基于Multisim的数字时钟的设计及仿真方案说明书

合集下载

数字时钟仿真设计

数字时钟仿真设计

基于multisim 10.0 的数字时钟仿真设计一、设计目的1、综合运用数字电路的知识,掌握数字时钟的设计方法。

2、掌握计数器、译码器、分频器的设计原理和设计方法。

3、掌握运用仿真软件multisim 10.0 设计综合数字电路的方法。

二、设计意义数字时钟是用数字集成电路构成的、用数码显示的一种现代计时器,与传统机械表相比,它具有走时准确、校时方便、显示直观、无机械传动装置等特点,因而广泛应用于车站、码头、机场、商店等公共场所。

在控制系统中,数字时钟也常用来做定时控制的时钟源。

三、设计要求1、设计一个具有时、分、秒的十进制数字显示的计时器。

2、具有手动校时、校分的功能。

3、通过开关能实现小时的十二进制和二十四进制转换。

4、具有整点报时的功能。

5、用74系列集成电路设计实现6、电路实现的各功能部分用子电路表示。

四、数字时钟的工作原理数字时钟由振荡器、分频器、计数器、译码显示、报时等电路组成。

其中,振荡器和分频器组成标准秒信号发生器,直接决定计时系统的精度。

系统具有时、分、秒的十进制数字显示,因此,应有计数电路分别对“秒脉冲”、“分脉冲” 和“时脉冲”计数;由不同进制的计数器、译码器和显示器组成计时系统。

将标准秒信号送入采用六十进制的“秒计数器”,每累计60s就发出一个“分脉冲” 信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用六十进制计数器,每累计60min,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用二十四进制或十二进制计数器,可实现对一天24h或10h的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态通过六位七段译码显示器显示出来,可进行整点报时,计时出现误差时,可以用校时电路校时、校分。

数字时钟的原理框图如图1所示。

图1 数字时钟的原理框图五、单元电路设计单元电路分为小时计时模块、分钟和秒计时模块、整点译码电路、时钟产 生电路、校时电路等。

待单元电路设计完成后,将各单元电路进行封装连接得到 总体电路,进行总体电路的仿真、调试,最终完成数字时钟的设计。

multisim时钟的设计与仿真

multisim时钟的设计与仿真

m u l t i s i m时钟的设计与仿真The pony was revised in January 2021哈尔滨工业大学数字时钟的设计与仿真目录1.设计要求2. 总电路图及工作原理3.电路组成介绍3.1脉冲形成电路3.2分频电路3.3 60进制计数器及显示电路3.4 24进制计数器及显示电路3.5 时间设置电路4. 电路的测试5. 分析与评价附录:元器件清单1.设计要求本次设计任务是要求用Multisim10.0软件设计一个数字时钟电路,即用数字显示出时间结果。

设计要求如下:(a)以数字形式显示时、分、秒。

(b)小时计时采用24进制的计时方式,分、秒采用60进制的计时方式。

(c)要求能够对时钟进行时间设置。

2. 总电路图及工作原理数字时钟的总电路图如下所示:数字时钟工作原理:数字时钟电路由555振荡发生器、分频器、两个60进制分秒计数器、一个24进制小时计数器以及6个数字显示器组成。

电路工作时由555振荡器产生频率为1000HZ的脉冲,经由三个74LS90D构成的千分频的分频器得到频率为1HZ的脉冲,脉冲输入计数电路(分秒由60进制计数电路计数,小时由24进制计数电路计数),然后将相应数字显示到数字显示器上即所要显示的时间。

另外,时钟的时间设置可以通过三个与单刀双掷开关相连的时钟信号发生器来实现。

电路的设计流程图如下所示3.电路组成介绍3.1 脉冲形成电路脉冲形成电路为555计时器组成的振荡电路。

考虑到时钟对精度要求较高,故在时钟电路中由555振荡电路产生频率为1KHz的脉冲信号,然后经过千分频的分频器分频产生1Hz脉冲。

555振荡器的参数确定:T=0.7(R1+R2)C=1ms,f=1/t=1KHZ,故可令R1=5kΩ,R2=5KΩ,C=100nF。

(以上设置在实际仿真的时候速度过慢,故在实际仿真中)脉冲形成电路如下所示:3.2 分频电路分频电路是三个用十进制计数器74LS90串联而成的千分频的分频器。

数字时钟的Multisim设计与仿真

数字时钟的Multisim设计与仿真

数字电子技术课程设计学院:信息工程学院班级:电气二班姓名:刘君宇张迪王应博数字时钟的Multisim设计和仿真一、设计和仿真要求学习综合数字电子电路的设计、实现?基础调研?应用设计、逻辑设计、电路设计?用Multisim软件验证电路设计?分析电路功能是否符合预期,进行必要的调试修改?撰写Project报告,提交Multisim?24???????显示精通过对软件Multisim的学习和使用,进一步加深了对数字电路的认识。

在仿真过程中遇到许多困难,但通过自己的努力和同学的帮助都一一克服了。

首先,连接电路图过程中,数码管不能显示,后经图形放大后才发现是电路断路了。

其次,布局的时候因元件比较多,整体布局比较困难,因子电路不如原电路直观,最后在不断努力下,终于不用子电路布好整个电路。

调试时有的器件在理论上可行,但在实际运行中就无法看到效果,所以得换不少器件,有时无法找出错误便更换器件重新接线以使电路正常运行。

在整个设计中,计数器的接线比较困难,反复修改了多次,在认真学习其用法后采用归零法和置数法设计出60进制和24进制的计数器。

同时,在最后仿真时,预置的频率一开始用的是1hz,结果仿真结果反应很慢,后把频率加大,这才在短时间内就能看到全部结果。

总之,通过这次对数字时钟的设计与仿真,为以后的电路设计打下良好的基础,一些经验和教训,将成为宝贵的学习财富。

数字电子技术基础感想(分工:完成24小时计时功能)本学期我们学习了数字电子技术基础这门课程,通过一学期的学习,我学习到了cmos门电路,ttl门电路,编码器,译码器,触发器和时序电路等数电专业的知识。

