石墨烯复合材料的制备、性能与应用
基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇
基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇基于石墨烯的复合材料的制备及其在储能器件中的应用研究1基于石墨烯的复合材料的制备及其在储能器件中的应用研究随着人们对能源需求的增加和全球环境问题的日益加剧,储能技术逐渐成为了热门的研究领域。
其中,基于石墨烯的复合材料的制备及其在储能器件中的应用受到了广泛关注。
石墨烯是一种薄而坚硬的材料,它由单层碳原子组成。
石墨烯的特殊结构和优异性能使其在材料组合中展现出了无限的应用前景。
最近的研究表明,将石墨烯与其他材料结合起来可以显著提高其储能性能。
因此,制备基于石墨烯的复合材料已成为研究的重点。
基于石墨烯的复合材料的制备通常采用化学氧化法、还原法、溶剂剥离法等方法。
其中,化学氧化法是最常见的制备方法之一。
通过将石墨烯与某些化合物反应来实现对石墨烯的氧化,进而产生氧化石墨烯(GO)。
随后,将氧化石墨烯还原成石墨烯(rGO)并与其他材料组合制备成多层石墨烯复合材料。
在储能器件的应用中,基于石墨烯的复合材料已经被证明是一种具有潜力的电极材料。
石墨烯具有良好的导电性和纳米级的厚度,使得它可以高效的将电子导入储能器件中。
同时,它的高比表面积和良好的可调性也使得基于石墨烯的复合材料在储能器件中具有良好的性能。
例如,将石墨烯与氧化钴结合可以制备出具有良好电容性能的电极材料。
相比于传统的电极材料,基于石墨烯的复合材料能够实现更高的能量密度和更长的使用寿命。
此外,将石墨烯与其他材料复合还可以拓宽其应用范围。
例如,基于石墨烯的锂离子电池和钠离子电池电极材料也正在被研究和开发。
此外,基于石墨烯的复合材料在太阳能电池中也展示了良好的性能。
总之,基于石墨烯的复合材料的制备及其在储能器件中的应用是一个具有前途的研究领域。
未来的研究将致力于进一步优化复合材料的结构和性能,并深入挖掘其应用潜力基于石墨烯的复合材料在储能器件中具有良好的性能,拥有更高的能量密度和更长的使用寿命。
其制备方法多样且成熟,同时,将石墨烯与其他材料复合使其应用范围更加广泛。
石墨烯复合材料的制备、性能与应用
石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。
它是现代科学技术的重要内容,也是未来技术的主流。
是基础研究与应用探索紧密联系的新兴高尖端科学技术。
石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。
由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。
综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。
关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。
研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。
石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。
通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。
通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。
采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。
研究表明PS微球通过公家方式连接到石墨烯的表面。
通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。
制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。
本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。
石墨烯复合材料的制备及应用研究进展
石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。
石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。
本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。
