水电站-蜗壳ppt课件
合集下载
《水电站蜗壳》课件
蜗壳的作用是将水流动的动能转化为机械能,以撬动涡轮转子。根据蜗壳的作用原理,它可 以用于不同形式的水轮机,如水轮式水泵和水轮发电机等。
蜗壳的种类
根据不同的设计要求和参数,蜗壳可以分为不同的种类,如固定叶蜗壳、可调叶蜗壳和双进 口蜗壳等。
水电站蜗壳的设计和模拟
蜗壳设计的几个关键点
蜗壳的设计参数是影响蜗壳性能 的关键因素之一,设计时需要考 虑叶轮叶片的型线、叶片数目和 轴向长度等因素。
水电站蜗壳的应用和未来
1 蜗壳的应用领域和前 2 蜗壳的发展趋势和挑 3 水电站蜗壳的展望
景
战
未来,随着科技的突破和
水电站蜗壳广泛应用于水
随着能源需求的增长和全
工业革命的演进,水电站
力发电和水泵等领域。随
球环境问题的日益突出,
蜗壳将继续在能源和环境
着科技和经济的发展,蜗
蜗壳的研究和开发备受关
保护等领域发挥着不可替
壳的应用前景越来越广阔。
注。同时,如何提升蜗壳
代的作用。ቤተ መጻሕፍቲ ባይዱ
的效率和降低成本也是当
前亟待解决的挑战。
结论
重要性和价值
水电站蜗壳是水电站运行中最重要的部件之一,其 性能的稳定和优化对于水力发电效率的提升和环境 保护效果的改善具有重要价值。
总结本次PPT的内容
本次PPT从蜗壳的简介、设计和模拟、制造和维护、 应用和未来等四个方面全面介绍了水电站蜗壳的相 关知识。希望能够为大家提供有益的帮助。
蜗壳的制造需要采取独特的工艺和技术,包括铸造、锻造与数控加工等多个环节。 生产过程中,需要使用各种专业的工具和设备。
2
蜗壳的维护方法和周期
水电站蜗壳是长期运行的重要设备,需要定期进行维护和保养,以保证高效稳定 地运行。常见的维护方式包括清洗、充填润滑油和修补缺陷等。
蜗壳的种类
根据不同的设计要求和参数,蜗壳可以分为不同的种类,如固定叶蜗壳、可调叶蜗壳和双进 口蜗壳等。
水电站蜗壳的设计和模拟
蜗壳设计的几个关键点
蜗壳的设计参数是影响蜗壳性能 的关键因素之一,设计时需要考 虑叶轮叶片的型线、叶片数目和 轴向长度等因素。
水电站蜗壳的应用和未来
1 蜗壳的应用领域和前 2 蜗壳的发展趋势和挑 3 水电站蜗壳的展望
景
战
未来,随着科技的突破和
水电站蜗壳广泛应用于水
随着能源需求的增长和全
工业革命的演进,水电站
力发电和水泵等领域。随
球环境问题的日益突出,
蜗壳将继续在能源和环境
着科技和经济的发展,蜗
蜗壳的研究和开发备受关
保护等领域发挥着不可替
壳的应用前景越来越广阔。
注。同时,如何提升蜗壳
代的作用。ቤተ መጻሕፍቲ ባይዱ
的效率和降低成本也是当
前亟待解决的挑战。
结论
重要性和价值
水电站蜗壳是水电站运行中最重要的部件之一,其 性能的稳定和优化对于水力发电效率的提升和环境 保护效果的改善具有重要价值。
总结本次PPT的内容
本次PPT从蜗壳的简介、设计和模拟、制造和维护、 应用和未来等四个方面全面介绍了水电站蜗壳的相 关知识。希望能够为大家提供有益的帮助。
蜗壳的制造需要采取独特的工艺和技术,包括铸造、锻造与数控加工等多个环节。 生产过程中,需要使用各种专业的工具和设备。
2
蜗壳的维护方法和周期
水电站蜗壳是长期运行的重要设备,需要定期进行维护和保养,以保证高效稳定 地运行。常见的维护方式包括清洗、充填润滑油和修补缺陷等。
第3章 水轮机结构(蜗壳及尾水管)课件
B5很大时,加隔墩d5=(0.1~0.15) B5
顶板 α=10°~13°,底板水平。
4.尾水管的高度与水平长度
尾水管的总高度和总长度是影响尾水管性能的重要 因素。
H=h1+h2+h3+h4 h1,h2由转轮结构确定; h4为肘管 高度,不易变动。 H取决于h3(直锥段长度)。h3大→开挖加大,工程 投资增大; L:机组中心到尾水管出口,L大→F出大→V出小 →ηw大→hf大→厂房尺寸加大,一般L=( 3.5~4.5) D1。 5.推荐尾水管尺寸:表4-15。
参数:座环外径、内
径、导叶高度、蜗壳
断面半径、蜗壳外缘
半径。
混凝土蜗壳:“T”形。 (1) m=n时:称为对称型式 (2) m>n:下伸式 (3) m<n:上伸式
(4) n=0:平顶蜗壳
中间断面:
蜗壳顶点、底角点的变化规律按直线或抛物线确 定。
蜗壳中间断面
金属蜗壳
混凝土蜗壳
