑球和白球的频率之和为:1﹣0.4=0.6,
∴总的球数为:(8+4)÷0.6=20,
2019年湖北省襄阳市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.
1.﹣3的相反数是( )
A.3 B.﹣3 C. D.﹣
2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( )
三、解答题:本大题共9小题,共72分,解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.
17.先化简,再求值:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),其中x= .
18.襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日玩的热点景区,张老师对八(1)班学生“五•一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:
2019年湖北省襄阳中考数学试卷含答案解析
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前湖北省襄阳市2019年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3-的结果是( )A .3B .13C .3-D .3±2.下列运算正确的是( )A . 32a a a -=B .236a a a ⋅=C .623a a a ÷=D .236()a a --= 3.如图,直线BC AE ∥,CD AB ⊥于点D ,若40BCD =︒∠,则1∠的度数是 ( )第3题图A .60B .50C .40D .304.某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )第4题图A .青B .来C .斗D .奋5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D6.不等式组24339x x x x +⎧⎨++⎩<≥的解集在数轴上用阴影表示正确的是( )A B C D7.如图,分别以线段AB 的两个端点为圆心,大于AB 的一半的长为半径画弧,两弧分别交于C ,D 两点,连接AC ,BC ,AD ,BD ,则四边形ADBC 一定是 ( )第7题图A .正方形B .矩形C .梯形D .菱形8.下列说法错误的是 ( ) A .必然事件发生的概率是1B .通过大量重复试验,可以用频率估计概率C .概率很小的事件不可能发生D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是 ( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 10.如图,AD 是O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是 ( )第10题图A .2AP OP =B .2CD OP =C .OB AC ⊥D .AC 平分OB二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为 .12.定义:*aa b b =,则方程2*(3)1*(2)x x +=的解为 .13.从2,3,4,6中随机选取两个数记作a 和b (a b <),那么点(,)a b 在直线2y x =上的毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)概率是 .14.如图,已知ABC DCB =∠∠,添加下列条件中的一个:①A D =∠∠,②AC DB =,③AB DC =,其中不能确定ABC DCB △≌△的是 (只填序号).第14题图15.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为 s .第15题图16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,30BAC DEC ==︒∠∠,AC 与DE 交于点F ,连接AE ,若1BD =,5AD =,则CFEF= .第16题图三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中1x .18.(本小题满分6分)今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3 000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,(1)表中a = ,b =; (2)这组数据的中位数落在 范围内;(3)判断:这组数据的众数一定落在7080x ≤<范围内,这个说法 (填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在8090x ≤<范围内的扇形圆心角的大小为 ;(5)若成绩不小于80分为优秀,则全校大约有 名学生获得优秀成绩.19.(本小题满分6分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD )16m ,宽(AB )9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为2112m ,则小路的宽应为多少?第19题图数学试卷 第5页(共22页) 数学试卷 第6页(共22页)20.(本小题满分6分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC 和塔冠BE )进行了测量.如图所示,最外端的拉索AB 的底端A 到塔柱底端C 的距离为121m ,拉索AB 与桥面AC 的夹角为37︒,从点A 出发沿AC 方向前进23.5m ,在D 处测得塔冠顶端E 的仰角为45︒.请你求出塔冠BE 的高度(结果精确到0.1m .参考数据sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,1.41≈).第20题图21.(本小题满分7分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、第三象限分别交于(3,4)A ,(,2)B a -两点,直线AB 与y 轴,x 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD ______BC (填“>”或“<”或“=”); (3)直接写出12y y <时x 的取值范围.第21题图22.(本小题满分7分)如图,点E 是ABC △的内心,AE 的延长线和△ABC 的外接圆O 相交于点D ,过D 作直线DG BC ∥.(1)求证:DG 是O 的切线;(2)若6DE =,BC =BAC 的长.第22题图23.(本小题满分10分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、(1)该超市购进甲种蔬菜10kg 和乙种蔬菜5kg 需要170元;购进甲种蔬菜6kg 和乙种蔬菜10kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg 进行销售,其中甲种蔬菜的数量不少于20kg ,且不大于70kg .实际销售时,由于多种因素的影响,甲种蔬菜超过60kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg )之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________24.(本小题满分10分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ AE⊥于点O,点G,F分别在边CD,AB上,GF AE⊥.①求证:DQ AE=;②推断:GFAE的值为;(2)类比探究:如图(2),在矩形ABCD中,BCkAB=(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当23k=时,若3tan4CGP∠=,GF=求CP的长.第24题图(1)第24题图(2)25.(本小题满分13分)如图,在直角坐标系中,直线132y x=-+与x轴,y轴分别交于点B,点C,对称轴为1x=的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与ABC△相似?若存在,求出点Q的坐标;若不存在,请说明理由.第25题图数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷 第9页(共22页) 数学试卷 第10页(共22页)湖北省襄阳市2019年初中毕业生学业水平考试数学答案解析一、选择题 1.【答案】A【解析】解:33-=. 故选:A .根据绝对值的性质进行计算. 【考点】绝对值的性质 2.【答案】D【解析】解:A .32a a -,无法计算,故此选项错误; B .235a a a ⋅=,故此选项错误; C .624a a a ÷=,故此选项错误; D .()326a a --=,正确.故选:D .直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案. 【考点】合并同类项,同底数幂的乘除运算 3.【答案】B【解析】解:∵CD AB ⊥于点D ,40BCD =︒∠, ∴90CDB =︒∠.∴90BCD DBC +=︒∠∠,即4090BCD +︒=︒∠. ∴50DBC =︒∠. ∵直线BC AE ∥,∴150DBC ==︒∠∠. 故选:B .先在直角CBD △中可求得DBC ∠的度数,然后平行线的性质可求得1∠的度数. 【考点】平行线的性质,垂线的定义,直角三角形两锐角互余的性质 4.【答案】D【解析】解:由:“Z ”字型对面,可知春字对应的面上的字是奋; 故选:D .正方体展开图的“Z ”字型找对面的方法即可求解; 【考点】正方体的展开图 5.【答案】B【解析】解:A .是轴对称图形,不是中心对称图形,故此选项错误; B .是轴对称图形,也是中心对称图形,故此选项正确; C .不是轴对称图形,是中心对称图形,故此选项错误; D .不是轴对称图形,是中心对称图形,故此选项错误. 故选:B .根据轴对称图形与中心对称图形的概念求解.【考点】中心对称图形与轴对称图形的概念 6.【答案】C【解析】解:不等式组整理得:43x x ⎧⎨-⎩<≤,∴不等式组的解集为3x -≤,故选:C .求出不等式组的解集,表示出数轴上即可. 【考点】解一元一次方程组 7.【答案】D【解析】解:由作图可知:AC AD BC BD ===, ∴四边形ACBD 是菱形, 故选:D .根据四边相等的四边形是菱形即可判断. 【考点】基本作图,菱形的判定 8.【答案】C【解析】解:A .必然事件发生的概率是1,正确; B .通过大量重复试验,可以用频率估计概率,正确; C .概率很小的事件也有可能发生,故错误;D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确, 故选:C .不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【考点】本题考查了概率的意义 9.【答案】B【解析】解:设合伙人数为x 人, 依题意,得:54573x x +=+. 故选:B .设合伙人数为x 人,根据羊的总价钱不变,即可得出关于x 的一元一次方程,此题得解. 【考点】由实际问题抽象出一元一次方程 10.