上学期接触过模拟电路的知识,在学习数电后,感受到了两门课很多相同又不同的地方。

老师在学期末给我们布置了一个作业,设计数字电路实现时钟功能的作业。

这次作业结合了大部分本学期所学习的知识,综合性极强。

我们在设计中应用了自动校时,并实现了闹钟的功能。

在扩展功能里,我们的时钟可以显示星期,可以整点报时,闹钟功能实现了彩铃响铃。

基于Multisim的数字钟实验电路的设计与仿真

基于Multisim的数字钟实验电路的设计与仿真

基于Multisim的数字钟实验电路的设计与仿真
在电子技术实验教学中,构建学生的电路设计理念,提高学生的电路设计能力,是教学的根本目的和核心内容。

数字钟电路的设计和仿真,涉及模
拟电子技术、数字电子技术等多方面知识,能够体现实验者的理论功底和设计
水平,是电子设计和仿真教学的典型案例。

文中采用了555 定时器电路、计数电路、译码电路、显示电路和时钟校正电路,来实现该电路。

1 系统设计方案
数字钟由振荡器、分频器、计时电路、译码显示电路等组成[1-3]。

振荡器是数字钟的核心,提供一定频率的方波信号;分频器的作用是进行频率变换,产生频率为1 Hz 的秒信号,作为是整个系统的时基信号; 计时电路是将时基信号进行计数;译码显示电路的作用是显示时、分、秒时间;校正电路用来对时、分进行校对调整。

其总体结构图,如图1 所示。

2 子系统的实现
2.1 振荡器
本系统的振荡器采用由555 定时器与RC 组成的多谐振荡器来实现,如图2 所示即为产生1 kHz 时钟信号的电路图。

此多谐振荡器虽然产生的脉冲误差较大,但设计方案快捷、易于实现、受电源电压和温度变化的影响很小[4]。

2.2 分频器
由于振荡器产生的频率高,要得到标准的秒信号,就需要对所得到的信号进行分频。

在此电路中,分频器的功能主要有两个:1) 产生标准脉冲信号;。

数字钟设计报告_multisim_附图

数字钟设计报告_multisim_附图

一、设计目的1、了解并掌握电子电路的一般设计方法,具备初步的独立设计能力。

2、通过查阅手册和文献资料,进一步熟悉常用电子器件的类型和特性,并掌握合理选用的原则;进一步掌握电子仪器的正确使用方法。

3、学会使用EDA软件Multisim对电子电路进行仿真设计,并利用该软件对所设计的电子电路进行仿真测试。

4、通过对自己所设计的电子电路进行实际组装、测试,初步掌握普通电子电路的安装、布线、调试等基本技能,5、提高综合运用所学的理论知识独立分析和解决问题的能力,学会撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。

二、设计内容、要求及设计方案1、任务利用multisim仿真软件和电子元器件设计并制作一个数字钟。

2、基本要求1)准确计时,以数字形式显示时、分和秒的时间。

2)如真实时钟,小时的计时要求为“12翻1”,分和秒的时间要求为60进制。

3)自由校正时间。

3、扩展功能1)定时闹钟功能。

2)仿广播电台正点报时。

4、总体方案数字钟电路的组成方框图如下图1所示,其主体电路的工作原理如下:由555定时器产生1kHz的脉冲信号,经由74LS90构成的三级分频器后,输出1Hz的单位脉冲,为由74LS90和74LS92构成的60进制秒计数器提供时钟,秒计数器十位再向74LS90和74LS92构成的60进制分钟计数器提供时钟脉冲,其高位再向由74LS191和74LS74构成的12进制小时计数器提供时钟脉冲。

秒、分和时计数器的输出分别接到各自的译码器的输入端,驱动数码管显示。

图1 多功能数字钟系统框图5、可选元器件与非门:74LS00 4片;计数器:74LS90 5片、74LS92 2片、74LS191 2片;译码器:74LS47 6片;数码管4只;555定时器:NE555 2片;发光二极管4只;触发器:74LS74 2片;逻辑门:74LS03 (OC)2片、74LS04 2片、74LS20 2片。

三、自己所负责的单元电路设计在最初的小组分工中,本人主要负责整个电子电路第一步的振荡器与分频器的设计工作。

数字钟设计说明书

数字钟设计说明书

电子课程设计说明书题目:数字钟学生姓名专业学号指导教师日期摘要本说明书介绍了带有校时和整点报时功能的数字钟的实现方案。

包括制作数字钟所需要的各种芯片及具体连接思路和方法,设计过程出现的一些问题和解决方法以及心得体会。

关键词:计数器,触发器分频,555脉冲产生电路,数据选择mul tisim一、完成课题的工作基础和实验条件1.工作基础(1)了解同步十进制计数器CC4518二输入与非门CC4011 四输入与非门CC4012 D触发器CC1013 和非门CC4049的功能和引脚图。

(2)设计电路图,并在进行仿真(采用Multisim进行仿真)。

(3)熟悉面包板、示波器的使用2.实验条件(1)同步时进制计数器CC4518 3个(2)四输入与非门CC4012 1个(3)二输入与非门CC4011 5个(4)非门CC4049 2个(5)D触发器CC4013 1个(6)555定时器2个(7)10kΩ电阻2个(8)100kΩ电阻2个(9)47μF电容1个(11)0.01μF电容4个(12)示波器1台(13)面包板实验台(14)导线若干二、设计任务和要求数字钟设计指标:1、基本指标:(1)时间计数电路采用24进制,从00开始到23后再回到00;各用2位数码管显示时、分、秒;(2)具有校时、校分功能,可以分别对时及分进行单独校时,使其校正到标准时间;(3)计时过程具有报时功能,当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次,前四次蜂鸣器声响频率为500Hz,最后一次,即59分59秒时,蜂鸣器声响频率为1000Hz;(4)为了保证计时的稳定及准确,须由555定时器提供时间基准信号。