2. 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心角φ0 (1) 金属蜗壳:φ0=340°~350°,常取345° (2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一 大部分水流直接进入导叶,为非对称入流,对转轮 不利)
断面半径:
max
Fc
Qmax 0 3600 VC
从轴心线到蜗壳外缘半径:
Rmax ra 2 max
(ii) 中间断面( i )
Qi
i
i
360
Q max 0
Qi Qmaxi Fi Vu 3600Vc
Q max i 360 0 VC
板衬砌防渗(H 最大达Leabharlann 80m)2. 金属蜗壳
顶板 α=10°~13°,底板水平。
4.尾水管的高度与水平长度
尾水管的总高度和总长度是影响尾水管性能的重要 因素。
H=h1+h2+h3+h4 h1,h2由转轮结构确定; h4为肘管 高度,不易变动。 H取决于h3(直锥段长度)。h3大→开挖加大,工程 投资增大; L:机组中心到尾水管出口,L大→F出大→V出小 →ηw大→hf大→厂房尺寸加大,一般L=( 3.5~4.5) D1。 5.推荐尾水管尺寸:表4-15。
参数:座环外径、内
径、导叶高度、蜗壳
断面半径、蜗壳外缘
半径。
混凝土蜗壳:“T”形。 (1) m=n时:称为对称型式 (2) m>n:下伸式 (3) m<n:上伸式
(4) n=0:平顶蜗壳
中间断面:
蜗壳顶点、底角点的变化规律按直线或抛物线确 定。
蜗壳中间断面
金属蜗壳
混凝土蜗壳
2. 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心角φ0 (1) 金属蜗壳:φ0=340°~350°,常取345° (2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一 大部分水流直接进入导叶,为非对称入流,对转轮 不利)
断面半径:
max
Fc
Qmax 0 3600 VC
从轴心线到蜗壳外缘半径:
Rmax ra 2 max
(ii) 中间断面( i )
Qi
i
i
360
Q max 0
Qi Qmaxi Fi Vu 3600Vc
Q max i 360 0 VC
板衬砌防渗(H 最大达Leabharlann 80m)2. 金属蜗壳
水电站建筑物PPT课件
(三)构造特点
(1)坝内埋管安装 (2)阻水环 (3)接触灌浆
第46页/共60页
十、岔管
(一)岔管的种类与选型
(1) 三梁岔管 (2)月牙肋岔管 (3)球形岔管 (4)无梁岔管 (5)贴边岔管 (6)外包钢筋混凝土岔管 (7)钢筋混凝土岔管
第47页/共60页
(二)布置特点
(1)岔管布置原则 (2)布置型式 (3)管底排水 (4)体形参数
水电站厂房按结构及布置特点可分为地面 式(包括河床式、坝后式、岸边式)、地下式 (包括地下式、半地下式、窑洞式)、坝内式、 厂顶溢流式等型式。
第3页/共60页
(一)地面式厂房
(1)河床式厂房 (2)坝后式厂房 (3)岸边式厂房
(二)地下式厂房
(1)地下式厂房 (2)窑洞式厂房
(三)其他型式厂房
(1)坝内式厂房 (2)厂顶溢流式厂房
第15页/共60页
2 . 厂房纵轴线方向的选择
1)洞室纵轴线走向,宜与围岩的主要构造弱面断层、 节理、裂隙、层面等呈较大夹角。同时,应注意次要构 造面对洞室稳定的不利影响。 2)对于深埋的地下洞室,地应力往往较大,此时洞室 纵轴线走向不仅要考虑与构造弱面的夹角,还应考虑与 地层主应力的关系。 3)洞室纵轴线走向还要考虑与上下游水道及调压室位 置等因素,避免水道过多转弯甚至延长。
第18页/共60页
5 .尾水布置
1) 尾水系统设计应满足SL266-2001《水电站厂房设计 规范》的有关要求。
2) 抽水蓄能电站的尾水洞一般较长,常用多机一洞布 置,各机组后面设尾水闸门或阀门。
第19页/共60页
6 .其它附属洞室的布置
1) 附属通道布置 2) 交通运输洞的布置 3) 竖井布置 4) 出线洞 5) 安全交通道 6) 排水廊道
(1)坝内埋管安装 (2)阻水环 (3)接触灌浆
第46页/共60页
十、岔管
(一)岔管的种类与选型
(1) 三梁岔管 (2)月牙肋岔管 (3)球形岔管 (4)无梁岔管 (5)贴边岔管 (6)外包钢筋混凝土岔管 (7)钢筋混凝土岔管
第47页/共60页
(二)布置特点
(1)岔管布置原则 (2)布置型式 (3)管底排水 (4)体形参数