【答案】A【解析】解:∵AD 为直径, ∴90ACD =︒∠,∵四边形OBCD 为平行四边形, ∴CD OB ∥,CD OB =,在Rt ACD △中,1sin 2CD A AD ==, ∴30A =︒∠,在Rt AOP △中,AP =,所以A 选项的结论错误; ∵OP CD ∥,CD AC ⊥,数学试卷 第11页(共22页) 数学试卷 第12页(共22页)∴OP AC ⊥,所以C 选项的结论正确; ∴AP CP =,∴OP 为ACD △的中位线,∴2CD OP =,所以B 选项的结论正确; ∴2OB OP =,∴AC 平分OB ,所以D 选项的结论正确. 故选:A .利用圆周角定理得到90ACD =︒∠,再根据平行四边形的性质得到CD OB ∥,CD OB =,则可求出30A =︒∠,在Rt AOP △中利用含30度的直角三角形三边的关系可对A 选项进行判断;利用OP CD ∥,CD AC ⊥可对C 选项进行判断;利用垂径可判断OP 为ACD △的中位线,则2CD OP =,原式可对B 选项进行判断;同时得到2OB OP =,则可对D 选项进行判断.【考点】圆周角定理,垂径定理,平行四边形的性质. 二、填空题11.【答案】81.210⨯【解析】解:81.2 1.210=⨯亿. 故答案为:81.210⨯.科学记数法就是将一个数字表示成(10a ⨯的n 次幂的形式),其中110a ≤<,n 表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂. 【考点】科学记数法的理解和运用,单位的换算 12.【答案】1x =【解析】解:2*(3)1*(2)x x +=, 2132x x =+, 43x x =+, 1x =,经检验:1x =是原方程的解, 故答案为:1x =.根据新定义列分式方程可得结论. 【考点】解分式方程,新定义的理解 13.【答案】13【解析】解:画树状图如图所示,一共有6种情况,2b a =的有(2,4)和(3,6)两种,所以点(,)a b 在直线2y x =上的概率是2163=, 故答案为:13. 画出树状图,找到2b a =的结果数,再根据概率公式解答 【考点】列表法与树状图法 14.【答案】②【解析】解:∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC DCB △≌△;若添加②AC DB =,则属于边边角的顺序,不能判定ABC DCB △≌△; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC DCB △≌△. 故答案为:②.一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解. 【考点】全等三角形的几种基本判定方法 15.【答案】4【解析】解:依题意,令0h =得 20205t t =- 得(205)0t t -=解得0t =(舍去)或4t =即小球从飞出到落地所用的时间为4s 故答案为4.根据关系式,令0h =即可求得t 的值为飞行的时间 【考点】二次函数的性质在实际生活中的应用 16.【答案】3【解析】解:如图,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N , ∵1BD =,5AD =, ∴6AB BD AD =+=,∵在Rt ABC △中,30BAC ∠=︒,9060B BAC ∠=︒-∠=︒,∴132BC AB ==,AC ==,在Rt BCA △与Rt DCE △中, ∵30BAC DEC =∠=︒, ∴tan tan BAC DEC ∠=∠, ∴BC DCAC EC=, ∵90BCA DCE =∠=︒,∴BCA DCA DCE DCA -∠=∠-∠∠, ∴BCD ACE ∠=∠,数学试卷 第13页(共22页) 数学试卷 第14页(共22页)∴BCD ACE △∽△, ∴60CAE B ∠=∠=︒, ∴BC BDAC AE=, ∴306090DAE DAC CAE ∠=∠+∠=︒+︒=︒1AE,∴AE , 在Rt ADE △中,DE = 在Rt DCE △中,30DEC ∠=︒,∴60EDC ∠=︒,12DC DE ==,在Rt DCM △中,MC =在Rt AEN △中,32NE AE ==, ∵MFC NFE ∠=∠,90FMC FNE ∠=∠=, ∴MFC NFE △∽△+,∴232CF MC EF NE ==故答案为:3.过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N ,先证BCD ACE △∽△,求出AE 的长及60CAE ∠=︒,推出90DAE ∠=︒,在Rt DAE △中利用勾股定理求出DE 的长,进一步求出CD 的长,分别在Rt DCM △和Rt AEN △中,求出MC 和NE 的长,再证MFC NFE △∽△,利用相似三角形对应边的比相等即可求出CF 与EF 的比值.【考点】相似三角形的判定与性质,勾股定理,解直角三角形 三、解答题17.【答案】解:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭22121111xx x x x x x -++⎛⎫=-÷⎪---⎝⎭21(1)(1)1(1)x x x x +-=⨯-+ 11x =+,当1x =时,原式==.【解析】根据分式的混合运算法则把原式化简,代入计算即可. 【考点】分式的化简求值 18.【答案】(1)20︒ 0.2︒(2)7080x ︒≤< (3)正确 (4)72︒ (5)900【解析】解:(1)调查学生总数:150.350÷=(名), 7080x ≤<的频数:501510520---=,即20a =。
2019年湖北省襄阳市宜城市中考数学模拟试卷(5月份)解析版
2019年湖北省襄阳市宜城市中考数学模拟试卷(5月份)一、选择题.(30分)1.(3分)计算|﹣2|﹣2的结果是()A.0B.﹣2C.﹣4D.42.(3分)如图,直线l1∥l2,且分别与直线l交于C、D两点,把一块含30o角的三角尺按如图所示的位置摆放,若∠1=53°,则∠2的度数是()A.93o B.97o C.103o D.107o3.(3分)下列各运算中,计算正确的是()A.a15÷a5=a3B.(2a2)2=4a4C.(a﹣b)2=a2﹣b2D.4a•3a2=12a24.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1065.(3分)如图所示的几何体的俯视图是()A.B.C.D.6.(3分)下列事件中,是随机事件的是()A.任意抛一枚图钉,钉尖着地B.任意画一个三角形,其内角和是180oC.通常加热到100℃时,水沸腾D.太阳从东方升起7.(3分)如图,∠AOB=120°,以点O为圆心,以任意长为半径作弧分别交OA、OB于点C、D,分别以C、D为圆心,以大于CD为的长为半径作弧,两弧相交于点P,以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.3B.C.2D.68.(3分)我国古代《易经》一书中记载:远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.515B.346C.1314D.849.(3分)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣10.(3分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确二、填空题.(18分)11.(3分)计算:(+)(﹣)的结果等于.12.(3分)已知xy=3x+3y+5,则(x﹣3)(y﹣3)=.13.(3分)分式方程+=1的解为.14.(3分)为了弘扬中华传统文化,营造书香校园文化氛围,某学校举行中华传统文化知识大赛活动,该学校从三名女生和两名男生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是.15.(3分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是.16.(3分)如图,在Rt△ABC中,∠C=90o,AB=5,AC=4,线段AD由线段AB绕点A 按逆时针方向旋转90o得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于H,则AH=.三、解答题.(72分)17.(6分)先化简,然后从﹣3<x<2的范围内选取一个合适的整数作为x的值代入求值.18.(6分)如图,为了测量电线杆的高度,在离电线杆20m的D处,用高1.20m的测角仪CD测得电线杆顶端A的仰角α=22o,求电线杆AB的高.(精确到0.1m)(参考数据:sin22°≈0.3746,cso22o≈0.9272,tan22°≈0.4040)19.(6分)某校八(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)本次调查采用的方式是(填“普查”或“抽样调查”),样本容量是;(2)补全频数分布直方图;(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过15t的家庭大约有多少户?20.(6分)甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元,(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?21.(7分)如图,一次函数的图象与y轴交于C(0,8),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点.(1)求△AOC的面积;(2)若=4,求反比例函数和一次函数的解析式.22.(8分)如图,点O是△ABC的边AB上一点,⊙O与半径AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90o;(2)当BC=2,sin A=时,求AF的长.23.(10分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.24.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.25.(13分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2019年湖北省襄阳市宜城市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题.(30分)1.【解答】解:|﹣2|﹣2=2﹣2=0.故选:A.2.【解答】解:如图,∵l1∥l2,∴∠1=∠3=53°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣53°﹣30°=97°,故选:B.3.【解答】解:A、原式=a10,不符合题意;B、原式=4a4,符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=12a3,不符合题意,故选:B.4.【解答】解:40万=4×105,故选:B.5.【解答】解:根据俯视图的特征,应选B.故选:B.6.【解答】解:A、任意抛一枚图钉,钉尖着地是随机事件;B、任意画一个三角形,其内角和是180°是必然事件;C、通常加热到100℃时,水沸腾是必然事件;D、太阳从东方升起是必然事件;故选:A.7.【解答】解:由作法得OP平分∠AOB,∴∠AOP=∠BOP=∠AOB=×120°=60°,作MH⊥OB于H,如图,在Rt△OMH中,OH=OM=3,∴MH=OH=3.即M点到OB的距离为3.故选:B.8.