2、提高指标:(1)星期计数。

因为只有六个数码显示器,分别显示时、分、秒的个十位,故在基本指达到后,拆除一个数码显示器来显示星期。

星期计数从1~6表示星期一到星期六,星期天由8表示。

(2)暂停功能。

暂停秒钟可辅助校时。

三、电路基本原理1、总体设计框架图2、各部分详细电路图(1)脉冲产生电路由555定时器产生脉冲,具体电路如下(a)1Hz 脉冲产生(b)1kHz脉冲产生其中5nF电容由两个0.01μF电容串联而成(2)分频电路采用CC4013 D触发器进行分频,1kHz脉冲从端口3(CP)中输入,在端口2(~Q)即输出500Hz脉冲。

基于Multisim 14仿真设计的多功能数字电子钟

基于Multisim 14仿真设计的多功能数字电子钟

电子产品世界基于Multisim 14仿真设计的多功能数字电子钟Multifunctional digital electronic clock based on simulation design of Multisim 14金子涵,任致远,史旭东,王胜铎 (黑龙江工程学院,哈尔滨150050)摘 要:数字电子钟是一种利用数字电子技术实现计时的钟表。

本文介绍了在Multisim 14仿真软件上设计的满足要求的可调闹钟功能数字钟,对其设计原理、整体框图和各单元电路做了详细说明。

利用Multisim软件具有花费少、效率高、周期短,功能强等优势,可对数字电子钟电路进行分层设计。

将整机框图拆分成多个单元电路,再将各单元电路连线成整机电路,结构清晰,便于理解每个单元电路功能,使整机电路功能一目了然。

关键词:数字电子钟;Multisim 14;可调闹钟;反馈置数法;分层设计0 引言Multisim 14是美国NI公司研发的一款以Windows 为操作平台的EDA工具软件[1],可以对模拟、数字电路进行仿真与设计,具有丰富仿真分析能力,所以在电子技术领域以Multisim仿真软件为平台进行电路设计非常普遍。

数字电子钟是一种以数字电路技术实现计时的现代计数器,与传统机械式时钟相比,具有更高的准确性和直观性,且无机械装置,使用寿命更长,因此得到了广泛使用。

从原理上讲,数字电子钟是一种典型数字电路,包括组合逻辑电路和时序电路[2],所以,本文借助Multisim 14软件仿真数字电路便捷高效的优势,进行模块化电路设计,使得设计花费少、效率高、周期短。

1 设计任务1.1 基本功能1)应用模拟振荡电路实现正弦波时钟信号发生,并作为数字钟的时钟信号。

2)实现数字时钟计时功能,时间以24 min为1个周期。

3)用数码管显示分钟、秒。

1.2 扩展功能1)具有校时功能,可以对分钟和秒单独校时。

2)计时过程具有闹钟功能,到达指定时间(时间可选定)蜂鸣。

基于multisim的电子秒表仿真设计报告

基于multisim的电子秒表仿真设计报告

目录1.设计任务 (1)2.设计原理及方案 (2)2.1设计方案 (2)2.2设计原理 (2)3.设计步骤和结果 (3)3.1振荡器 (3)3.2计数器 (3)3.3控制电路 (4)4.总电路图 (5)5.课程设计总结 (6)6.设计体会 (7)参考文献 (8)- I -数字电子技术课程设计报告1.设计任务电子秒表是测定段时间间隔的仪表,由振荡电路、计数器、译码器、显示电路等部分组成,其中振荡器组成标准秒信号发生器,由不同进制的计数器、译码器和显示器组成计时系统。

技术要求:1、采用中、小规模数字集成电路实现。

2、具有清零、启动计时、暂停计时及继续计时等控制功能。

3、可以准确显示00.00-99.99。

4、由七段LED显示器显示。

5、控制开关两个:启动(继续)暂停计时开关和复位开关。

6、利用Multisim (或EWB)进行电路仿真与调试。

- 1 -数字电子技术课程设计报告2.设计原理及方案2.1 设计方案该方案采用的是用555振荡器产生一个100HZ的脉冲,送入十进制加法计数器74LS290,通过共阴极七段数码管来显示结果,可以准确显示00.00-99.99秒的计时,并且能够通过控制电路实现启动、暂停、和清零功能。

设计流程图如图2.1图2.1 流程图2.2 设计原理由555振荡器产生100Hz脉冲信号,作为10毫秒的计时脉冲;10毫秒计数器计满10后,向100毫秒计数器产生进位脉冲;100毫秒计数器计满10后,向1秒计数器产生进位脉冲;1秒计数器计满10后,向10秒计数器产生进位脉冲。