水电站厂房按结构及布置特点可分为地面 式(包括河床式、坝后式、岸边式)、地下式 (包括地下式、半地下式、窑洞式)、坝内式、 厂顶溢流式等型式。
第3页/共60页
(一)地面式厂房
(1)河床式厂房 (2)坝后式厂房 (3)岸边式厂房
(二)地下式厂房
(1)地下式厂房 (2)窑洞式厂房
(三)其他型式厂房
(1)坝内式厂房 (2)厂顶溢流式厂房
第15页/共60页
2 . 厂房纵轴线方向的选择
1)洞室纵轴线走向,宜与围岩的主要构造弱面断层、 节理、裂隙、层面等呈较大夹角。同时,应注意次要构 造面对洞室稳定的不利影响。 2)对于深埋的地下洞室,地应力往往较大,此时洞室 纵轴线走向不仅要考虑与构造弱面的夹角,还应考虑与 地层主应力的关系。 3)洞室纵轴线走向还要考虑与上下游水道及调压室位 置等因素,避免水道过多转弯甚至延长。
第18页/共60页
5 .尾水布置
1) 尾水系统设计应满足SL266-2001《水电站厂房设计 规范》的有关要求。
2) 抽水蓄能电站的尾水洞一般较长,常用多机一洞布 置,各机组后面设尾水闸门或阀门。
第19页/共60页
6 .其它附属洞室的布置
1) 附属通道布置 2) 交通运输洞的布置 3) 竖井布置 4) 出线洞 5) 安全交通道 6) 排水廊道
《水电站蜗壳》课件
03
蜗壳的设计与计算
设计原则与步骤
确定设计原则
根据水电站的具体要求和规范 ,确定蜗壳的设计原则,如结 构安全、运行稳定、经济合理
等。
确定设计参数
根据水电站的规模和参数,确 定蜗壳的设计参数,如流量、 水头、转速等。
选择设计方法
根据设计原则和参数,选择适 合的设计方法,如理论计算、 经验公式、数值模拟等。
新型材料
研发和应用高强度、轻质、耐腐蚀的 新型材料,提高蜗壳的承载能力和使 用寿命。
行业发展趋势
绿色环保
随着环保意识的提高,水电站蜗 壳的设计和制造将更加注重环保
和节能,降低对环境的影响。
标准化和模块化
通过标准化和模块化的设计和制 造,提高蜗壳的互换性和维修便
利性,降低制造成本。
国际化发展
加强国际合作与交流,引进国际 先进技术和管理经验,提升我国 水电站蜗壳行业的国际竞争力。
未来展望与挑战
可持续发展
在保障能源供应的同时,注重环境保护和可持续发展,探索更加 绿色、高效的水电开发模式。
技术创新与人才培养
加强技术创新和人才培养,提升行业整体技术水平和创新能力,应 对未来发展的挑战和机遇。
国际市场拓展
积极参与国际市场竞争,提升我国水电站蜗壳产品的知名度和品牌 影响力,拓展国际市场份额。
《水电站蜗壳》 PPT课件
目录
• 蜗壳概述 • 蜗壳的工作原理 • 蜗壳的设计与计算 • 蜗壳的制造与安装 • 蜗壳的运行与维护 • 蜗壳的发展趋势与展望
01
蜗壳概述
蜗壳的定义与作用
总结词
介绍蜗壳的基本定义和在水电站 中的作用。
详细描述
蜗壳是水电站水轮机的一个重要 组成部分,其主要作用是将水流 的动能转换为旋转的机械能,从 而驱动水轮机转动。
水电站PPT学习课件PPT课件
湖南镇 水电站 引水式 厂房:
P17
第6页/共51页
第十一章 引水式地面厂房布置设计
三、水电站厂房的设计程序
水电站厂房是水电站工程的主要建筑物之一。 水电站厂房设计是水电站工程设计的重要组成部分。 我国大中型水电站工程设计一般分为四个阶段:
(1)预可行性研究阶段 (2)可行性研究阶段 (3)招标设计阶段 (4)施工详图设计阶段
第26页/共51页
第十一章 引水式地面厂房布置设计
第七节 采光、通风、交通及防火问题
要点: 1.地面厂房尽可能采用自然采光,为此布置主副厂房时 应考虑开窗的要求。厂房水下部分及夜间使用的房 间要安排适宜的人工照明。 2.地面厂房应尽量采用自然通风,某些厂房下部的房间 可按需要设置人工通风。 3.厂内交通:对外至少开两扇大门;上、下层面之间, 一般每两台机组可设一道楼梯。 4.防火设施按有关规范要求设置。 5.取暖、防潮等,根据电站具体情况设置。
3.端机组段长度L端: L nL机 L端 L装 主n—厂—房厂端房部内为机厂组房总的台一数。主 要 通 道 , 一 般 取 L 端 不 小 于 1 . 5 m 。
4.主厂房的总长度L:
第30页/共51页
第十一章 引水式地面厂房布置设计
第八节 主厂房轮廓尺寸决定
二、主厂房的宽度(B)