本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。
接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。
本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。
二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。
以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。
首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。
接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。
通过过滤、干燥等步骤得到石墨烯复合材料。
这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。
原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。
例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。
这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。
熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。
【精品文章】几种石墨烯复合材料制备方法及催化应用介绍
几种石墨烯复合材料制备方法及催化应用介绍
石墨烯具有独特的热、电和光学性能,并以高的比表面积性能,使其非常适于用作复合材料的理想载体。
目前,石墨烯基复合材料广泛应用于传感器、新能源、光催化、电容器、生物材料等领域,特别是在在光催化和电催化领域,具有广阔应用前景。
下面小编介绍石墨烯复合材料在催化领域应用。
一、石墨烯/TiO2复合材料
1、石墨烯/TiO2复合材料光催化性能
石墨烯作为TiO2光催化材料的载体,不仅可以提高催化材料的比表面积和吸附性能,还能够抑制TiO2内部光生载流子的复合,降低了电子-空穴对的重组率,从而促进TiO2的光催化性能,提高其利用效率,因此制备TiO2/石墨烯复合材料可以进一步提高材料的光催化活性。
石墨烯/TiO2复合材料光催化机理示意图
2、石墨烯/TiO2复合材料制备方法
目前,石墨烯/TiO2复合材料的制备方法主要有溶胶-凝胶法和水热法等。
两种方法对于石墨烯的前体准备都是通过Hummers法得到氧化石墨烯,然后通过还原手段一步法得到还原氧化石墨烯/TiO2复合材料。
左图:石墨烯结构示意图;右图:氧化石墨烯结构示意图
(1)溶胶-凝胶法
溶胶-凝胶法通常是将钛的前体与氧化石墨烯溶液混合并搅拌均匀,氧化石墨烯通过氢键作用力与钛的前体结合并发生缩合、聚合反应最终形成具有Ti-O-Ti三维网络结构的凝胶,然后经过干燥、焙烧、研磨得到石墨烯。
石墨烯及其复合材料的制备与应用
石墨烯及其复合材料的制备与应用石墨烯是一种由碳原子构成的单层二维晶体,具有独特的物理和化学性质。
自它的发现以来,人们对石墨烯的制备与应用进行了广泛的研究。
本文将介绍一些石墨烯的制备方法,以及石墨烯与其他材料的复合,以及它们的应用。
石墨烯的制备方法有多种,其中最常用的是机械剥离法和化学气相沉积法。
机械剥离法是通过用胶带剥离石墨矿石表面的石墨层来得到石墨烯。
这种方法简单易行,但只能制备少量的石墨烯。
化学气相沉积法则是将碳源气体(如甲烷)在金属基底上热解,生成石墨烯。
这种方法可以制备大面积的石墨烯,但需要高温和特殊的实验条件。
石墨烯与其他材料的复合可以改善其性能,并拓宽其应用范围。
例如,石墨烯与聚合物的复合材料具有优异的导电性和机械性能。
这种复合材料可用于制备柔性显示器和电子设备。
此外,石墨烯与金属氧化物的复合材料具有良好的催化性能,可用于电催化和能源转换。
石墨烯与纳米粒子的复合材料还具有优异的光学性能,可用于光学传感和光催化。
除了复合材料,石墨烯还有许多其他的应用。
例如,石墨烯在电子器件中的应用已经引起了广泛的关注。
由于石墨烯具有极高的电子迁移率和较低的电阻率,使得它成为理想的导电材料。
石墨烯晶体管已被用于制备高性能的智能手机和电子设备。
此外,石墨烯还可以用于制备超级电容器和锂离子电池,以提高储能性能。
石墨烯还可以用于制备高强度的复合材料,用于航空航天和汽车工业。