计数器的输出经显示译码器译码后送显示器显示。

该电路设置两个控制键控制“S1”,“S2”。

键“S1”控制电路的清零功能,键“S2”控制电路的暂停功能。

- 2 -数字电子技术课程设计报告3.设计步骤和结果3.1振荡器振荡器是数字秒表的核心。

振荡的稳定度及频率的精度决定了数字式秒表的精确度,一般来说振荡器的频率越高,计时精度也越高。

基于Multisim的多功能数字电子钟

基于Multisim的多功能数字电子钟
只需将小时部分的24进制计数器改为12进制计数器即可,电路图如图1-8所示。
图1-8小时部分为12进制的电路原理图
图11数字电子钟原理明德至善博学笃行11本电路主要由振荡器和分频器产生1mhz的脉冲用脉冲驱动秒计数器因为每分钟又60秒所以秒计数器应为60进制计数器经译码电路显示秒利用秒计数器的复位脉冲作为分计数器的计数脉冲因每小时有60分所以分计数器也应为60进制计数器计数器经译码显示分利用分计数器的复位脉冲作为时计数器的计数脉冲因为每天为24小时所以时计数器应为24进制其输出经译码显示时钟时
班 级电科081班
姓名龚 浪
学 号*************
实验名称多功能数字电子钟
指导教师李 良 荣
理学院
时间:2011年4月25日
多功能数字电子钟
一.设计目的
1.掌握数字电子钟计数、分频、译码显示及时钟脉冲振荡器等组合逻辑电路与时序逻辑电路的综合应用。
2.掌握多功能数字电子钟的设计方法、装调技术及数了电子钟的扩展应用。
2.
1振荡器
振荡器是数字钟的核心,振荡器的稳定性及频率的精确度影响了数字钟的准确性,所以通常选用石英晶体来构成振荡电路,一般来说,振荡器频率越高,计时精度也越高,但耗电量也越大本振荡器采用CD4060,CD4060内有一个振荡器和分频器晶体振荡器频率为32768Hz,经分频后从4060的3脚输出频率为2Hz的信号在经过74ls74组成的2分频器,输出1Hz的时钟秒脉冲。
图1-1数字电子钟原理
本电路主要由振荡器和分频器产生1MHZ的脉冲用脉冲驱动秒计数器,因为每分钟又60秒,所以“秒”计数器应为60进制,计数器经译码电路显示秒,利用“秒”计数器的复位脉冲作为分计数器的计数脉冲,因每小时有60分,所以“分”计数器也应为60进制计数器,计数器经译码显示“分”,利用分计数器的复位脉冲作为“时”计数器的计数脉冲,因为每天为24小时,所以时计数器应为24进制,其输出经译码显示时钟时。

基于Multisim的数字时钟仿真设计

基于Multisim的数字时钟仿真设计

基于Multisim的数字时钟仿真设计
Multisim是由National Instruments公司推出的一款仿真电路设计软件,其功能强大、界面友好,能帮助工程师更好地模拟电子电路。

本文介绍了在Multisim中进行数字时钟仿真设计的基本步骤。

在制作数字时钟之前,首先需要进行电路设计,具体步骤如下:
1、确定时钟的频率。

为了使Multisim能正常工作,必须确定正确的输入频率。

2、在Multisim中设置时钟电路。

在Multisim中,可以选择运放IC作为时钟电路的组件,并在模拟真实电路中调节不同的参数,比如时钟信号的频率和阻抗。

4、将时钟信号输出到外部仪器。

当仿真结果符合预期时,就可以将时钟信号输出到仪器中,进行更进一步的测试。

以上就是在Multisim中进行数字时钟仿真设计的基本流程,它能够帮助工程师更好地掌握设计思想,让电路设计更加容易和准确。

基于Multisim12的数字钟设计与仿真

基于Multisim12的数字钟设计与仿真

基于Multisim12的数字钟设计与仿真
基于Multisim12的数字钟设计与仿真
吕念芝
【摘要】基于Multisim12平台设计了一款具有整点报时、12或24小时切换、校时、驱动、时分秒显示功能的数字电子钟。

晶振秒脉冲电路经过在面包板上实际测试可以实现,其他电路在Multisim12仿真平台可以成功实现。

电路结构采用层级化设计模式,清晰明了。

10个底层电路采用分立元件实现具体功能。

采用分立元件可以检验学生对基本元件知识掌握的情况,以及功能应用的熟练程度度。

通过Multisim12软件的仿真,为后续数字钟的实现奠定了很好的基础。

【期刊名称】内蒙古科技与经济
【年(卷),期】2019(000)008
【总页数】3
【关键词】Multisim12;数字钟;设计;仿真
基金项目:《基于Android平台的多屏互动系统的设计与实现》(编号:JAT160618);《基于超级电容器的新型能源材料技术探索》(编号:JAT160622);基于蓝牙5.0的可移动车载显示器设计(编号:JAT170793)。

数字钟[1]的设计实现途径很多,可以采用现在先进的FPGA[2]技术,在一个芯片内实现主体功能:秒脉冲输出、计数、12或24小时切换、整点报时和时间校准。

再配合简单的外围电路就可以实现基本功能的数字钟。

或者采用专门的数字钟的集成芯片[3],再配合电源、显示等外围电路也可以实现数字电子钟。

以上两种途径虽然可以快速的设计数字电子钟,抗干扰能力也很强,可是无法体现学生对分立元件掌握的熟悉度和对基本数字电路知识掌握的程度,鉴于此。

基于multisim数字时钟的设计

基于multisim数字时钟的设计

摘要自改革开放以来我国科技得以高速发展,尤其是电子技术的飞速发展。

各种各样的电器器材凭空而出。

数字电子钟是一种用数字电路技术实现时、分、秒计时的装置,与机式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

目前,数字钟的功能越来越强,并且有多种专门的大规模集成电路可供选择。

经过了数字电路设计这门课程的系统学习,特别经过了关于组合逻辑电路与时序逻辑电路部分的学习,我已经具备了设计小规模集成电路的能力,借由本次设计的机会,充分将所学的知识运用到实际中去。

一、设计要求及指标基本要求和功能设计任务与要求如下:用同步十进制集成计数器74160设计一个数字电子钟,能显示小时、分钟和秒钟;能进行24h与12h的计时转换;具有小时和分钟的校时功能。