【解答】解:4+3×7+3×7×7+1×7×7×7=515.所以孩子自出生后的天数是515.故选:A.9.【解答】解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD==,AC=2CD=2,∵sin∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=OB×AC=×2×2=2,S扇形AOC==,则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=π﹣2,故选:C.10.【解答】解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.二、填空题.(18分)11.【解答】解:原式=5﹣2=3.故答案为3.12.【解答】解:∵xy=3x+3y+5,∴xy﹣3x﹣3y=5,∴(x﹣3)(y﹣3)=xy﹣3x﹣3y+9=5+9=14.故答案为:14.13.【解答】解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.14.【解答】解:根据题意画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=;故答案为:.15.【解答】解:由∠ACP=∠B,∠A=∠A,可得△ACP∽△ABC.∴,即AC2=AP•AB.分两种情况:(1)当AP=AB=2cm时,AC2=2×6=12,∴AC==cm;(2)当AP=AB=4cm时,AC2=4×6=24,∴AC==;故答案为:.16.【解答】解:如图所示:∵Rt△ABC中,∠C=90o,AB=5,AC=4,∴BC==3,由旋转的性质得:AD=AB=5,由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴==,即==,∴AE=,DE=,∵AB∥EF,∴△DEH∽△BAH,∴=,即=,解得:AH=;故答案为:.三、解答题.(72分)17.【解答】解:原式=÷(﹣)=÷=•=﹣,∵﹣3<x<2,且x+1≠0且x﹣1≠0且x≠0,∴整数x=﹣2,当x=﹣2时,原式=.18.【解答】解:如图,过点C作CE⊥AB于点E,在Rt△BDE中,∴BE=DE•tanα,=AC•tanα,=20×tan22°,≈8.08米,∴AB=AE+EB=AE+CD=8.08+1.20≈9.3(米).答:电线杆AB的高度约为9.3米.19.【解答】解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过15t的家庭大约有5000×(0.2+0.08+0.04)=1600(户).20.【解答】解:(1)设这种商品平均降价率是x,依题意得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%;(2)设降价y元,根据题意得(40﹣20﹣y)(500+50y)=10000解得:y=0(舍去)或y=10,∵现价为每件32.4元,∴32.4﹣30=2.4,答:在现价的基础上,再降低,2.4元.21.【解答】解:(1)作AD⊥y轴于D,∵A(3,a),∴AD=3,∵一次函数的图象与y轴交于C(0,8),∴OC=8,∴S△AOC=OC•AD=×8×3=12;(2)∵A(3,a),B(1,b)两点在反比例函数y=(x>0)的图象上,∴3a=b,∵=4,∴a2﹣2ab+b2=16,∴a2﹣2a•3a+(3a)2=16,整理得,a2=4,∵a>0,∴a=2,∴A(3,2),∴k=3×2=6,设直线的解析式为y=mx+n,∴,解得:,∴一次函数的解析式为y=﹣2x+8,∴反比例函数和一次函数的解析式分别为y=和y=﹣2x+8.22.【解答】解:(1)如图,连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=2,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=∴AF=5﹣2×=.23.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.24.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠F AK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠F AK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠P AF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm.25.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.。
2019年陕西省中考数学试题及参考答案(word解析版)
2019年陕西省初中毕业学业考试数学试卷(满分120分,考试时间120分钟)第一部分(选择题共30分)一、选择题(共10小题,每小题3分,共30分。
每小题只有一个选项是符合题意的)1.计算:(﹣3)0=()A.1 B.0 C.3 D.﹣2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A.B.C.D.3.如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°4.若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1 B.0 C.1 D.25.下列计算正确的是()A.2a2•3a2=6a2B.(﹣3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a26.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)8.如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1 B.C.2 D.49.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°10.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y 轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6 C.m=﹣1,n=6 D.m=1,n=﹣2第二部分(非选择题共90分)二、填空题(共4小题,每小题3分,共12分)11.已知实数﹣,0.16,,π,,,其中为无理数的是.12.若正六边形的边长为3,则其较长的一条对角线长为.13.如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为.14.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.三、解答题(共11小题,共78分。
2019-2021年3年中考真题数学分项汇编-专题20 应用题综合(函数、不等式、方程)-(解析版)
专题20 应用题综合(函数、不等式、方程)一.解答题(共45道)1.(2021·浙江台州市·中考真题)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m ,温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =U R; ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式;(3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克.【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解;(3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案. 【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120b k b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=,∴1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∴R 1=2-m +240, 又∵1024030R U =-,∴024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏,∴当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克.【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键. 2.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000,37;(2)33150元;(3)50150a <<【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,同(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为()25018001850y x a x =-+-+,得到对称轴,再根据两公司租出的汽车均为17辆,结合x 为整数可得关于a 的不等式180016.517.5100a -<<,即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:x =37或x =-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦,y 乙=35001850x -,当甲公司的利润大于乙公司时,0<x <37,y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦=25018001850x x -++,当x =1800502--⨯=18时,利润差最大,且为18050元; 当乙公司的利润大于甲公司时,37<x ≤50,y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦=25018001850x x --,∵对称轴为直线x =1800502--⨯=18, 当x =50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+,对称轴为直线x =1800100a -, ∵x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大, ∴180016.517.5100a -<<,解得:50150a <<. 【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x 为整数得到a 的不等式.3.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM 小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究: (实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x .纵轴表示箭尺读数y ,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)【答案】(1)见解析;(2)在同一直线上,解析式为66y x =+;(3)78()cm ;(4)当天晚上的22:00.