然而,石墨烯的大规模制备和应用仍然面临一些挑战。
一方面,石墨烯的制备成本较高,制备方法仍需要进一步改进。
另一方面,石墨烯在生物医学领域的应用还需要深入研究。
尽管石墨烯具有许多独特的性质,但其在生物体内的生物相容性和毒性仍然存在争议。
综上所述,石墨烯及其复合材料具有巨大的应用潜力。
石墨烯的制备方法日趋成熟,可以制备大面积和高质量的石墨烯。
与其他材料的复合可以改善石墨烯的性能,拓宽其应用范围。
石墨烯在电子器件、能源储存和复合材料等领域具有广阔的应用前景。
石墨烯-MOFs复合材料的制备及其吸附性能研究
石墨烯-MOFs复合材料的制备及其吸附性能研究石墨烯/MOFs复合材料的制备及其吸附性能研究一、引言石墨烯和金属有机骨架材料(MOFs)是近年来受到广泛关注的两种新型材料。
石墨烯具有超高的比表面积、高导电性和优异的力学性能,而MOFs则具有大孔隙度、特殊的孔道结构和高度可调性的化学性质。
将二者合并成复合材料,不仅能够发挥各自的优点,还可以在催化、吸附、储能等领域中展示出卓越的性能。
本文将重点探讨石墨烯/MOFs复合材料的制备方法及其吸附性能的研究进展。
二、石墨烯/MOFs复合材料的制备方法制备石墨烯/MOFs复合材料的方法有许多种,常见的有混合法、原位法和化学还原法等。
混合法是将已制备好的石墨烯和MOFs混合,并通过超声处理使其混合均匀。
这种方法简单易行,但由于两种材料之间的界面接触不够紧密,可能影响复合材料的性能。
原位法是在制备石墨烯的过程中,加入MOFs的前体,使MOFs在石墨烯表面形成。
这种方法可以使MOFs与石墨烯之间的界面接触更紧密,提高复合材料的性能。
化学还原法则是将二氧化石墨烯和金属离子一起还原成金属纳米颗粒,形成复合材料。
这种方法制备的材料结构较为复杂,但拥有更好的导电性和可调性。
三、石墨烯/MOFs复合材料的吸附性能研究石墨烯/MOFs复合材料在吸附性能上具有优异的表现,广泛应用于环境污染物的去除、气体分离和储氢等方面。
以环境污染物去除为例,石墨烯/MOFs复合材料具有较大的比表面积和丰富的孔道结构,能够提供更多的吸附活性位点,从而实现对污染物的高效吸附。
同时,石墨烯的导电性能使得复合材料能够通过外加电场的作用,实现对吸附过程的可控和再生。
在气体分离方面,石墨烯/MOFs复合材料的孔道结构可以选择性地吸附不同大小和性质的气体分子,从而实现对混合气体的高效分离。
在储氢方面,石墨烯/MOFs复合材料由于石墨烯的高导电性和MOFs的大孔隙度,可以提供更大的气体吸附容量和较快的吸附速率,从而在储氢材料中具有巨大的应用潜力。
石墨烯复合材料的合成与应用
石墨烯复合材料的合成与应用
石墨烯是一个由碳原子形成的二维晶体结构,其独特的结构和性质赋予了它在材料科学领域中极高的潜力。
石墨烯的电子运动速度非常快,热传导和机械强度也非常强,使得它可以应用于许多不同的领域。
然而,由于石墨烯本身非常薄,并且很难大规模生产,因此将石墨烯与其他材料复合以获得更好的物理特性是一种实现其实用化的有效方法。
在石墨烯复合材料中,石墨烯通常被包裹在其他材料的基质中,以防止其在处理过程中的损失。
一些石墨烯复合材料的例子包括石墨烯复合纳米颗粒,石墨烯微片/树脂复合材料和石墨烯聚合物复合材料。
合成石墨烯复合材料的方法通常包括物理、化学和机械方法。
其中,化学还原法是一种较为常见的方法,它使用还原剂将石墨烯氧化物转化为石墨烯,并在此过程中与其他材料进行混合。
石墨烯复合材料在许多领域中都有应用。
例如,在电子学领域,石墨烯复合材料可以帮助改进锂离子电池和太阳能电池的性能。
在机械领域,石墨烯聚合物复合材料可以用于生产更耐用和轻便的汽车部件。
在生物领域,石墨烯复合材料可以用于制备生物传感器和药物输送系统。
目前,虽然石墨烯复合材料已经得到了广泛的研究,但在其实际应用方面仍面临一些挑战。
例如,石墨烯的大规模生产和处理仍然面临许多困难。
同时,石墨烯与其他材料的复合过程也需要更多的研究和改进。
总的来说,石墨烯复合材料具有巨大的潜力,因为它们可以在许多不同的领域中提供独特的性能。
我们相信,随着技术的进步和更多的研究,石墨烯复合材料将会在未来的科技创新中发挥越来越重要的作用。
石墨烯基复合材料的制备与性能研究
石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。
在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。
为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。