在以下几个宽度尺寸中经过分析、调整后取最大值: 1.水轮机层以下的块体结构宽度: 蜗壳上下游方向尺寸+下游侧外包砼厚度+ 主阀上下游方向尺寸+宽度裕量 2.装配场布置四大件所需的宽度; 3.发电机层主机房宽度: 围绕机组布置的机电控制设备的宽度尺寸+厂房 上、下游侧纵向主副通道的宽度 4.桥吊的标准跨度LK: 根据桥吊型号按手册选取。
P17
第6页/共51页
第十一章 引水式地面厂房布置设计
三、水电站厂房的设计程序
水电站厂房是水电站工程的主要建筑物之一。 水电站厂房设计是水电站工程设计的重要组成部分。 我国大中型水电站工程设计一般分为四个阶段:
(1)预可行性研究阶段 (2)可行性研究阶段 (3)招标设计阶段 (4)施工详图设计阶段
第26页/共51页
第十一章 引水式地面厂房布置设计
第七节 采光、通风、交通及防火问题
要点: 1.地面厂房尽可能采用自然采光,为此布置主副厂房时 应考虑开窗的要求。厂房水下部分及夜间使用的房 间要安排适宜的人工照明。 2.地面厂房应尽量采用自然通风,某些厂房下部的房间 可按需要设置人工通风。 3.厂内交通:对外至少开两扇大门;上、下层面之间, 一般每两台机组可设一道楼梯。 4.防火设施按有关规范要求设置。 5.取暖、防潮等,根据电站具体情况设置。
3.端机组段长度L端: L nL机 L端 L装 主n—厂—房厂端房部内为机厂组房总的台一数。主 要 通 道 , 一 般 取 L 端 不 小 于 1 . 5 m 。
4.主厂房的总长度L:
第30页/共51页
第十一章 引水式地面厂房布置设计
第八节 主厂房轮廓尺寸决定
二、主厂房的宽度(B)
在以下几个宽度尺寸中经过分析、调整后取最大值: 1.水轮机层以下的块体结构宽度: 蜗壳上下游方向尺寸+下游侧外包砼厚度+ 主阀上下游方向尺寸+宽度裕量 2.装配场布置四大件所需的宽度; 3.发电机层主机房宽度: 围绕机组布置的机电控制设备的宽度尺寸+厂房 上、下游侧纵向主副通道的宽度 4.桥吊的标准跨度LK: 根据桥吊型号按手册选取。
蜗壳及尾水管尺寸PPT课件
3、进口流速
混凝土
进口流速与水头关 系曲线
金属
进口流速系数与水头关系曲线
第5页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
蜗壳平面单线图 第6页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
厂房蜗壳层平面图
第7页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
2、计算原理
蜗壳平面单线图
第8页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
4、混凝土蜗壳的水力计算
第9页/共14页
蜗壳及尾水管的尺寸
作业
已知某轴流式水轮机的参数如下:设计水头hr=38.1m,设 计水头下的最大Q0=54.7m3/s,转轮标称直径D1=3.3m,水轮机导 叶高度b0=0.4D1,座环外径Da=5.3m, 座环内径Da=4.5m。此外, 因水电站条件限制,厂房布置场地比较狭窄,要求选择蜗壳型 式时考虑缩小机组段长度。试计算蜗壳的断面及平面尺寸,并 绘出平面单线图。
蜗壳及尾水管的尺寸
蜗壳的中间断面
第1页/共14页Biblioteka 壳及尾水管的尺寸二、蜗壳的参数
1、尺寸参数
蜗壳的尺寸参数
第2页/共14页
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳的进口 断面
蜗壳的包角
第3页/共14页
鼻端
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳包角
第4页/共14页
蜗壳及尾水管的尺寸
二、蜗壳的参数
第10页/共14页
本文观看结束!!! 第11页/共14页
混凝土
进口流速与水头关 系曲线
金属
进口流速系数与水头关系曲线
第5页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
蜗壳平面单线图 第6页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
1、目的:绘出平面单线图,为厂房设计提供依据
厂房蜗壳层平面图
第7页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