【分析】(1)将各点在坐标系中直接描出即可;(2)观察发现,供水时间每增加2小时,箭尺读数增加12cm ,由此可判断它们在同以直线上,设直线解析式为y kx b =+,再代入两个点坐标即可求解;(3)当12x =时代入(2)中解析式即可求出箭尺的读数;(4)当90y =时代入(2)中解析式即可求出供水时间,再结合实验开始时间为8:00即可求解.【详解】解:(1)将表格中各点在直角坐标系中描出来如下图所示:(2)分析表格中数据发现,供水时间每增加2小时,箭尺读数增加12cm ,观察(1)中直角坐标系点的特点,发现它们位于同一直线上,设直线解析式为y kx b =+,代入点(0,6)和点(2,18),得到60182b k b =+⎧⎨=+⎩,解得66k b =⎧⎨=⎩,∴直线的表达式为:66y x =+;(3)当供水时间达到12小时时,即12x =时,代入66y x =+中,解得612678y cm ,∴此时箭尺的读数为78cm ;(4)当箭尺读数为90厘米时,即90y =时,代入66y x =+中,解得(906)614x (小时),∴经过14小时后箭尺读数为90厘米,∵实验记录的开始时间是上午8:00,∴箭尺读数为90厘米时对应的时间为8+14=22,即对应当天晚上的22:00.【点睛】本题考查待定系数法求一次函数的解析式、一次函数的实际应用问题,读懂题目,掌握一次函数的图形及性质是解决本题的关键.4.(2021·黑龙江鹤岗市·中考真题)已知A 、B 两地相距240km ,一辆货车从A 地前往B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B 地前往A 地,到达A 地后(在A 地停留时间不计)立即原路原速返回.如图是两车距B 地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中m 的值是__________;轿车的速度是________km/h ;(2)求货车从A 地前往B 地的过程中,货车距B 地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出轿车从B 地到A 地行驶过程中,轿车出发多长时间与货车相距12km ?【答案】(1)5;120;(2)66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩;(3)1h 或27h 31. 【分析】(1)由图象可知轿车从B 到A 所用时间为2h ,即可得出从A 到B 的时间,进而可得m 的值,根据速度=距离÷时间即可得轿车速度;(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,分1≤x <2.5;2.5≤x <3.5;3.5≤x <5三个时间段,分别利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车相遇前和相遇后相距12km 两种情况,分别列方程求出x 的值即可得答案.【详解】(1)由图象可知轿车从B 到A 所用时间为3-1=2h ,∴轿车从A 到B 的时间为2h ,∴m =3+2=5,∵A 、B 两地相距240km ,∴轿车速度=240÷2=120km/h ,故答案为:5;120(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,①设()1110(0 2.5)MN y k x b k x =+≠≤<∵图象过点(0,240)M 和点(2.5,75)N ∴1112402.575b k b =⎧⎨+=⎩解得:1124066b k =⎧⎨=-⎩, ∴66240(0 2.5)MN y x x =-+≤<②∵货车在2.5h~3.5h 时装载货物停留1h ,∴75(2.5 3.5)NG y x =≤<,③设()2220(3.55)GH y k x b k x =+≠≤≤,∵图象过点(3.5,75)G 和点(5,0)H ∴2222503.575k b k b +=⎧⎨+=⎩解得:2225050b k =⎧⎨=-⎩, ∴50250(3.55)GH y x x =-+≤≤,∴66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩. (3)设轿车出发xh 与货车相距12km ,则货车出发(x +1)h ,①当两车相遇前相距12km 时:66(1)24012012x x -++-=,解得:2731x =, ②当两车相遇后相距12km 时:[]12066(1)240x x --++=12,解得:x =1,答:轿车出发1h 或27h 31与货车相距12km . 【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.5.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x += ()21 1.44,x ∴+= 解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.6.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,x 轴上依次有A ,O ,N 三个点,且2AO =,在ON 上方有五个台阶15~T T (各拐角均为90︒),每个台阶的高、宽分别是1和1.5,台阶1T 到x 轴距离10OK =.从点A 处向右上方沿抛物线L :2412y x x =-++发出一个带光的点P .(1)求点A 的横坐标,且在图中补画出y 轴,并直接..指出点P 会落在哪个台阶上; (2)当点P 落到台阶上后立即弹起,又形成了另一条与L 形状相同的抛物线C ,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶5T 有交点;(3)在x 轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EB x ⊥轴,且2BE =.在BDE 沿x 轴左右平移时,必须保证(2)中沿抛物线C 下落的点P 能落在边BD (包括端点)上,则点B 横坐标的最大值比最小值大多少?(注:(2)中不必写x 的取值范围)【答案】(1)(2,0)A -,见解析,点P 会落在4T 的台阶上;(2)2(7)11y x =--+,其对称轴与台阶5T 有交点;(32-.【分析】(1)二次函数与坐标轴的交点坐标可以直接算出,根据点A 的坐标可以确定y 轴,利用函数的性质可以判断落在那个台阶上;(2)利用二次函数图象的平移来求解抛物线C ,再根据函数的对称轴的值来判断是否与台阶5T 有交点; (3)抓住二次函数图象不变,是BDE 在左右平移,要求点B 横坐标的最大值比最小值大多少,利用临界点法,可以确定什么时候横坐标最大,什么时候横坐标最小,从而得解.【详解】解:(1)当0y =,24120x x -++=,解得:2,6x x =-=,A 在左侧,(2,0)A ∴-, 2412y x x =-++关于22b x a=-=对称,y ∴轴与OK 重合,如下图:由题意在坐标轴上标出相关信息,当7y =时,24127x x -++=,解得:1,5x x =-=,4.556<<,∴点P 会落在4T 的台阶上,坐标为(5,7)P ,(2)设将抛物线L ,向下平移5个单位,向右平移a 的单位后与抛物线C 重合,则抛物线C 的解析式为:2(2)11y x a =---+,由(1)知,抛物线C 过(5,7)P ,将(5,7)P 代入2(2)11y x a =---+,27(3)11a =--+,解得:5,1a a ==(舍去,因为是对称轴左边的部分过(5,7)P ), 抛物线C :2(7)11y x =--+,2(7)11y x =--+关于72b x a=-=,且677.5<<,∴其对称轴与台阶5T 有交点.(3)由题意知,当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点D 时,此时点B 的横坐标值最大;当0y =,2(7)110x --+=,解得:1277x x ==(取舍),故点B 的横坐标最大值为:8当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点B 时,此时点B 的横坐标值最小;当2y =,2(7)112x --+=,解得:1210,4x x ==(舍去),故点B 的横坐标最小值为:10,则点B 横坐标的最大值比最小值大:81022-.【点睛】本题综合性考查了二次函数的解析式的求法及图象的性质,图象平移,抛物线的对称轴,解题的关键是:熟练掌握二次函数解析式的求法及图象的性质,通过已知的函数求解平移后函数的解析式. 7.(2021·广西来宾市·中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥. 【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c =-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解; (3)由抛物线2117C :1126y x x =-++可知坡顶坐标为 61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b 的取值范围. 【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得, 2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩, ∴抛物线2C 的函数解析式213482y x x =-++; (2)∵运动员与小山坡的竖直距离为1米, ∴221317(4)(1)182126x x x x -++--++=, 解得:14x =-(不合题意,舍去), 212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++, ∵抛物线22117161C :1=(7)1261212y x x x =-++--+,∴坡顶坐标为 61(7,)12, ∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时, ∴21617743812y b =-⨯++≥+,解得:3524b ≥. 【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题.8.(2021·贵州安顺市·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y =14-x 2+2x (0≤x ≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m ≤8 【分析】(1)设二次函数的解析式为:y =a (x -8)x ,根据待定系数法,即可求解; (2)把:x =1,代入y =14-x 2+2x ,得到对应的y 值,进而即可得到结论; (3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A (8,0),B (4,4),设二次函数的解析式为:y =a (x -8)x ,把(4,4)代入上式,得:4=a ×(4-8)×4,解得:14a =-, ∴二次函数的解析式为:y =14-(x -8)x =14-x 2+2x (0≤x ≤8); (2)由题意得:x =0.4+1.2÷2=1,代入y =14-x 2+2x ,得y =14-×12+2×1=74>1.68, 答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x ≤8时,新函数表达式为:y =14x 2-2x , 当x <0或x >8时,新函数表达式为:y =-14x 2+2x , ∴新函数表达式为:2212(08)412(08)4x x x y x x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m +8,0),B '(m +4,-4),如图所示,根据图像可知:当m +4≥9且m ≤8时,即:5≤m ≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.9.