这些复合材料具有优异的性能和多样化的应用前景。
本文将探讨石墨烯基复合材料的制备方法以及其性能研究。
一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。
该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。
石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。
CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。
2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。
通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。
这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。
3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。
首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。
该方法可以在实验室条件下进行,操作简单方便。
然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。
二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。
石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。
研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。
2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。
石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。
3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。
石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。
石墨烯纳米复合材料的制备及应用
石墨烯纳米复合材料的制备及应用随着材料科学技术的不断发展,石墨烯这种特殊材料被越来越多地应用于诸如高强度材料、高导电材料、高热导材料等领域。
但是石墨烯纯粹的形态在某些领域中不一定能够满足要求,因此需要与其他材料结合起来形成复合材料,以期获得更好的性能。
本文将介绍石墨烯纳米复合材料的制备方法及其应用。
一、石墨烯纳米复合材料制备方法1.机械混合法这是一种较为简单的制备方法,将石墨烯和其他纳米材料一起经过机械混合后再进行压制成材料。
但是这种方法难以获得优秀的分散效果和界面相容性,因此在性能方面存在局限。
2.沉积法这是一种常见的制备方法,通过将纳米材料分散在溶液中,然后将石墨烯沉积在纳米材料上面。
这种方法可以获得较好的分散效果和界面相容性,但是需要进行复杂的前处理和后处理过程。
3.化学还原法这种方法通过化学反应来制备石墨烯纳米复合材料。
将还原剂与石墨烯和其他纳米材料混合,利用还原剂产生的化学反应来将石墨烯还原,然后与其他纳米材料结合形成材料。
这种方法具有优秀的分散效果和界面相容性,制备操作简单,成本低廉,因此被广泛应用。
二、石墨烯纳米复合材料的应用及优势1.高强材料石墨烯具有优秀的强度和刚度,而与其他材料结合可以进一步提高强度。
例如,与纳米碳管混合的石墨烯可以形成更加坚韧且抗弯曲的材料,因此可以应用于强度要求较高的结构材料中。
2.高导电和高热导材料石墨烯本身具有优秀的导电和热导性能,当与其他材料结合可以形成具有更高导电和热导性能的材料。
例如,与金属纳米颗粒混合的石墨烯可以形成高效的热界面材料,用于导热和散热。
3.吸附材料石墨烯和其他纳米材料结合可以形成高效的吸附材料,例如,与氧化镁纳米颗粒混合的石墨烯可以应用于吸附有机污染物的处理。
4.传感器石墨烯和其他纳米材料结合可以形成高灵敏、高精度的传感器,例如,与金属纳米颗粒混合的石墨烯可以应用于制备高灵敏的压力传感器。
综上所述,石墨烯纳米复合材料可以应用于很多领域,具有优良的性能和广阔的应用前景。
石墨烯及其复合材料的制备、性质及应用研究共3篇
