健康监测系统设计方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市海河大桥结构健康监测系统
初步设计方案
天津市市政工程研究院
2009年3月1 / 10
天津市海河大桥结构健康监测系统初步
设计方案
常困难桥梁健康监测的必要性1
由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增的。为确保桥梁结构的结构安全、实施经济合理的维修计划、实现安全经济的运行及查明不可接年美1940加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自受的响应原因,建立大跨桥梁结构健康监测系统是非常必要的。通过健康监测发现桥梁早期的病悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技国Tacoma 害,能大大节约桥梁的维修费用,避免出现因频繁大修而关闭交通所引起的重大经济损失。
水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到桥梁健康监测就是通过对桥梁结构进行无损检测,实时监控结构的整体行为,对结构的损伤年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构8020很好的发展。世纪位置和程度进行诊断,对桥梁的服役情况、可靠性、耐久性和承载能力进行智能评估,为大桥在的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁的维修、养护与管理决年代中后期开始建立各种规模的桥梁健康监测系8020世纪失,威胁到人民生命安全。国外从策提供依据和指导。安装结构健康监测系统是提高桥梁的养护管理水平,保证桥梁安全运营的高桥上布设传感器,监测大桥运营Foyle 统。例如,英国在总长522mM的三跨变高度连续钢箱梁桥效技术手段。
阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国特别值得一提的是,桥梁的健康监测和施工监控系统均是通过检测和监测手段,测试桥梁结1991mM的Flintshire独塔斜拉桥、日本主跨为外建立健康监测的典型桥梁还有英国主跨194mM构的内力、变形、环境和荷载,因此,它们在传感器系统、数据传输系统和数据采集系统都具有悬索桥、挪的南备赞濑户大桥、丹麦主跨1100m1624m的Great Belt East的明石海峡大桥和主跨很大的共享性和重复性。此外,两个阶段在时间顺序上具有衔接性,施工监控阶段的监测数据是斜拉桥以及加Skyway Bridge440m530m威主跨为的Skarnsunder斜拉桥、美国主跨为的Sunshine 健康监测阶段的基础。为了节约资源、降低工程造价,应充分发挥两个系统的共享性,对上述两年代起也在一些大型重要桥梁上建立了不同规模拿大的Confederatio 9020世纪Bridge桥。中国自个系统进行统筹规划和实施,即采取统一设计、统一施工和统一管理的方式,以实现海河大桥的和青马大桥、内地的虎门大桥、徐浦大桥,江阴的长期监测系统,如香港的
Lantau Fixed Crossing健康监测和施工监控两位一体的工程实施。
长江大桥等在施工阶段已安装健康监测用的传感设备,以备运营期间的实时监测。2海河大桥工程简况导致桥梁结构发生破坏和功能退化的原因是多方面
的,有些桥梁的破坏是人为因素造成的,集疏港公路二期中段工程起点于津沽一线立交以北,向北过津沽公路、海河大桥南侧收费但大多数桥梁的破坏和功能退化是自然因素造成的。自然原因中,循环荷载作用下的裂缝失稳扩站,与现状海河大桥相邻向北跨越海河后沿现状临港路、东海路向北分别跨越进港铁路一线,新展是造成许多桥梁结构发生灾难性事故的主要原因。近年来,国内发生的几起大桥坍塌或局部破港二号路,三号路,进港铁路二线,新港四号路,泰达大街,会展中心入口,第五大街,第八大坏事故在很大程度上是由于构件疲劳和监测养护措施不足,从而严重影响构件的承重能力和结构街,第九大街,丰田七号路,与疏港二线立交相接。该段桩号范围K9+342.802~K20+419.245,路的使用,进而发生事故。理论研究和经验都表明,成桥后的结构状态识别和桥梁运营过程中的损线全长11.076伤检测,预警及适时维修,有助于从根本上消除隐患及避免灾难性事故的发生。公里,除起点引路约500M和海河大桥南侧收费站前后各约300M为道路外,其余将近9.8公里均为高架桥。从南向北依次有津沽公路支线上跨分离式立交一座,海河特大桥一座,现代大跨桥梁设计方向是更长、更轻柔化、结构形式和功能日趋复杂化。虽然在设计阶段已临港立交、泰达大街立交、第九大街立交互通式立交三座,其他与现状及规划道路交叉位置为直经进行了结构性能模拟实验等科研工作,然而由于大型桥梁的力学和结构特点以及所处的特定气线上跨。海河特大桥工程为海滨大道工程的一部分,设计速度候环境,要在设计阶段完全掌握和预测结构在各种复杂环境和运营条件下的结构特性和行为是非V=80km/h,双向八车道。
1 / 10
本桥位于海河入海口处,新港船闸和防潮闸内侧,现状建有双向四车道特大桥一座,桥宽等,箱壁配置横向预应力钢束。桥塔采用爬模施工,塔柱内配置型钢焊接而成的劲性骨架。
本桥总体上采用塔墩固结、塔梁分离,主梁在桥塔处设置,桥梁起点位于海河南岸现状海河大桥收费站处,终点止于新港二号路,与城区段高架桥相0号索的全漂浮体系。在桥塔横梁23M和主梁之间设置纵向阻尼装置和抗震拉索,限制主梁纵向位移,在塔柱和主梁之间设置限位支座接,桥梁全长2030M,其中跨越海河主桥采用独塔斜拉桥,利用河中岛屿布置主塔,主跨为来限制主梁在主塔处的横向位移。主梁分别在两端边墩和辅助墩设置支座,形成多跨连续梁体T梁。
500M310M,具体跨径布置为46+3×48+310M,主桥全长。两侧引桥为预应力系。新建斜拉桥结构采用与原桥基本相同、主塔与原桥塔对称布置的单塔斜拉桥,具体跨径布置
斜拉索采用空间扇形布置。该方案在结构上与现状斜拉桥基本统一,主桥立面图如图1所示。 ,索面在主塔上索距为1.5~2.5M,在主梁上主跨范围内的索距为16m,×为310+250+2×40M