2、计算原理
蜗壳平面单线图
第8页/共14页
蜗壳及尾水管的尺寸
三、蜗壳水力计算
4、混凝土蜗壳的水力计算
第9页/共14页
蜗壳及尾水管的尺寸
作业
已知某轴流式水轮机的参数如下:设计水头hr=38.1m,设 计水头下的最大Q0=54.7m3/s,转轮标称直径D1=3.3m,水轮机导 叶高度b0=0.4D1,座环外径Da=5.3m, 座环内径Da=4.5m。此外, 因水电站条件限制,厂房布置场地比较狭窄,要求选择蜗壳型 式时考虑缩小机组段长度。试计算蜗壳的断面及平面尺寸,并 绘出平面单线图。
蜗壳及尾水管的尺寸
蜗壳的中间断面
第1页/共14页Biblioteka 壳及尾水管的尺寸二、蜗壳的参数
1、尺寸参数
蜗壳的尺寸参数
第2页/共14页
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳的进口 断面
蜗壳的包角
第3页/共14页
鼻端
蜗壳及尾水管的尺寸
二、蜗壳的参数
2、包角
蜗壳包角
第4页/共14页
蜗壳及尾水管的尺寸
二、蜗壳的参数
第10页/共14页
本文观看结束!!! 第11页/共14页
水电站教程课件 第二章 水轮机的蜗壳、尾水管及空化空蚀
表 2-1
混凝土蜗壳断面尺寸
混凝土蜗壳 形式
断面尺寸 参数
特点
对称式 (m=n)
b/a =1.20~1.85; γ=0°~35°
水力性能好, 常采用
下伸式
上伸式
(m>n)
(m<n)
(b-m)/a=1.20~1.85;
(b-n)/a=1.20~1.85; b/a≤2.00 ~2.20(需缩短
机组间距时取大值);
42
下部分时预先装好蜗形的模板,模板拆除后即成蜗壳。为加强
蜗壳的强度需在混凝土中配钢筋,又称钢筋混凝土蜗壳。混凝
土蜗壳与座环或固定导叶的联接要有足够的拉筋。
(二) 蜗壳的断面形状及包角
1.金属蜗壳
金属蜗壳断面采用圆形断面形状,便于铸造和焊接,水力
性能好,强度高。断面面积和半径随着由进口到尾部流量的减
小而减小,约在最后 90°的尾部,由于圆断面面积小到不能和 座环蝶形边连接,因此这部分断面形状由圆过渡到椭圆。
图 2-3 混凝土蜗壳
蜗壳的末端(称为鼻端),通常和座环的某个固定导叶连接在一起。从鼻端到蜗壳进口断面之
间的中心角 φ0,称为蜗壳的包角(逆时针),如图 2-4 所示,图中 Da、Db 分别为座环固定导叶外 径和内径。
三、蜗壳的水力计算
蜗壳水力计算的目的,是确定蜗壳各断面的几何形状和尺寸,并绘制蜗壳平面和断面单线图。 这是水电站厂房布置设计中的一项重要工作。
44
蜗壳设计是在已知水轮机额定水头 Hr 及其相 应的最大引用流量 Q、导叶高度 b0、座环固定导 叶外径 Da 和内径 Db,以及选定蜗壳进口断面形
状、包角 φ0 和平均流速 v0 的情况下进行的。根据
(3)铸焊蜗壳:与铸造蜗壳一样,适用于
水电站课件PPTNO.3
尾水管
o直锥形
o肘形(小型卧轴混流式水轮机) o弯肘形(大中型立轴水轮机)
水电站
HYDROPOWER ENGINEERING
• 四、水轮机的汽蚀及安装高程
– 汽蚀现象
• • • • 基本概念 汽蚀发生的部位及汽蚀类型 汽蚀的危害 防汽蚀措施
– 水轮机的汽蚀系数和吸出高度
• 汽蚀系数 • 吸出高度
水电站
HYDROPOWER ENGINEERING
பைடு நூலகம்
• 三、 反击式水轮机进出水流道的型式 及其主要尺寸的确定 – 水轮机室
• 开敞式(明槽) – 矩形明槽 – 蜗形明槽 • 封闭式 – 压力槽式 – 金属罐式 – 金属蜗壳(小水电中常用) – 砼蜗壳(适用于轴流式水轮机)
水电站
HYDROPOWER ENGINEERING
水电站
HYDROPOWER ENGINEERING
– 水轮机安装高程
• 反击式 – 立轴混流式 – 立轴轴流式 – 卧轴混流式和贯流式 • 冲击式 – 立轴 – 卧轴
LET‘S HAVE A BREAK !
课间休息
思考题
• 1、水轮机室有哪几种类型?
• 2、金属蜗壳与混凝土蜗壳的轮廓尺寸如何确定?
• 3、尾水管有哪些型式?
• 4、直锥形与弯肘形尾水管的轮廓尺寸如何确定?
• 5、反击式水轮机的汽蚀部位有哪些?汽蚀会产生什 么危害,可以采取哪些防止措施?
• 6、什么是汽蚀系数与水轮机的吸出高度?各型水轮 机允许吸出高度和安装高程如何确定?