石墨烯及其复合材料的制备、性质及应用研究共3篇石墨烯及其复合材料的制备、性质及应用研究1石墨烯及其复合材料的制备、性质及应用研究石墨烯是一种由碳原子构成的单层蜂窝状结构材料,具有独特的电学、光学、热学和机械性质。
自2004年它被首次发现以来,它的研究成果一直是纳米科学和材料科学最活跃的领域之一。
石墨烯具有很高的载流子迁移率、良好的机械强度和高比表面积,因此在传感器、电子器件、能量存储装置、超级电容器、太阳能电池、催化剂和生物医学传感器等领域具有广泛的应用。
本文旨在介绍石墨烯及其复合材料的制备方法、性质及其应用研究进展。
石墨烯的制备有许多方法,包括机械剥离、化学气相沉积、物理气相沉积、化学还原、流体力学剥离和微波辐射法等。
其中,机械剥离法是第一个制备单层石墨烯的方法,虽然成本低、易于实现,但需要大量时间和劳动力,并存在控制问题。
化学还原法则采用氧化石墨的还原,得到具有一定缺陷的石墨烯,且杂质易残留影响性质。
化学气相沉积法制备石墨烯具有高晶格载流子迁移率、具有极高的缺陷密度的石墨烯,但过程复杂,成本高。
物理气相沉积法适合生产无缺陷石墨烯,但难以控制多层石墨烯形成、且温度高,影响成品质量。
流体力学剥离法利用石墨烯的自身表面张力减小形成薄膜,但制备过程仍需要控制单层厚度。
微波辐射法是最新的石墨烯制备方法,采用微波对石墨进行瞬间加热、膨胀、冷却制备大面积石墨烯,具有制备速度快、质量好、颗粒易于控制等优点。
石墨烯的独特性质使其在许多应用中具有广阔的前景。
首先,在电子领域,石墨烯可以用来制造微电子器件、包括场效应晶体管、半导体和光电器件等。
FET型石墨烯晶体管基于石墨烯中载流子迁移率的高值,值得在短时间获得了重大的研究进展;二维电子系统(2DEG)可以用于制造高速逻辑电路和高灵敏感受器。
其次,在传感器领域,石墨烯表现出高度灵敏性,可以用于制造各种传感器,如光学传感器、生物传感器等。
此外,石墨烯还可以用于制造锂离子电池、超级电容器、声波马达等能量存储装置中。
石墨烯纳米复合材料
石墨烯纳米复合材料
石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导热、导电、机械强度和化学稳定性等特性。
因此,石墨烯被广泛应用于电子、能源、材料和生物医药等领域。
而石墨烯纳米复合材料则是将石墨烯与其他纳米材料进行复合,以期望获得更加优异的性能和应用。
本文将介绍石墨烯纳米复合材料的制备方法、性能以及应用前景。
首先,石墨烯纳米复合材料的制备方法包括物理法、化学法和生物法等多种途径。
物理法主要包括机械剥离法、化学气相沉积法和化学氧化还原法等;化学法主要包括溶液剥离法、化学还原法和化学气相沉积法等;生物法则是利用生物体内的生物合成途径来制备石墨烯。
不同的制备方法会影响石墨烯纳米复合材料的结构和性能。
其次,石墨烯纳米复合材料具有优异的性能。
首先,石墨烯的高导热、高导电性能使得纳米复合材料具有优异的导热、导电性能,可应用于导热材料和导电材料领域;其次,石墨烯的高机械强度和化学稳定性使得纳米复合材料具有优异的机械性能和耐腐蚀性能,可应用于材料强化和防腐蚀领域;最后,石墨烯的大比表面积和丰富的官能团使得纳米复合材料具有优异的吸附性能和催化性能,可应用于吸附材料和催化材料领域。
最后,石墨烯纳米复合材料具有广阔的应用前景。
首先,在电子领域,石墨烯纳米复合材料可应用于柔性电子、导电油墨和电磁屏蔽材料等领域;其次,在能源领域,石墨烯纳米复合材料可应用于锂离子电池、超级电容器和光伏材料等领域;最后,在材料和生物医药领域,石墨烯纳米复合材料可应用于复合材料、药物载体和生物传感器等领域。
综上所述,石墨烯纳米复合材料具有优异的性能和广阔的应用前景,其制备方法、性能和应用前景将会在未来得到更加广泛的研究和应用。
石墨烯基复合材料的制备及性能分析
石墨烯基复合材料的制备及性能分析石墨烯是一种新型的碳材料,由于其独特的结构和优异的性能,被广泛应用于材料科学领域。
石墨烯基复合材料作为一种将石墨烯与其他材料复合而成的新材料,具有石墨烯的优势和复合材料的多功能性,因此在材料制备和性能分析方面备受关注。
一、石墨烯基复合材料的制备方法目前,制备石墨烯基复合材料的方法主要包括机械混合法、溶液处理法和化学气相沉积法等。
机械混合法是最简单的制备方法,将石墨烯和其他材料进行物理混合。
这种方法操作简单,成本低廉,但是石墨烯与其他材料的界面结合较弱,对复合材料性能的提升有限。
溶液处理法是通过将石墨烯分散于溶液中,与其他材料形成复合体。
这种方法不仅能够提高石墨烯与其他材料的界面结合,还可以调控复合体的结构和性能。
然而,溶液处理法对石墨烯的分散性要求较高,操作复杂。
化学气相沉积法是一种高温气相合成法,通过在金属基底上沉积石墨烯。