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)【答案】(1)1090y x =-+;(2)4万元;(3)当销售价x 定为7元/件时,该月纯收入最大.【分析】(1)利用待定系数法即可得;(2)将8x =代入()20%10a x =-求出a 的值,代入y 与x 的函数关系式求出该月的销售量,再利用a 乘以该月的销售量即可得;(3)设该月纯收入为w 万元,先根据纯收入的计算公式求出w 与x 之间的函数关系式,再利用二次函数的性质求解即可得.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,将点(6,30),(7,20)代入得:630720k b k b +=⎧⎨+=⎩,解得1090k b =-⎧⎨=⎩,则y 与x 的函数关系式为1090y x =-+;(2)当8x =时,()20%1080.4a =⨯-=,1089010y =-⨯+=,则0.4104⨯=(万元), 答:政府该月应付给厂家补贴4万元;(3)设该月纯收入为w 万元,由题意得:(1090)6(1090)(20%1(1090)0)w x x x x x -=-+--++-+,整理得:28(5)(9)8(7)32w x x x =---=--+,由二次函数的性质可知,在69x ≤<内,当7x =时,w 取得最大值,最大值为32,答:当销售价x 定为7元/件时,该月纯收入最大.【点睛】本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键.10.(2021·辽宁大连市·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.【详解】解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∵5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.11.(2021·内蒙古鄂尔多斯市·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x 的函数图象.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?【答案】(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.【详解】(1)根据题意,设y 与x 之间的函数解析式为y=kx+b ,图象过(280,40),(290,39),∴2804029039k b k b +=⎧⎨+=⎩,解得:-0.168k b =⎧⎨=⎩ ∴y 与x 之间的函数解析式为y=-0.1x+68,∵每间房价不低于200元且不超过320元 ∴200x 320≤≤(2)设宾馆每天的利润为W 元,()()()2w=x-20y=x-20-0.1x+68=-0.1x +70x-1360, ∴()22w=-0.1x +70x-1360=-0.1x-350+10890 当x <350时,w 随x 的增大而增大,∵200x 320≤≤,∴当x=320时,W 最大=10800∴当房价定为320元时,宾馆利润最大,最大利润是10800元【点睛】本题考查的是二次函数在实际生活中的应用及待定系数法求一次函数的解析式,注意利用配方法和函数的增减性求函数的最值,难度不大.12.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?【答案】(1)1122y x =-;(2)月销售量为8辆时,销售利润最大,最大利润是32万元 【分析】(1)观察表格中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,再代入数据求解即可;(2)根据已知条件“每月销售利润y =(每辆原售价-1y -进价)x ”,求出y 的表达式,然后再借助二次函数求出其最大利润即可.【详解】解:(1)由表中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,代入点(4,0)和点(5,0.5),得到040.55k b k b =+⎧⎨=+⎩,解得122k b ⎧=⎪⎨⎪=-⎩,故1y 与x 的关系式为1122y x =-; (2)由题意可知:降价后每月销售利润y =(每辆原售价-1y -进价)x , 即:211(22216)822y x x x x ,其中4x ≥, ∴y 是x 的二次函数,且开口向下,其对称轴为82b x a=-=, ∴当8x =时,y 有最大值为21888322万元, 答:月销售量为8辆时,销售利润最大,最大利润是32万元.【点睛】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键.13.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)【答案】(1)4200y x =+;(2)种植面积为240亩时总利润最大,最大利润268800元.【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y (元)与种粮面积x (亩)之间的函数关系为4200y x =+,进而得出W 与x 的函数关系式,再利用二次函数的最值公式求出即可.【详解】解:(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:160840190960k b k b +=⎧⎨+=⎩,解得:4200k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为4200y x =+. (2)设老张明年种植该作物的总利润为W 元,依题意得:()21604200120W x x ⎡=-+⎤⎣⎦+⋅242080x x =-+()24260270400x =--+. ∵40-<,∴当260x <时,y 随x 的增大而增大.由题意知:240x ≤,∴当240x =时,W 最大,最大值为268800元.即种植面积为240亩时总利润最大,最大利润268800元.【点睛】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W 与x 的函数关系式是求最值问题的关键.14.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去 ∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.15.(2021·湖北随州市·中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.。
2019年湖北省襄阳市中考数学真题(答案+解析)
2019年湖北省襄阳市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算|﹣3|的结果是()A.3 B.C.﹣3 D.±32.下列运算正确的是()A.a3﹣a2=a B.a2•a3=a6C.a6÷a2=a3D.(a2)﹣3=a﹣6 3.如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°4.某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋5.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.6.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.7.如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形8.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=10.如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB二、填空题:本大题共6个小题,每小题3分,共18分.11.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为.12.定义:a*b=,则方程2*(x+3)=1*(2x)的解为.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB =DC,其中不能确定△ABC≌△DCB的是(只填序号).15.如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.三、解答题:本大题共9个小题,共72分,解答应写出文字说明,证明过程或演算步骤. 17.(6分)先化简,再求值:(﹣1)÷,其中x=﹣1.18.(6分)今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:(1)表中a=,b=;(2)这组数据的中位数落在范围内;(3)判断:这组数据的众数一定落在70≤x<80范围内,这个说法(填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在80≤x<90范围内的扇形圆心角的大小为;(5)若成绩不小于80分为优秀,则全校大约有名学生获得优秀成绩.19.(6分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?20.(6分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A 出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41).21.(7分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、第三象限分别交于A(3,4),B(a,﹣2)两点,直线AB与y轴,x轴分别交于C,D两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD BC(填“>”或“<”或“=”);(3)直接写出y1<y2时x的取值范围.22.(8分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)若DE=6,BC=6,求优弧的长.23.(10分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值.24.(10分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF 于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.25.(13分)如图,在直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【参考答案】一、选择题1.A【解析】|﹣3|=3.