设计要求如下:1)画出数字电子钟的结构框图。

2)设计一个输出5 V的直流稳压电源。

3)用555定时器设计一个秒钟脉冲发生器。

4)用同步十进制集成计数器74160设计一个秒钟计数器和分钟计数器。

即六十进制计数器。

5)用同步十进制集成计数器74160设计一个24/12小时计数器,通过转换开关可实现二十四与十二进制计数值的转换。

6)数字电子钟具有小时校时和分钟校时的功能。

7)用七段译码显示器观察各单元电路和连机后数字电子钟的仿真(用multism或Proteus软件进行仿真)实验结果。

可在以上基本要求基础上增加其它功能(即发挥部分),也可用单片机实现(要编程,用Proteus 软件仿真成功)二、方案论证与比较方案一:使用555多谐振荡器来产生1HZ的信号。

通过改变相应的电阻电容值可使频率微调,不必使用分频器来对高频信号进行分频使电路繁复。

虽然此振荡器没有石英晶体稳定度和精确性高,同时由于12/24进制、60进制计数器均由集成计数器级联构成,且都包含有基本的十进制计数器,芯片选择同步十进制计数器74160。

基于Multisim的数字时钟的设计及仿真方案说明书

基于Multisim的数字时钟的设计及仿真方案说明书

数字时钟具有“秒”、“分”、“时”的十进制数字显示,能够随时校正分钟和小时,当时钟到整点时能够进行整点报时,还能够进行定时设置。

其涉及的电路由6部分组成。

(1)能产生“秒脉冲”、“分脉冲”和“时脉冲”的脉冲产生和分频电路;(2)对“秒脉冲”、“分脉冲”和“时脉冲”计数的计数电路;(3)时间显示电路;(4)校时电路;(5)报时电路;(6)定时输入电路和时间比较电路。

由脉冲发生器产生信号通过分频电路分别产生小时计数、分计数、秒计数。

当秒计数满60后,分钟加1;当分满60后,时加1;当时计数器计满24时后,又开始下一个循环技术。

同时,可以根据需要随时进行校时。

把定时信号和显示信号通过比较电路确定能否产生定时报警信号。

显示信号通过整点译码电路产生整点报警信号。

数字时钟设计与开发以及仿真分析:系统具有“时”、“分”、“秒”的十进制数字显示,因此,应有计数电路分别对“秒脉冲”、“分脉冲”和“时脉冲”计数;同时应有时间显示电路,显示当前时间;还应有脉冲产生和分频电路,产生“秒脉冲”、“分脉冲”和“时脉冲”[5]。