这种方法制备的石墨烯基复合材料具有较高的结晶质量和界面结合强度,但是设备要求高、制备时间长。
二、石墨烯基复合材料的性能分析石墨烯基复合材料的性能主要包括力学性能、导电性能和热学性能等。
力学性能是衡量材料抗拉、抗压、抗弯等力学性能的指标。
石墨烯具有极高的强度和刚度,因此能够大幅提升复合材料的力学性能。
石墨烯基复合材料的强度和刚度通常随着石墨烯含量的增加而增加,但是当石墨烯含量过高时,由于石墨烯的堆叠导致复合材料的脆性增加。
导电性是衡量材料传导电流的性能指标。
石墨烯是一种具有优异导电性的材料,其导电性能主要取决于石墨烯的层数和形态。
石墨烯基复合材料通常具有较好的导电性能,且导电性能能够随着石墨烯含量的增加而增加。
热学性能是衡量材料导热性能的指标。
石墨烯具有很高的导热性能,因此能够显著提高复合材料的导热性能。
石墨烯基复合材料的导热性能通常随着石墨烯含量的增加而增加,但是石墨烯的堆叠也会对导热性能产生一定的影响。
除了上述性能分析,石墨烯基复合材料还具有其他一些特殊的性能。
石墨烯的制备及其电化学性能
石墨烯的制备及其电化学性能一、本文概述石墨烯,一种由单层碳原子紧密排列构成的二维纳米材料,自2004年被科学家首次成功制备以来,便因其独特的结构和优异的性能引发了全球范围内的研究热潮。
石墨烯以其高导电性、高热导率、高强度以及良好的化学稳定性等特性,在材料科学、电子学、能源科学等多个领域展现出巨大的应用潜力。
特别是在电化学领域,石墨烯因其高比表面积、优良的电子传输性能和化学稳定性,被广泛应用于电极材料、储能器件以及电化学传感器等方面。
本文旨在全面介绍石墨烯的制备方法及其电化学性能。
我们将概述石墨烯的基本结构和性质,以及其在电化学领域的应用背景。
随后,我们将详细介绍石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点及适用范围。
接着,我们将重点探讨石墨烯在电化学领域的应用,包括其在锂离子电池、超级电容器、燃料电池等储能器件中的性能表现,以及其在电化学传感器中的应用。
我们将对石墨烯的电化学性能进行综合分析,展望其在未来电化学领域的发展趋势和应用前景。
二、石墨烯的制备方法石墨烯的制备方法多种多样,根据其制备原理,主要可以分为物理法和化学法两大类。
物理法:物理法主要包括机械剥离法、取向附生法和碳纳米管切割法等。
机械剥离法是最早用来制备石墨烯的方法,其原理是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料。
取向附生法则是在一定条件下,使碳原子在金属单晶(如Ru)表面生长出单层碳原子,然后利用金属与石墨烯之间的弱相互作用,将石墨烯与金属基底分离。
碳纳米管切割法则是通过切割碳纳米管得到石墨烯纳米带。
化学法:化学法主要包括氧化还原法、SiC外延生长法、化学气相沉积法(CVD)等。
氧化还原法是通过将天然石墨与氧化剂反应,得到氧化石墨,再将其进行热还原或化学还原,从而制备出石墨烯。
SiC外延生长法是在高温条件下,使SiC中的Si原子升华,剩余的C 原子在基底表面重新排列,形成石墨烯。
石墨烯纳米复合材料及其应用
石墨烯纳米复合材料及其应用石墨烯是一种由碳原子构成的二维材料,具有极高的强度、导电性、热传导性和化学稳定性,所以被广泛地应用于各种领域中。
近年来,石墨烯与纳米复合技术的结合,使得新材料的性能得到了大幅度提升,而石墨烯纳米复合材料的研究也成为了材料科学领域的热门话题。
一、石墨烯纳米复合材料的制备方法1. 化学还原法化学还原法是目前使用最为广泛的方法之一,它利用还原剂将氧化石墨烯还原成石墨烯。
在此基础上,通过添加不同的纳米材料,可以制备出石墨烯复合材料。
化学还原法制备出的复合材料,具有制备简单,成本低廉等优点。
2. 机械合成法机械合成法是通过机械研磨的方法将不同原材料混合制备而成的。
该方法可同时制备出纳米复合材料和石墨烯基材。
机械合成法的优点是制备工艺简单,对原料的要求不高,且制备出的材料具有极好的分散性和稳定性。
3. 真空热蒸发法真空热蒸发法是利用高温真空条件下,将石墨烯和纳米材料掺杂在一起来制备纳米复合材料。
该方法可以制备出高质量、高纯度的石墨烯纳米复合材料。
二、石墨烯纳米复合材料的应用领域1. 电子器件石墨烯纳米复合材料可以制备出具有优异性能的电子器件。
由于石墨烯的高导电性和高透明性,因此可以制备出透明导电膜、柔性电极等新型电子组件。
此外,石墨烯与纳米金属粒子复合后,还可用于纳米传感器的制备。
2. 光电功能材料石墨烯与半导体纳米材料复合后,可以制备出光电功能材料。