水轮机的蜗壳尾水管及气蚀课件
压力分布
尾水管内的压力分布会影响水流速度和能量回收效果,需要对尾水 管内的压力分布进行详细分析,以指导尾水管设计。
04
气蚀现象与防治措施
气蚀现象的产生原因与危害
产生原因
气蚀是由于水流在低压区域产生气泡 ,随后在高压区域破裂的现象。气泡 破裂时产生的冲击力和高温对材料表 面造成破坏。
危害
气蚀会导致材料表面的剥蚀、坑蚀、 疲劳破坏等,严重影响水轮机的性能 和寿命。
气蚀的影响因素与机理
影响因素
水流速度、压力变化、材料性质、气泡大小及数量等。
机理
当水流经过低ቤተ መጻሕፍቲ ባይዱ区域时,溶解在水中的气体析出形成气泡。气泡随水流进入高压 区域后迅速破裂,产生高能冲击和局部高温,对材料表面造成破坏。
气蚀的防治措施与方法
选用抗气蚀性能 良好的材料
采用具有高韧性、高强度和 良好耐蚀性的材料,如不锈 钢、钛合金等,以提高材料 的抗气蚀能力。
长度与转弯半径
蜗壳的长度和转弯半径应 设计得足够大,以减小水 流的速度和涡旋强度,降 低能量损失。
蜗壳的性能分析与优化
压力分布
通过对蜗壳内水流压力分布的分析,可以评估蜗壳设计的合理性, 以及发现可能存在的气蚀风险。
湍流强度
降低蜗壳内的湍流强度有助于提高水轮机的效率,可以通过优化蜗 壳的几何形状和尺寸来实现。
水轮机的故障诊断与预防
振动故障诊断
01
通过对水轮机振动信号的监测和分析,可以判断设备是否存在
故障,以及故障的位置和程度。
气蚀故障诊断
02
气蚀是水轮机的一种常见故障,通过对设备表面的检查和探测
,可以发现气蚀的存在,并及时采取修复措施。
预防性维护
03
尾水管内的压力分布会影响水流速度和能量回收效果,需要对尾水 管内的压力分布进行详细分析,以指导尾水管设计。
04
气蚀现象与防治措施
气蚀现象的产生原因与危害
产生原因
气蚀是由于水流在低压区域产生气泡 ,随后在高压区域破裂的现象。气泡 破裂时产生的冲击力和高温对材料表 面造成破坏。
危害
气蚀会导致材料表面的剥蚀、坑蚀、 疲劳破坏等,严重影响水轮机的性能 和寿命。
气蚀的影响因素与机理
影响因素
水流速度、压力变化、材料性质、气泡大小及数量等。
机理
当水流经过低ቤተ መጻሕፍቲ ባይዱ区域时,溶解在水中的气体析出形成气泡。气泡随水流进入高压 区域后迅速破裂,产生高能冲击和局部高温,对材料表面造成破坏。
气蚀的防治措施与方法
选用抗气蚀性能 良好的材料
采用具有高韧性、高强度和 良好耐蚀性的材料,如不锈 钢、钛合金等,以提高材料 的抗气蚀能力。
长度与转弯半径
蜗壳的长度和转弯半径应 设计得足够大,以减小水 流的速度和涡旋强度,降 低能量损失。
蜗壳的性能分析与优化
压力分布
通过对蜗壳内水流压力分布的分析,可以评估蜗壳设计的合理性, 以及发现可能存在的气蚀风险。
湍流强度
降低蜗壳内的湍流强度有助于提高水轮机的效率,可以通过优化蜗 壳的几何形状和尺寸来实现。
水轮机的故障诊断与预防
振动故障诊断
01
通过对水轮机振动信号的监测和分析,可以判断设备是否存在
故障,以及故障的位置和程度。
气蚀故障诊断
02
气蚀是水轮机的一种常见故障,通过对设备表面的检查和探测
,可以发现气蚀的存在,并及时采取修复措施。
预防性维护
03
水轮机的蜗壳、尾水管PPT文档63页
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
水轮机的蜗壳、尾水管
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。—
水电站-蜗壳ppt课件
max
断面中心距: a0 ra 0
断面外半径: R0 ra 20 Rmax
(3)中间断面(φi= φ)
由此可以绘出蜗壳断面单线图 和平面单线图。
步骤: (a) 确定φ0 和VC ; (b) 求F0、ρmax、Rmax; (c) 由φi确定Fi、ρi、Ri。
3 、混凝土蜗壳的水力计算(半解析法)
2、金属蜗壳:当H>40m时采用金属蜗壳。 其断面为圆形,适用于中高水头的水轮机。
(1)钢板焊接:H=40~200m,钢板拼装焊接。 (2)铸钢蜗壳:H>200m,钢板太厚,不易
焊接,与座环一起铸造而成。
混凝土蜗壳
混凝土蜗壳
铸钢蜗壳
三、蜗壳的主要参数