系统具有校时功能,因此,应有校时电路,设定数字时钟的当前值。

系统具有整点报时功能,因此,应有译码电路将整点时间识别出来,同时应有报时电路。

系统具有定时功能,因此,应有定时输入电路和时间比较电路。

综上考虑,可如图2.1所示设计数字时钟的电路原理结构图。

图2.1 数字时钟的电路原理结构图如图2.1所示,数字时钟电路有3个开关,它们的功能如下。

(1)S1:S1为瞬态开关,手动输入计数脉冲。

(2)S2:校时/定时/校时选择电路输入选择开关,当开关切换到上触点,为定时输入;当开关切换到中间触点,为校时输入;当开关切换到下触点,为校时选择电路输入。

(3)S3:为计时/校时选择开关,当开关切换到右边触点时,数字时钟为计时状态;当开关切换到左边触点时,数字时钟为校时状态。

左边两个计数器(小时计数、分计数)接收手动输入脉冲,为定时功能设定定时时间。

数字时钟的Multisim设计与仿真

数字时钟的Multisim设计与仿真

电子电路Multisim设计和仿真【1 】学院:专业和班级:姓名:学号:数字时钟的Multisim设计和仿真一.设计和仿真请求进修分解数字电子电路的设计.实现和调试1.设计一个24或12小时制的数字时钟.2. 请求:计时.显示准确到秒;有校时功效.采取中小范围集成电路设计.3.施展:增长闹钟功效.二.总体设计和电路框图1.设计思绪1).由秒时钟旌旗灯号产生器.计时电路和校时电路构成电路.2).秒时钟旌旗灯号产生器可由555准时器构成.3).计时电路中采取两个60进制计数器分离完成秒计时和分计时;24进制计数器完成时计时;采取译码器将计数器的输出译码后送七段数码管显示.4).校时电路采取开关掌握时.分.秒计数器的时钟旌旗灯号为校时脉冲以完成校时.2.电路框图三.子模块具体设计1.由555准时器构成的1Hz秒时钟旌旗灯号产生器.由下面的电路图产生1Hz的脉冲旌旗灯号作为总电路的初输入时钟脉冲.图2. 时钟旌旗灯号产生电路2.分.秒计时电路及显示部分在数字钟的掌握电路中,分和秒的掌握都是一样的,都是由一个十进制计数器和一个六进制计数器串联而成的,在电路的设计中我采取的是同一的器件74LS160D的反馈置数法来实现十进制功效和六进制功效,依据74LS160D的构造把输出端的0110(十进制为6)用一个与非门74LS00引到CLR端即可置0,如许就实现了六进制计数.由两片十进制同步加法计数器74LS160级联产生,采取的是异步清零法.显示部分用的是七段数码管和两片译码器74LS48D.图3. 分秒计时电路3.时计时电路及显示部分由两片十进制同步加法计数器74LS160级联产生,采取的是同步置数法,u1输出端为0011(十进制为3)与u2输出端0010(十进制为2)经由与非门接两片的置数端.显示部分用的是七段数码管和两片译码器74LS48D.图4. 时计时电路校时电路采取开关掌握时.分.秒计数器的时钟旌旗灯号为校时脉冲以完成校时.如图,当开关A,B闭合,C,D断开时,电路进行正常的计时工作;当开关A,B断开,C,D闭应时,就可以主动进行校时.当然也可以手动校准时光,这是须要不竭地闭合.断开开关,每次只转变一个数.个中C是校时开关,D是较离开关,开关E用来掌握秒得校准,断开时,秒显示为0.图5. 校时电路四.整体电路道理图整体电路共分为五大模块:脉冲产生部分.计数部分.译码部分.显示部分.校时部分.重要由震动器.秒计数器.分计数器.时计数器.BCD-七段显示译码/驱动器.LED七段显示数码管.时光校准电路构成.数字钟数字显示部分,采取译码与二极管串联电路,将译码器.七段数码管衔接起来,构成十进制数码显示电路,即时钟显示.要完成显示须要6个数码管,八段的数码管须要译码器械才干显示,然后要实现时.分.秒的计时须要60进制计数器和24进制计数器,在在仿真软件中产生旌旗灯号可以用函数产生器仿真,频率可以随便调剂.60进制可能由10进制和6进制的计数器串联而成,频率振荡器可以由晶体振荡器分频来供给,也可以由555准时来产生脉冲并分频为1Hz.计数器的输出分离经译码器送显示器显示.计时消失误差时,可以用校时电路校时.校分.图6. 整体电路图五.仿真成果1.1hz脉冲产生电路仿真振荡器可由晶振构成,也可以由555与RC构成的多谐振荡器.由555准时器得到1Hz的脉冲,功效主如果产生尺度秒脉冲旌旗灯号和供给功效扩大电路所须要的旌旗灯号.仿真剖析开端前可双击仪器图标打开仪器面板.预备不雅察被测试波形.按下程序窗口右上角的启动/停滞开关状况为1,仿真剖析开端.若再次按下,启动/停滞升关状况为0,仿真剖析停滞.电路启动后,须要调剂示波器的时基和通道掌握,使波形显示正常.为了便于不雅察特把频率加大.由图可见,所设计的电路可以产生方波.图7(a). 产生1kHz的脉冲波形图7(b). 产生1Hz的脉冲波形2.脉冲输出电压不雅察在内心栏里选用万用表接到555准时电路的输出端,设置万用表输出为直流电压.点击运行按钮,由仿真成果可知脉冲输出电压较稳固,开端小幅度变更,最后稳固在3.33v.与最初设计基底细符.图8. 脉冲数出电压电路3.60进制计数器计数仿真成果如图衔接好电路,点击运行按钮,经由不雅察电路仿真成果所设计的电路是准确的,可以正常工作.计数显示从0到59.当计数器数到59后有一个短暂的60显示,这是异步清零的原因.现实工作后不会消失计数不准的现象.图9. 60进制计数器计数仿真电路4.24进制计数器计数仿真成果给电路加脉冲旌旗灯号源,频率可以加大.如图,频率为1kHz,经由不雅察电路的仿真成果可以看到显示数字是从0到23与设计相符.特殊留意74LS160的衔接.图10. 24进制计数器计数仿真电路5.总体电路仿真成果1). 秒计数向分计数进位仿真.如图衔接好电路,点击运行后,可以看到秒计数计到59后可以向分计数器进位,电路运行正常.2). 分计数向时计数进位仿真.给分计数器的个位计数片上加1kHz的时钟旌旗灯号源,经由运行仿真后,可以看出分位计数到59时可以向时位进位.电路运行正常.6. 开关校时电路仿真成果校时电路由开关.或非门和反相器构成,当 A.B.E闭合,C.D断开时,电路正常计时;当A.B随便,C.D闭应时,时,分主动校时;当手动校不时,每开关一次示数增长1. E开关用来较秒的,闭应时正常工作,断开时秒显示器为零,全部电路不工作.可以起到较秒的感化.经由仿真试验开关设置合理,可以起到预定的后果,可以或许有用地校准时.分.秒.六.结论由震动器.秒计数器.分计数器.时计数器.BCD-七段显示译码/驱动器.LED 七段显示数码管设计了数字时钟电路,经由仿真得出较幻想的成果,解释电路图及思绪是准确的,可以实现所请求的根本功效:计时.显示准确到秒.时分秒校时.七.应用Multisim仿真软件设计领会经由过程对软件Multisim的进修和应用,进一步加深了对数字电路的熟悉.在仿真进程中碰到很多艰苦,但经由过程本身的尽力和同窗的帮忙都一一战胜了.起首,衔接电路图进程中,数码管不克不及显示,后经图形放大后才发明是电路断路了.其次,计划的时刻因元件比较多,整体计划比较艰苦,因子电路不如原电路直不雅,最后在不竭尽力下,终于不必子电路布好全部电路.调试时有的器件在理论上可行,但在现实运行中就无法看到后果,所以得换很多器件,有时无法找出错误便改换器件从新接线以使电路正常运行.在全部设计中,74LS160的接线比较艰苦,重复修正了多次,在卖力进修其用法后采取归零法和置数法设计出60进制和24进制的计数器.同时,在最后仿真时,预置的频率一开端用的是1hz,成果仿真成果反响很慢,后把频率加大,这才在短时光内就能看到全体成果.总之,经由过程此次对数字时钟的设计与仿真,为今后的电路设计打下优越的基本,一些经验和教训,将成为珍贵的进修财宝.第11页,共11页。