故选:A.2.D【解析】A.a3﹣a2,无法计算,故此选项错误;B.a2•a3=a5,故此选项错误;C.a6÷a2=a4,故此选项错误;D.(a2)﹣3=a﹣6,正确.故选:D.3.B【解析】∵CD⊥AB于点D,∠BCD=40°,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+40°=90°.∴∠DBC=50°.∵直线BC∥AE,∴∠1=∠DBC=50°.故选:B.4.D【解析】由:“Z”字型对面,可知春字对应的面上的字是奋;故选:D.5.B【解析】A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项正确;C.不是轴对称图形,是中心对称图形,故此选项错误;D.不是轴对称图形,是中心对称图形,故此选项错误.故选:B.6.C【解析】不等式组整理得:,∴不等式组的解集为x≤﹣3,故选:C.7.D【解析】由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选:D.8.C【解析】A.必然事件发生的概率是1,正确;B.通过大量重复试验,可以用频率估计概率,正确;C.概率很小的事件也有可能发生,故错误;D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.9.B【解析】设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.10.A【解析】∵AD为直径,∴∠ACD=90°,∵四边形OBCD为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD中,sin A==,∴∠A=30°,在Rt△AOP中,AP=OP,所以A选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C选项的结论正确;∴AP=CP,∴OP为△ACD的中位线,∴CD=2OP,所以B选项的结论正确;∴OB=2OP,∴AC平分OB,所以D选项的结论正确.故选:A.二、填空题11.1.2×108【解析】1.2亿=1.2×108.故答案为:1.2×108.12.x=1【解析】2*(x+3)=1*(2x),=,4x=x+3,x=1,经检验:x=1是原方程的解,故答案为:x=1.13.【解析】画树状图如图所示,一共有6种情况,b=2a的有(2,4)和(3,6)两种,所以点(a,b)在直线y=2x上的概率是=,故答案为:.14.②【解析】∵已知∠ABC=∠DCB,且BC=CB∴若添加①∠A=∠D,则可由AAS判定△ABC≌△DCB;若添加②AC=DB,则属于边边角的顺序,不能判定△ABC≌△DCB;若添加③AB=DC,则属于边角边的顺序,可以判定△ABC≌△DCB.故答案为:②.15.4【解析】依题意,令h=0得0=20t﹣5t2得t(20﹣5t)=0解得t=0(舍去)或t=4即小球从飞出到落地所用的时间为4s故答案为4.16.【解析】如图,过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,∵BD=1,AD=5,∴AB=BD+AD=6,∵在Rt△ABC中,∠BAC=30°,∠B=90°﹣∠BAC=60°,∴BC=AB=3,AC=BC=3,在Rt△BCA与Rt△DCE中,∵BAC=∠DEC=30°,∴tan∠BAC=tan∠DEC,∴,∵BCA=∠DCE=90°,∴∵BCA﹣∠DCA=∠DCE﹣∠DCA,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CAE=∠B=60°,∴,∴∠DAE=∠DAC+∠CAE=30°+60°=90°,,∴AE=,在Rt△ADE中,DE===2,在Rt△DCE中,∠DEC=30°,∴∠EDC=60°,DC=DE=,在Rt△DCM中,MC=DC=,在Rt△AEN中,NE=AE=,∵∠MFC=∠NFE,∠FMC=∠FNE=90,∴△MFC∽△NFE,∴==,故答案为:.三、解答题17.解:(﹣1)÷=(﹣)÷=×=,当x=﹣1时,原式==.18.解:(1)调查学生总数:15÷0.3=50(名),70≤x<80的频数:50﹣15﹣10﹣5=20,即a=2080≤x<90的频率:1﹣0.3﹣0.4﹣0.1=0.2,即b=0.2,故答案为20,0.2;(2)共50名学生,中位数落在“70≤x<80”范围内;(3)“70≤x<80”范围内,频数最大,因此这组数据的众数落在70≤x<80范围内,故答案为正确;(4)成绩在80≤x<90范围内的扇形圆心角:=72°,故答案为72°;(5)获得优秀成绩的学生数:=900(名),故答案为900.19.解:设小路的宽应为x m,根据题意得:(16﹣2x)(9﹣x)=112,解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽应为1m.20.解:在Rt△ABC中,tan A=,则BC=AC•tan A≈121×0.75=90.75,由题意得,CD=AC﹣AD=97.5,在Rt△ECD中,∠EDC=45°,∴EC=CD=97.5,∴BE=EC﹣BC=6.75≈6.8(m),答:塔冠BE的高度约为6.8m.21.解:(1)把A(3,4)代入反比例函数y2=得,4=,解得m=12,∴反比例函数的解析式为y2=;∵B(a,﹣2)点在反比例函数y2=的图象上,∴﹣2a=12,解得a=﹣6,∴B(﹣6,﹣2),∵一次函数y1=kx+b的图象经过A(3,4),B(﹣6,﹣2)两点,∴,解得,∴一次函数的解析式为y1=x+2;(2)由一次函数的解析式为y1=x+2可知C(0,2),D(﹣3,0),∴AD==2,BC==2,∴AD=BC,故答案为=;(3)由图象可知:y1<y2时x的取值范围是x<﹣6或0<x<3.22.(1)证明:连接OD交BC于H,如图,∵点E是△ABC的内心,∴AD平分∠BAC,即∠BAD=∠CAD,∴=,∴OD⊥BC,BH=CH,∵DG∥BC,∴OD⊥DG,∴DG是⊙O的切线;(2)解:连接BD、OB,如图,∵点E是△ABC的内心,∴∠ABE=∠CBE,∵∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,∴DB=DE=6,∵BH=BC=3,在Rt△BDH中,sin∠BDH===,∴∠BDH=60°,而OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,OB=BD=6,∴∠BOC=120°,∴优弧的长==8π.23.解:(1)由题意可得,,解得,,答:m的值是10,n的值是14;(2)当20≤x≤60时,y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400,当60<x≤70时,y=(16﹣10)×60+(16﹣10)×0.5×(x﹣60)+(18﹣14)(100﹣x)=﹣x+580,由上可得,y=;(3)当20≤x≤60时,y=2x+400,则当x=60时,y取得最大值,此时y=520,当60<x≤70时,y=﹣x+580,则y<﹣60+580=520,由上可得,当x=60时,y取得最大值,此时y=520,∵在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,且要保证捐款后的盈利率不低于20%,∴,解得,a≤1.8,即a的最大值是1.8.24.(1)①证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.②解:结论:=1.理由:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG=DQ,∵AE=DQ,∴FG=AE,∴=1.故答案为1.(2)解:结论:=k.理由:如图2中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴△ABE∽△GMF,∴=,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴===k.(3)解:如图2﹣1中,作PM⊥BC交BC的延长线于M.∵FB∥GC,FE∥GP,∴∠CGP=∠BFE,∴tan∠CGP=tan∠BFE==,∴可以假设BE=3k,BF=4k,EF=AF=5k,∵=,FG=2,∴AE=3,∴(3k)2+(9k)2=(3)2,∴K=1或﹣1(舍弃),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠BEF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴△FBE∽△EMP,∴==,∴==,∴EM=,PM=,∴CM=EM=EC=﹣3=,∴PC==.25.解:(1)y=﹣x+3,令x=0,则y=3,令y=0,则x=6,故点B、C的坐标分别为(6,0)、(0,3),抛物线的对称轴为x=1,则点A(﹣4,0),则抛物线的表达式为:y=a(x﹣6)(x+4)=a(x2﹣2x﹣24),即﹣24a=3,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+3…①;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,则∠HPG=∠CBA=α,tan∠CAB===tanα,则cosα=,设点P(x,﹣x2+x+3),则点G(x,﹣x+3),则PH=PG cosα=(﹣x2+x+3+x﹣3)=﹣x2+x,∵<0,故PH有最小值,此时x=3,则点P(3,);(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(2,3);②当点Q在x轴下方时,Q,A,B为顶点的三角形与△ABC相似,则∠ACB=∠Q′AB,当∠ABC=∠ABQ′时,直线BC表达式的k值为﹣,则直线BQ′表达式的k值为,设直线BQ′表达式为:y=x+b,将点B的坐标代入上式并解得:直线BQ′的表达式为:y=x﹣3…②,联立①②并解得:x=6或﹣8(舍去6),故点Q(Q′)坐标为(﹣8,﹣7)(舍去);当∠ABC=∠ABQ′时,同理可得:直线BQ′的表达式为:y=x﹣…③,联立①③并解得:x=6或﹣10(舍去6),故点Q(Q′)坐标为(﹣10,﹣12),由点的对称性,另外一个点Q的坐标为(12,﹣12);综上,点Q的坐标为:(2,3)或(12,﹣12)或(﹣10,﹣12).。
2019年湖北省襄阳市中考数学试卷以及答案解析
2019年湖北省襄阳市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答1.(3分)计算|﹣3|的结果是()A.3B.C.﹣3D.±32.(3分)下列运算正确的是()A.a3﹣a2=a B.a2•a3=a6C.a6÷a2=a3D.(a2)﹣3=a﹣6 3.(3分)如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°4.(3分)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.7.(3分)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形8.(3分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.(3分)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3B.5x+45=7x+3C.=D.=10.(3分)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在答题卡的相应位置上11.(3分)习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为.12.(3分)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.13.(3分)从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.(3分)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是(只填序号).15.(3分)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.16.(3分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.三、解答题:本大题共9个小题,共72分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内。