1、断面型式与断面参数
(1)金属蜗壳:圆形。结构参数:Da 、Db、b0、ρi、Ri
(4)按 Fi 直线。
Qi Vu
Qm ax i
360 0Vc
,绘出F = f(Φ)
(5)根据计算需要,选定若干个φi(一 般隔15°、30 °或45 ° 取一个),由 图查出相应的Ri及断面尺寸,绘出蜗壳 断面单线图和平面单线图。
中间断面:蜗壳顶点、底角点的变化规律按直 线或抛物线确定。
2、 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心 角φ0:
(1) 金属蜗壳: φ0=340°~350°,常取345°
φ0大,过流条件好,但平面尺寸增大, 厂房尺寸加大。金属蜗壳的流量小,尺寸 小,一般取较大包角;从构造上讲,最后 100°内,断面为椭圆,但仍按圆形计算。
(2)混凝土蜗壳:
Q大,允许流速小,尺寸大,为减小平面 尺寸,φ0=180°~270°,一般取180°,一部分 水流直接进入座环和导叶,为非对称入流, 对转轮不利。
第三节 蜗壳
式中 —调整后柔性端弯矩;
—杆件刚性端结点处的弯矩;
l—杆件的净跨;
L-杆件中心线长度。
金属蜗壳的外围结构不承受内水压力,但作为机墩的基础结构,受振动荷载的作用,所以配筋计算时,混凝土允许开裂,裂缝宽度应限制在0.3mm之内。
外围结构按г形框架计算内力时,横梁即蜗壳顶板按受弯构件配筋,立柱即蜗壳边墙按偏心受压配筋。另环向还要布置构造筋。
钢筋混凝土蜗壳的流道由蜗壳顶板、边墙、尾水锥体和蜗壳底部结构等围成,下伸式钢筋混凝土蜗壳结构立体示意图见图18-8,图上未绘出蜗壳顶板和细部结构。
图18-8钢筋混凝土蜗壳结构立体示意图
(顶板未示出)
一般的钢筋混凝土蜗壳其底部(即尾水管肘管段的顶板和边墙)为块体混凝土,钢筋混凝土蜗壳结构计算是指顶板和边墙计算。泄流式厂房蜗壳下面布置泄水底孔时,蜗壳底部为泄水孔顶板,这时蜗壳结构应与泄水孔顶板和边墙一起计算分析。
1.设计荷载与计算情况
作用于钢筋混凝土蜗壳结构上的荷载有:
(1)结构自重;
(2)发电机支承结构传来的荷载;
(3)水轮机层地面活荷载;
(4)蜗壳内水压力,包括水击压力在内;
(5)外水压力;
(6)温度影响力。
侧向边墙上是否有外水压力与永久变形缝中止水的布置方式有关,
钢筋混凝土蜗壳的计算情况有:
(1)正常运行。组合荷载包括结构自重、发电机支承结构传来的荷载、水轮机层地面活荷载、内水压力和外水压力。
目前外围结构设计中,一般还是采用平面框架结构力学法计算内力。
从蜗壳进口断面开始选择若干个断面,在每个计算断面上径向切取单位宽度的平面结构,如图18-7所示。按平面变形问题г形框架计算内力,这种方法称为平面框架法。
图18-7金属蜗壳外围结构计算简图
—杆件刚性端结点处的弯矩;
l—杆件的净跨;
L-杆件中心线长度。
金属蜗壳的外围结构不承受内水压力,但作为机墩的基础结构,受振动荷载的作用,所以配筋计算时,混凝土允许开裂,裂缝宽度应限制在0.3mm之内。
外围结构按г形框架计算内力时,横梁即蜗壳顶板按受弯构件配筋,立柱即蜗壳边墙按偏心受压配筋。另环向还要布置构造筋。
钢筋混凝土蜗壳的流道由蜗壳顶板、边墙、尾水锥体和蜗壳底部结构等围成,下伸式钢筋混凝土蜗壳结构立体示意图见图18-8,图上未绘出蜗壳顶板和细部结构。
图18-8钢筋混凝土蜗壳结构立体示意图
(顶板未示出)
一般的钢筋混凝土蜗壳其底部(即尾水管肘管段的顶板和边墙)为块体混凝土,钢筋混凝土蜗壳结构计算是指顶板和边墙计算。泄流式厂房蜗壳下面布置泄水底孔时,蜗壳底部为泄水孔顶板,这时蜗壳结构应与泄水孔顶板和边墙一起计算分析。
1.设计荷载与计算情况
作用于钢筋混凝土蜗壳结构上的荷载有:
(1)结构自重;
(2)发电机支承结构传来的荷载;
(3)水轮机层地面活荷载;
(4)蜗壳内水压力,包括水击压力在内;
(5)外水压力;
(6)温度影响力。
侧向边墙上是否有外水压力与永久变形缝中止水的布置方式有关,
钢筋混凝土蜗壳的计算情况有:
(1)正常运行。组合荷载包括结构自重、发电机支承结构传来的荷载、水轮机层地面活荷载、内水压力和外水压力。
目前外围结构设计中,一般还是采用平面框架结构力学法计算内力。