基于Multisim的数字电子时钟设计报告

基于Multisim的数字电子时钟设计报告

基于Multisim的数字电子时钟设计报告概述本设计基于Multisim电路仿真软件,设计了一个数字电子时钟。

数字电子时钟是广泛应用于现代社会的计时器,具有精度高、准确性好、可靠性强等优点,能够准确显示时间。

数字电子时钟可以应用于家庭、办公室、超市、机场等场合,广受人们喜爱和使用。

设计该数字电子时钟主要由 4 个数码管、时钟芯片、电容、电阻、晶振等器件组成。

其中,时钟芯片采用DS1302,能够实现时钟和日历的存储和计时功能。

整个电路分为三部分,分别是时钟芯片电路、倍频器电路和驱动器电路。

时钟芯片电路:时钟芯片DS1302由VCC、GND和RST 3个引脚,以及时钟、数据、CE 3个串行通讯接口,共6个引脚构成。

其中,时钟引脚CLK为时钟信号输入端口,数据引脚DAT为数据输入/输出端口,CE引脚为集成电路芯片片选输入端。

时钟芯片电路下图1所示:倍频器电路:由于DS1302时钟输出频率比较低,输出波形为方波,所以需要进行倍频电路扩大幅度。

数字电路中的倍频电路共有两种形式,一种是简单地采用RC电路实现,另一种是采用PLL 电路实现。

本设计采用了RC电路的实现方式来进行自由导通,方便实现调试。

倍频器电路下图2所示:由上一级的4位BCD码信号控制,产生位选、段选信号来控制数码管。

本电路采用CD4511 BCD-7段译码器驱动四个带数码管。

CD4511 BCD-7段译码器的输入端口为高电平有效 BCD码,输出端口为低电平有效的各段线,控制四个带数码管的位选信号和段选信号。

驱动器电路下图3所示:结果通过Multisim仿真,我们成功设计出了一个数字电子时钟。

这个时钟能够准确地显示当前的时间,并且操作简单、使用方便,展现出数字电子时钟的精准、准确、稳定的特性。

结论本设计采用Multisim仿真,成功设计了一个数字电子时钟。

在实验中,确保各组件的正确接线,并逐步排查问题,使得整个电路实现的稳定可靠、准确无误。

这个数字电子时钟具有结构简单、响应迅速、精度高、显示亮度高等优点,能够满足不同场合的使用需求。

基于Multisim 9的数字电子钟设计与仿真

基于Multisim 9的数字电子钟设计与仿真

万方数据进行设计。

若要进行修改,同样采用以上步骤。

60进制图260进制计数器层次模块图3层次块电路设置由此,采用4518十进制计数器,设计了60进制和24进制的计数器,计数器的内部电路分别如图4、图5所示。

图460进制计数器连线图3.2校准电路同样的方法,设计校准电路的层次电路时,设计为6个输入口、3个输出口,其内部电路如图6所示。

为便于使用,将校准开关外接。

校时电路工作过程如图7所示,正常工作情况下,J。

断开,J。

,J。

闭合,秒脉冲进入计数器。

当需要对秒进行校正时,闭合和断开J。

,直到需要的数字为止;需要对分校正时,J。

处于闭合的情况下,断开Jz,秒脉冲进入到分计时,则分计数器快速计数,直到显示的时间为需要的数字为止,再闭合Jz;同理,可以对时进行校正。

图524进制计数器连线图图6核准电路连线图图7数字电子钟连线图4整机电路安装调试在Multisim中,执行Place/HierachicalBlock命令,找到已存储的层次块,点打开即可出现在电路模板185万方数据万方数据基于Multisim 9的数字电子钟设计与仿真作者:罗映祥, LUO Ying-xiang作者单位:重庆三峡学院,物理与电子工程学院,重庆,404000刊名:现代电子技术英文刊名:MODERN ELECTRONICS TECHNIQUE年,卷(期):2010,33(9)被引用次数:0次1.阎石数字电子技术基础 20062.杨志忠电子技术课程设计 20083.聂典Multisim 9计算机仿真在电子电路设计中的应用 20074.周凯EWB虚拟电子实验室:Multisim 7 & Ultiboard 7电子电路设计与应用 20055.罗映祥Multisim电路仿真软件在差分电路分析中的应用 2008(1)6.罗映祥Multisim 2001电路仿真软件在负反馈电路教学中的应用 2008(7)7.汪建立基于Multisim 2001软件的数显抢答器设计与仿真 2004(4)8.甘庆玉.韦鸿Multisim 10.0在电子秒表实训教学中的仿真应用 2009(8)9.董玉冰基于Multisim 9.0简易数字频率计的设计与仿真 2009(6)本文链接:/Periodical_xddzjs201009055.aspx授权使用:北京电子科技学院(bjdzkjxy),授权号:407c8aa1-03ed-48d0-b8cb-9ecf013c666c下载时间:2011年4月24日。

基于Multisim10电子数字钟的设计与仿真

基于Multisim10电子数字钟的设计与仿真
u2621
1
5V
140
VDD
5V
VDD
R49
;10M?
■5%
141
VDD
5V
VDD
R45
6
0
Key =
147
10M?|
5%
;10M
:5%
U39A
132
133
U41A
U42A
7408N
7408N
U38A
432N
122
U44A
144
7400N
U46A
工&
7408N
142
Key = A
0
R50
:10M?
5%
YY Y Y Y YY
U8
4511BP 5V
5V
5V
V
01 23 L B L S AA AAV
U34A
J
U10A
U15A
■73
U2A
74LS00
74LS00
74LS0C
N
4
5J
45
48
51
U6
MU
A BC D Q QQ Q
100|0
5%5%
74LS08D
U23 45 1BP
U21 4511BF
O
CHale Waihona Puke R关键词 数字钟 振荡器 计数器 译码显示 仿真
引言 数字钟是一种用数字电路技术实现时、 分、 秒计时的装置, 钟表的数字化给人们生产 生活带来了极大的方便, 而且大大地扩展了钟表原先的报时功能。 诸如定时自动报警、 按时 自动打铃、时间程序自动控制、定时广播。而且与传统的机械钟相比,它具有走时准确、显 示直观、 无机械传动、 无需人的经常调整等优点。 数字钟的设计涉及到模拟电子与数字电子 技术,其中绝大部分是数字部分、逻辑门电路、数字逻辑表达式、计算真值表与逻辑函数间 的关系、编码器、译码器显示等基本原理。现在主要用各种芯片实现其功能,更加方便和准 确。Multisim8作为一种高效的设计与仿真平台。其强大的虚拟仪器库和软件仿真功能, 为电路设计提供了先进的设计理念和方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字时钟具有“秒”、“分”、“时”的十进制数字显示,能够随时校正分钟和小时,当时钟到整点时能够进行整点报时,还能够进行定时设置。