【数学】2019年湖北省荆州市中考真题(解析版)
2019年湖北省荆州市中考数学试卷一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.下列实数中最大的是()A.B.πC.D.|﹣4|2.下列运算正确的是()A.x﹣x=B.a3•(﹣a2)=﹣a6C.(﹣1)(+1)=4D.﹣(a2)2=a43.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A.10°B.20°C.30°D.40°4.某几何体的三视图如图所示,则下列说法错误的是()A.该几何体是长方体B.该几何体的高是3C.底面有一边的长是1D.该几何体的表面积为18平方单位5.如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③6.若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)8.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.659.已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0B.k>﹣2且k≠﹣1C.k>﹣2D.k<2且k≠1 10.如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3B.1:πC.1:4D.2:9二、填空题(本大题共6小题每小题3分,共18分)11.二次函数y=﹣2x2﹣4x+5的最大值是.12.如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD 的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.13.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.14.如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)15.如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E 为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP 是直角三角形时,AP的长为.16.边长为1的8个正方形如图摆放在直角坐标系中,直线y=k1x平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A,B两点,过B点的双曲线y=的一支交其中两个正方形的边于C,D两点,连接OC,OD,CD,则S△OCD=.三、解答题(本大题共8小题,共72分)17.(8分)已知:a=(﹣1)(+1)+|1﹣|,b=﹣2sin45°+()﹣1,求b﹣a 的算术平方根.18.(8分)先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a 的值代入求值.19.(8分)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D 分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE (如图②).(1)在图②中,∠AOF=;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.20.(8分)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率10≤x<1050.1210≤x<20210.42320≤x<30a430≤x<40b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.21.(8分)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.22.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P作射线1⊥AB,分别交弦BC,于D,E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan∠ABC=,且AB=20,求DE的长.23.(10分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?24.(12分)如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.【参考答案】一、选择题1.D【解析】∵<π<<|﹣4|=4,∴所给的几个数中,最大的数是|﹣4|.故选:D.2.C【解析】A.x﹣x=x,故本选项错误;B.a3•(﹣a2)=﹣a5,故本选项错误;C.(﹣1)(+1)=5﹣1=4,故本选项正确;D.﹣(a2)2=﹣a4,故本选项错误;故选:C.3.B【解析】∵直线m∥n,∴∠2+∠ABC+∠1+∠BAC=180°,∵∠ABC=30°,∠BAC=90°,∠1=40°,∴∠2=180°﹣30°﹣90°﹣40°=20°,故选:B.4.D【解析】A.该几何体是长方体,正确;B.该几何体的高为3,正确;C.底面有一边的长是1,正确;D.该几何体的表面积为:2×(1×2+2×3+1×3)=22平方单位,故错误,故选:D.5.C【解析】∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选:C.6.A【解析】∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.7.A【解析】如图,作AE⊥x轴于E,A′F⊥x轴于F.∵∠AEO=∠OF A′=90°,∠AOE=∠AOA′=∠A′OF=30°∴∠AOE=∠A′,∵OA=OA′,∴△AOE≌△OA′F(AAS),∴OF=AE=,A′F=OE=1,∴A′(,1).故选:A.8.C【解析】A.四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B.丁同学的身高一定高于其他三位同学的身高,错误;C.丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.9.B【解析】∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.10.D【解析】连接OD交OC于M.由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.二、填空题11.7【解析】y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.12.2【解析】∵已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,∴GF=GE=EF==2,过G作GH⊥EF于H,∴GH=GF=,∴图②中阴影部分的面积=×2×=2cm2.故答案为:2.13.13≤x<15【解析】依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.14.22.4【解析】由题意得,MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM=90°,∴BN=MN=20,如图,过A作AE⊥BN于E,则四边形AMNE是矩形,∴AE=MN=20,EN=AM,∵AM=MN•tan26.5°=20×0.50=10,∴BE=20﹣10=10,∴AB==10≈22.4海里.故答案为:22.4.15.4和2.56【解析】∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.故答案为4和2.56.16.【解析】设A(4,t),∵直线y=k1x平分这8个正方形所组成的图形的面积,∴×4×t=4+1,解得t=,∴A(4,),把A(4,)代入直线y=k1x得4k1=,解得k1=,∴直线解析式为y=x,当x=2时,y=x=,则B(2,),∵双曲线y=经过点B,∴k2=2×=,∴双曲线的解析式为y==,当y=2时,=2,解得x=,则C(,2);当x=3时,y==,则D(3,),∴S△OCD=3×2﹣×3×﹣×2×﹣(2﹣)×(3﹣)=.故答案为.三、解答题17.解:∵a=(﹣1)(+1)+|1﹣|=3﹣1+﹣1=1+,b=﹣2sin45°+()﹣1=2﹣+2=+2.∴b﹣a=+2﹣1﹣=1.∴==1.18.解:(﹣1)÷===,当a=﹣2时,原式==﹣1.19.解:(1)如图2,∵△OEF绕点O逆时针旋转α角,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°﹣α;故答案为90°﹣α;(2)AF=DE.理由如下:如图②,∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE,∵△OEF为等腰直角三角形,∴OF=OE,在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.20.解:(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08,故答案为20,0.08;(2)该九年级排球垫球测试结果小于10的人数450×(1﹣0.1)=405(人),答:该九年级排球垫球测试结果小于10的人数为405人;(3)列表如下∴P(选出的2人为一个男生一个女生的概率)==.21.解:∵y=x2﹣4,∴其顶点坐标为(0,﹣4),∵y=x2﹣4是y=﹣x+p的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p的图象上,∴﹣4=0+p.∴p=﹣4,∴一次函数为:y=﹣x﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,∴,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,∴﹣4=﹣m﹣3,∴m=1.22.(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD,∴∠FCD=∠FDC,∵∠FDC=∠BDP,∴∠OCB+∠FCD=90°,∴OC⊥FC,∴FC是⊙O的切线.(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.23.