从蜗壳进口断面开始选择若干个断面,在每个计算断面上径向切取单位宽度的平面结构,如图18-7所示。按平面变形问题г形框架计算内力,这种方法称为平面框架法。
图18-7金属蜗壳外围结构计算简图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按Vu=Vc=C假定计算
2、金属蜗壳水力计算
(1)断面流量 :
Qi
Qmax 360o
i
断面半径:
i
Qmaxi 3600VC
断面中心距: ai ra i
断面外半径: Ri ra 2i
蜗壳水力计算
(2)进口断面(φi= φ0 )
断面流量:
Q0
Qmax 360o
0
断面半径:
0
Qmax 0 3600VC
(1)金属蜗壳:圆形。结构参数:Da 、Db、b0、ρi、Ri
(2)混凝土蜗壳:“T”形。有四种型式:
混凝土蜗壳进口断面形状的选择
① δ=20°~30°,常取δ=30 °。 ②当n=0,γ=10°~15°,b/a=1.5~1.7,可达2.0。 ③当m>n,γ=10°~20°, (b-n)/a=1.2~1.7 ,可达 1.85。 ④当m<n,γ=20°~35°,(b-m)/a=1.2~1.7,可达 1.85。
3 、混凝土蜗壳的水力计算(半解析法)
(1)确定进口断面尺寸
F0
Q0 Vc
Qmax0
3600Vc
根据水电站具体情况选择断面型式,
并确定a,b,m,n,R0,使F=F0
(2)确定中间断面顶角与底角点的变化规 律(直线或抛物线),以虚线表示并画 出1、2、3…….等中间断面。
(3) 测算出各断面的面积,绘出:F = f(R) 关系曲线。
(2)混凝土蜗壳 : Q大,允许流速小,尺寸大,为减小平面尺
寸,φ0=180°~270°,一般取180°,一部分水 流直接进入座环和导叶,为非对称入流,对 转轮不利。
3、蜗壳进口断面平均流速:
Vc↑→Fc↓→hw↑; Vc↓→Fc↑→hw↓; 一般由Hr—Vc曲线确定VC。
Qc
Qmax 360o
2、金属蜗壳:当H>40m时采用金属蜗壳。 其断面为圆形,适用于中高水头的水轮机。
(1)钢板焊接:H=40~200m,钢板拼装焊接 (。2)铸钢蜗壳:H>200m,钢板太厚,不易
焊接,与座环一起铸造而成。
混凝土蜗壳
混凝土蜗壳
金属蜗壳
钢板焊接金属蜗壳
铸钢蜗壳
三、蜗壳的主要参数
1、断面型式与断面参数
(4)按 Fi 直线。
Qi Vu
3Q6m00aV xic
,绘出F
=
f(Φ)
(5)根据计算需要,选定若干个φi(一 般隔15°、30 °或45 ° 取一个),由
图查出相应的Ri及断面尺寸,绘出蜗壳 断面单线图和平面单线图。
§3.4 蜗壳的型式及主要参数选择
一、蜗壳的功用及设计基本要求
设计要求: (1)过水表面应光滑、平顺。 (2)保证水流均匀、轴对称地进入导水机构。 (3)保证水流在进入导水机构前具有一定的环
量。 (4)具有合理的断面形状和尺寸。 (5)具有必要的强度和合适的材料。
二、型式
1、混凝土蜗壳:H≤40m。用于低水头大流 量的电站。节约钢材,钢筋混凝土浇筑, “T”形断面。
中间断面:蜗壳顶点、底角点的变化规律按直 线或抛物线确定。
2、 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心 角φ0:
(1) 金属蜗壳: φ0=340°~350°,常取345°
φ0大,过流条件好,但平面尺寸增大, 厂房尺寸加大。金属蜗壳的流量小,尺寸 小,一般取较大包角;从构造上讲最后 100°内,断面为椭圆,但仍按圆形计算。
0
V cc Hr
四、蜗壳的水力计算
水力计算的目的:确定蜗壳各个断面的 尺寸,绘出蜗壳平面和断面单线图, 为厂房设计提供依据。
已知:H r,Q m,a b 0 x ,D a,D b,0,V c等断面型式下进行
1、:蜗壳中的水流运动
径向分速度:vr
Qmax
Dab0
c
圆周分速度:Vur=k 或者Vu=C=Vc
max
断面中心距: a0 ra 0
断面外半径: R 0ra20R m ax
(3)中间断面(φi= φ)
由此可以绘出蜗壳断面单线图 和平面单线图。
步骤: (a) 确定φ0 和VC ;
(b) 求F0、ρmax、Rmax; (c) 由φi确定Fi、ρi、Ri。
3 、混凝土蜗壳的水力计算(半解析法)