石墨烯的高导电性、高透明性和优异的光学性能,可以提高太阳能电池、有机发光二极管和光电探测器等光电器件的性能,并且可以延长其使用寿命。
3. 生物医药材料石墨烯复合纳米材料在生物医药领域中也有着广泛的应用。
例如,石墨烯与纳米颗粒复合后,可以制备成高效的抗菌和抗病毒药物,同时具有良好的生物相容性。
此外,石墨烯还可以用于生物成像、癌症治疗等领域。
三、石墨烯纳米复合材料的优势1. 优异的物理性能石墨烯纳米复合材料具有石墨烯和纳米材料的优异性能,如高导电性、高透明性、优异的力学性能、高比表面积和化学稳定性等。
石墨烯及其复合材料的制备与应用
石墨烯及其复合材料的制备与应用第一章石墨烯的制备方法石墨烯,是一种由碳原子结构构成的碳材料,它被认为是材料领域中的一个热门话题。
石墨烯具有极为优秀的导电性、热导性、力学性能和化学稳定性等特征,具有广泛的应用前景。
目前,制备石墨烯的方法主要包括机械剥离法、化学气相沉积法、化学还原法等。
1.1 机械剥离法机械剥离法是最早被发现的一种石墨烯制备方法。
这种方法是通过机械剥离的方式,将多层石墨片中的单独层剥离出来,形成石墨烯。
机械剥离法可以简单地由实验室实现,但是它的局限是其产量非常低,得到的材料质量也较差。
1.2 化学气相沉积法化学气相沉积法是一种应用较为广泛的制备石墨烯的方法。
这种方法通常需要使用铜等物质作为基板,在升高温度下,将碳源分子和氢气混合物输送到基板表面。
碳源与氢气一起在基板上表面催化生长,形成石墨烯。
1.3 化学还原法化学还原法是一种常见的制备石墨烯的方法。
这种方法需要使用氧化石墨在还原剂的作用下,将石墨氧化物还原成石墨烯。
化学还原法的优点是制备过程相对简单,且在生产过程中使用的仪器和设备也较为常见。
第二章石墨烯的应用石墨烯的应用潜力极大,主要应用于电子学、化学、材料学、生物学等多个领域。
以下主要介绍石墨烯在电子领域、能源领域、生物领域和热管理领域中的应用。
2.1 电子领域石墨烯具有非常出色的电子性能,具有很大的应用前景。
石墨烯可以用于制作高速电子器件、柔性电子器件和纳米电子器件等。
同时,石墨烯也可以用于制作生物电子学和储存设备等。
2.2 能源领域石墨烯在能源领域有着广泛的应用,可以用于制作超级电容器、锂离子电池和超导体等。
石墨烯还可以被用作太阳能电池材料的附加层,提高了太阳能电池的转换效率。
2.3 生物领域石墨烯在生物领域应用也非常广泛。
它可以被用作药物传递系统,用于治疗癌症和其他疾病。
同时,石墨烯也可以用于生物传感器,用于检测生物分子和细胞等。
2.4 热管理领域石墨烯具有良好的热导性能,可以在热管理领域应用。
石墨烯纳米复合材料的制备及其应用研究
石墨烯纳米复合材料的制备及其应用研究摘要:石墨烯是一种新兴的二维碳纳米材料,具有完美的晶体结构和出色的物理和化学性能。
石墨烯独特的电、热、光学和机械性能,在电子、导热材料、气体传感器、光敏元件和环境科学中具有广泛的潜在应用。
由于其潜在的实际应用价值。
本文概述了石墨烯制备的方法,介绍了石墨烯电极材料、环境吸附材料领域的应用。
并进一步对石墨烯及其纳米复合材料的发展前景做出了分析。
关键词:石墨烯;纳米复合材料;制备石墨烯是纳米复合材料研究中相对重要的材料。
纳米石墨烯复合材料具有更高的制备要求。
目的是生产可用于生物、机械和其他生产领域的高质量、高性能材料,发挥纳米石墨烯复合材料的适用性。
目前,就石墨烯复合材料的制备而言,纳米复合材料的制备是主要的发展趋势。
在当今的各个领域,纳米石墨烯复合材料具有非常明显的优势,并具有良好的发展前景。
因此,纳米石墨烯复合材料的制备和应用也受到越来越多的关注。
一、石墨烯复合材料的制备(一)熔融共混法制备通过熔融共混法制备纳米石墨烯复合材料,实际上是借助高温和高剪切力,将石墨烯或氧化石墨烯分散在聚合物基质中。
由于在使用该方法的纳米石墨烯复合材料的制造过程中不需要溶剂,因此非常适用于极性和非极性聚合物。
研究表明,在以单层或多层形式均匀分布的PET(石墨烯)基质中,基质中可能会出现卷曲和皱褶。
以栅格的形式,大大提高了复合材料的导电性。
当PET基体的石墨烯含量达到3vol%时,复合材料的最大电导率可以达到2.11S/m,这与目前电磁屏蔽领域对石墨烯复合材料的需求一致。
通过这种制造方法,一些专家和学者已经制成了高导电复合材料,例如分离的石墨烯-多壁纳米管/超高分子量聚乙烯,它们的导电率非常高,并且其导电渗透率低,仅为0.039vot%[1]。
(二)溶液混合法制备通过溶液混合法制备纳米石墨烯复合材料,实际上是指在溶剂的作用下,将聚合物分子插入GO片材后,通过还原制备纳米石墨烯复合材料。