其涉及的电路由6部分组成。

(1)能产生“秒脉冲”、“分脉冲”和“时脉冲”的脉冲产生和分频电路;(2)对“秒脉冲”、“分脉冲”和“时脉冲”计数的计数电路;(3)时间显示电路;(4)校时电路;(5)报时电路;(6)定时输入电路和时间比较电路。

由脉冲发生器产生信号通过分频电路分别产生小时计数、分计数、秒计数。

当秒计数满60后,分钟加1;当分满60后,时加1;当时计数器计满24时后,又开始下一个循环技术。

同时,可以根据需要随时进行校时。

把定时信号和显示信号通过比较电路确定能否产生定时报警信号。

显示信号通过整点译码电路产生整点报警信号。

数字时钟设计与开发以及仿真分析:
系统具有“时”、“分”、“秒”的十进制数字显示,因此,应有计数电路分别对“秒脉冲”、“分脉冲”和“时脉冲”计数;同时应有时间显示电路,显示当前时间;还应有脉冲产生和分频电路,产生“秒脉冲”、“分脉冲”和“时脉冲”[5]。

系统具有校时功能,因此,应有校时电路,设定数字时钟的当前值。

系统具有整点报时功能,因此,应有译码电路将整点时间识别出来,同时应有报时电路。

系统具有定时功能,因此,应有定时输入电路和时间比较电路。

综上考虑,可如图2.1所示设计数字时钟的电路原理结构图。

图2.1 数字时钟的电路原理结构图
如图2.1所示,数字时钟电路有3个开关,它们的功能如下。

(1)S1:S1为瞬态开关,手动输入计数脉冲。

(2)S2:校时/定时/校时选择电路输入选择开关,当开关切换到上触点,为定时输入;当开关切换到中间触点,为校时输入;当开关切换到下触点,为校时选择电路输入。

(3)S3:为计时/校时选择开关,当开关切换到右边触点时,数字时钟为计时状态;当开关切换到左边触点时,数字时钟为校时状态。

左边两个计数器(小时计数、分计数)接收手动输入脉冲,为定时功能设定定时时间。

右边3个计数器(小时计数、分计数、秒计数)接收手动输入或计时脉冲,实现校时和计时功能。

比较电路是将设定的定时时间和当前的时间进行比较,当两者时间相同时,产生定时报警信号,驱动报警电路。

整点译码电路识别整点时间,以产生整点报时信号。

脉冲产生和分频电路产生数字时钟所需的秒脉冲、分脉冲和小时脉冲。

时间显示电路显示当前时间和定时时间。

4.2 数字时钟设计
4.2.1 小时计时电路
小时计时电路如图4.1所示。

图4.1 小时计时电路4.2.2 分钟计时电路
分钟计时电路如图4.3所示。

图4.3 分钟计时电路
校时选择电路如图4.5所示。

图4.5 校时选择电路
校时选择电路用计数器74LS160和译码器74LS138组成,计数器74LS160设计为三进制计数器,译码器的输出为反变量,其输出要接反向器。

TIMESET:接瞬态开关,可手动选择校时信号。

当校时信号HOUR=1、MIN=0、SEC=0时(选中“小时”计时电路,表示对“小时”进行校时);单击一次开关按钮,可使校时选择信号变为HOUR=0、MIN=1、SEC=0(选中“分钟”计时电路,表示对“分钟”进行校时),再单击一次开关按钮,可使校时选择信号变为HOUR=0、MIN=0、SEC=1(选中“秒”计时电路,表示对“秒”进行校时),这样可手动设置系统的是、分和秒。

4.2.4 整点译码电路
整点译码电路的作用是识别整点时间信号,一实现整点报时的功能。

整点时间信号的特征是零分作为数字量来说,是一个代码,用门电路组成的译码电路可识别一个代码。

整点译码电路如图4.7所示,器封装模块如图4.8所示,器引脚功能如表4.4所示。

图4.7 整点译码电路
定时比较电路是将设定时间和当前的计时时间进行比较,电路可选用数值比较器CC4585实现数字代码的比较。

定时比较电路如图4.9所示。

图4.9 定时比较电路
如图4.9所示,共用4片CC4585构成定时比较电路,因为定时时间为小时和分钟,共16为二进制代码,每片数值比较器CC4585能比较两个4位二进制代码,用4片CC4585能构成16位数值比较器。

当数字时钟的计时时间等于设
定时间时,定时比较电路输出高电平,否则输出低电平。

4.2.6 脉冲产生和分频电路
设计时可选用555定时器构成时钟脉冲产生电路,如图4.10所示,通过设置电阻、电容,可产生2Hz时钟脉冲,选择电阻R1为电位器,通过调整电位器的值,可精确调整输出脉冲的频率。

设计时,先确定电容值的大小,再确定电阻R1、R2的值[9]。

如图4.10所示的74LS73D为JK触发器构成的Tˊ触发器。

起分频作用,将2Hz时钟信号分频为1Hz。

这样就得到系统所需要的秒脉冲信号。

图4.10 脉冲产生和分频电路
应说明的是,能产生时钟脉冲的电路很多,如用晶体振荡器附加适当的门电路,可产生脉冲,但其振荡频率由晶体决定,而且振荡频率通常很高,调整和分频不大方便。

还可用滞回比较器加RC电路产生时钟信号。

4.2.7 整点报时电路
声音报警电路可用555定时器构成高低音发声电路,电路如图4.11所示。

该电路可产生高音,频率为876Hz,持续时间为1.04s;产生低音,频率为611Hz,持续时间为1.1s。

4.3.1 总体电路设计
图4.12 数字时钟总体电路。

相关文档
最新文档