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.24.解:(1)∵平行四边形OABC中,A(6,0),C(4,3),∴BC=OA=6,BC∥x轴,∴x B=x C+6=10,y B=y C=3,即B(10,3),设抛物线y=ax2+bx+c经过点B、C、D(1,0),∴,解得:,∴抛物线解析式为y=﹣x2+x﹣.(2)如图1,作点E关于x轴的对称点E',连接E'F交x轴于点P,∵C(4,3),∴OC=,∵BC∥OA,∴∠OEC=∠AOE,∵OE平分∠AOC,∴∠AOE=∠COE,∴∠OEC=∠COE,∴CE=OC=5,∴x E=x C+5=9,即E(9,3),∴直线OE解析式为y=x,∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7,∴F(7,),∵点E与点E'关于x轴对称,点P在x轴上,∴E'(9,﹣3),PE=PE',∴当点F、P、E'在同一直线上时,PE+PF=PE'+PF=FE'最小,设直线E'F解析式为y=kx+h,∴,解得:,∴直线E'F:y=﹣x+21,当﹣x+21=0时,解得:x=,∴当PE+PF的值最小时,点P坐标为(,0).(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.设AH与OE相交于点G(t,t),如图2,∵AH⊥OE于点G,A(6,0),∴∠AGO=90°,∴AG2+OG2=OA2,∴(6﹣t)2+(t)2+t2+(t)2=62,∴解得:t1=0(舍去),t2=,∴G(,),设直线AG解析式为y=dx+e,∴,解得:,∴直线AG:y=﹣3x+18,当y=3时,﹣3x+18=3,解得:x=5,∴H(5,3),∴HE=9﹣5=4,点H、E关于直线x=7对称,①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2,则HE∥MN,MN=HE=4,∵点N在抛物线对称轴:直线x=7上,∴x M=7+4或7﹣4,即x M=11或3,当x=3时,y M=﹣×9+×9﹣=,∴M(3,)或(11,),②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3,则HE、MN互相平分,∵直线x=7平分HE,点F在直线x=7上,∴点M在直线x=7上,即M为抛物线顶点,∴y M=﹣×49+×7﹣=4,∴M(7,4),综上所述,点M坐标为(3,)、(11,)或(7,4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年襄阳市中考数学试卷(解析版)一、选择题:(每小题3分,共30分)1.(3分)计算|﹣3|的结果是()A.3 B.C.﹣3 D.±32.(3分)下列运算正确的是()A.a3﹣a2=a B.a2•a3=a6C.a6÷a2=a3D.(a2)﹣3=a﹣63.(3分)如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°4.(3分)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.7.(3分)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形8.(3分)下列说法错误的是()A.必然事件发生的概率是1 B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.(3分)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=10.(3分)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为.12.(3分)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.13.(3分)从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.(3分)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是(只填序号).15.(3分)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h =20t﹣5t2,则小球从飞出到落地所用的时间为s.16.(3分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.三、解答题:本大题共9个小题,共72分。
17.(6分)先化简,再求值:(﹣1)÷,其中x=﹣1.18.(6分)今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:成绩x(分)分组频数频率60≤x<70 15 0.3070≤x<80 a0.4080≤x<90 10 b90≤x≤100 5 0.10(1)表中a=,b=;(2)这组数据的中位数落在范围内;(3)判断:这组数据的众数一定落在70≤x<80范围内,这个说法(填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在80≤x<90范围内的扇形圆心角的大小为;(5)若成绩不小于80分为优秀,则全校大约有名学生获得优秀成绩.19.(6分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m 的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?20.(6分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D 处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41).21.(7分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、第三象限分别交于A(3,4),B(a,﹣2)两点,直线AB与y轴,x轴分别交于C,D两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD BC(填“>”或“<”或“=”);(3)直接写出y1<y2时x的取值范围.22.(8分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)若DE=6,BC=6,求优弧的长.23.(10分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:有机蔬菜种类进价(元/kg)售价(元/kg)甲m16乙n18(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值.24.(10分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE 于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF 与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.25.(13分)如图,在直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.解析一、选择题:本大题共10个小题,每小题3分,共30分。
1.【解答】解:|﹣3|=3.故选:A.2.【解答】解:A、a3﹣a2,无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(a2)﹣3=a﹣6,正确.故选:D.3.【解答】解:∵CD⊥AB于点D,∠BCD=40°,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+40°=90°.∴∠DBC=50°.∵直线BC∥AE,∴∠1=∠DBC=50°.故选:B.4.【解答】解:由:“Z”字型对面,可知春字对应的面上的字是奋;故选:D.5.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.6.【解答】解:不等式组整理得:,∴不等式组的解集为x≤﹣3,故选:C.7.【解答】解:由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选:D.8.【解答】解:A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.9.【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.10.【解答】解:∵AD为直径,∴∠ACD=90°,∵四边形OBCD为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD中,sin A==,∴∠A=30°,在Rt△AOP中,AP=OP,所以A选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C选项的结论正确;∴AP=CP,∴OP为△ACD的中位线,∴CD=2OP,所以B选项的结论正确;∴OB=2OP,∴AC平分OB,所以D选项的结论正确.故选:A.二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在答题卡的相应位置上11.【解答】解:1.2亿=1.2×108.故答案为:1.2×108.12.【解答】解:2*(x+3)=1*(2x),=,4x=x+3,x=1,经检验:x=1是原方程的解,故答案为:x=1.13.【解答】解:画树状图如图所示,一共有6种情况,b=2a的有(2,4)和(3,6)两种,所以点(a,b)在直线y=2x上的概率是=,故答案为:.14.【解答】解:∵已知∠ABC=∠DCB,且BC=CB∴若添加①∠A=∠D,则可由AAS判定△ABC≌△DCB;若添加②AC=DB,则属于边边角的顺序,不能判定△ABC≌△DCB;若添加③AB=DC,则属于边角边的顺序,可以判定△ABC≌△DCB.故答案为:②.15.【解答】解:依题意,令h=0得0=20t﹣5t2得t(20﹣5t)=0解得t=0(舍去)或t=4即小球从飞出到落地所用的时间为4s故答案为4.16.【解答】解:如图,过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,∵BD=1,AD=5,∴AB=BD+AD=6,∵在Rt△ABC中,∠BAC=30°,∠B=90°﹣∠BAC=60°,∴BC=AB=3,AC=BC=3,在Rt△BCA与Rt△DCE中,∵BAC=∠DEC=30°,∴tan∠BAC=tan∠DEC,∴,∵BCA=∠DCE=90°,∴∵BCA﹣∠DCA=∠DCE﹣∠DCA,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CAE=∠B=60°,∴,∴∠DAE=∠DAC+∠CAE=30°+60°=90°,,∴AE=,在Rt△ADE中,DE===2,在Rt△DCE中,∠DEC=30°,∴∠EDC=60°,DC=DE=,在Rt△DCM中,MC=DC=,在Rt△AEN中,NE=AE=,∵∠MFC=∠NFE,∠FMC=∠FNE=90,∴△MFC∽△NFE,∴==,故答案为:.三、解答题:本大题共9个小题,共72分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内。