石墨烯复合材料的力学性能研究
石墨烯复合材料的力学性能研究石墨烯是一种由碳原子构成的单层二维晶体材料,具有出色的力学性能。
它是继金刚石和石墨之后第三种稳定的碳晶体结构,在力学强度和刚度方面表现出与钢铁相当的特性。
石墨烯的力学性能研究一直是材料科学的热点,对于开发高强度、高韧性和轻质材料具有重要意义。
石墨烯复合材料是指将石墨烯与其他材料结合形成复合材料。
石墨烯作为增韧材料被添加到复合材料中,可以显著提高材料的力学性能和承载能力。
该复合材料常被用于制备高强度、轻质结构材料和多功能材料。
研究表明,将石墨烯添加到聚合物基体中可以显著提高材料的力学性能。
首先,石墨烯的高强度和高韧性能使得复合材料具有更好的抗拉和屈服强度。
其次,石墨烯具有优异的导热性能,能够更好地分散和传导热量,从而提高材料的耐热性和稳定性。
此外,石墨烯还能改善材料的导电性能,使其更具综合功能。
然而,石墨烯复合材料的力学性能研究仍存在一些挑战。
首先,石墨烯的有效分散和定向排列是制备高性能复合材料的关键。
目前,石墨烯的分散技术已经取得了一定的进展,但仍需要进一步改进。
其次,石墨烯在复合材料中的界面相互作用对材料的性能起着重要作用。
如何实现优化的界面相互作用,仍需要深入研究。
在实际应用中,石墨烯复合材料已经显示出巨大的潜力。
例如,石墨烯增强的聚合物纤维可以用于制备高性能的防弹材料和航天器结构材料。
石墨烯复合材料在能源存储和传输领域也有广泛的应用。
石墨烯增强的锂离子电池正极材料,具有更高的能量密度和更长的循环寿命。
此外,石墨烯复合材料还可以用于制备高效的光电器件和催化剂。
总之,石墨烯复合材料的力学性能研究是一个具有挑战性和前瞻性的课题。
通过深入研究石墨烯的力学性能和界面相互作用,可以实现复合材料的优化设计和制备。
石墨烯复合材料在航空航天、汽车制造、能源领域等多个领域具有广阔的应用前景。
未来的研究应进一步探索石墨烯复合材料的力学行为、改善材料的工艺性能,并提高材料的可扩展性和可持续性。
石墨烯基复合材料制备与性能研究
石墨烯基复合材料制备与性能研究石墨烯是由一个碳原子单层构成的二维材料,具有优异的力学、电学、光学、热学和生物学等性能,是目前发现的最薄和最强的材料之一。
因此,石墨烯被广泛应用于电池、超级电容器、生物传感器、透明导电膜等领域,但石墨烯自身的应力和高成本限制了其更广泛的应用。
为了克服这些障碍,人们着手研究石墨烯基复合材料。
1. 石墨烯基复合材料的制备方法从文献中我们可以发现,制备石墨烯基复合材料的方法非常多,但可将其归结为以下几类:(1) 溶液法:其制备流程通常涉及将石墨烯加入有机溶剂中形成石墨烯溶液,然后加入所需的复合物质、表面活性剂、还原剂等,并经过加热、搅拌、干燥等处理最终得到复合材料。
(2) 机械混合法:可将石墨烯和填料一起混合,通过高效混合机进行均匀混合后,经过成型、加热固化等处理,形成复合材料。
(3) 化学气相沉积法:通常需要通过化学气相沉积方法在基底上制备出石墨烯,再通过化学气相沉积方法,向体内注入金属或无机复合材料,通过快速冷却使其形成复合材料。
2. 石墨烯基复合材料的性能研究石墨烯作为基材,通过复合改性可以克服石墨烯自身应力和高成本等缺点,提高材料的力学、电学、光学、热学等性能。
在不同领域的应用中,需要对其性能进行深入的研究。
(1) 电学性能石墨烯基复合材料的电学性能的研究已成为了近年来的重点和热点。
石墨烯本身具有非常好的电导率和透明度,而在复合材料中加入其他材料可以影响电子输运和电荷转移,从而改善其电学特性。
由于石墨烯自身具有的高电导率和高比表面积,使其与其他电极材料进行复合能够提高电池的储能密度、延长电池寿命。
(2) 光学性能石墨烯具有卓越的光学性能,具有很高的透明度、折射率和吸收率。
当石墨烯和其他材料进行复合时,在外部光的作用下,可产生显著的光学效应,如表面等离子共振、光学透镜、光学波导等。
这些石墨烯复合材料的光学效应将对可穿戴设备、生物医学、能源等领域的新型材料和器件产生重要的应用价值。
石墨烯的制备及其应用
石墨烯的制备及其应用石墨烯是一种单层的碳原子晶体,具有颠覆性的科技应用前景。
由于石墨烯具有极高的导电、导热性能及优异的力学性能,因此被广泛研究。
本文将介绍石墨烯的制备方法以及其在电子、机械、化学等领域的应用。
一、石墨烯的制备方法1. 机械剥离法:利用氧气等物理和化学剥离方式在石墨烯的表面使其自然剥离。
这种剥离方法简便易行,但是制备的石墨烯质量较低。
2. 化学气相沉积法:将甲烷等含碳气体通入高温下的石墨基底上,使其碳原子从气体中沉积在基底上,最终得到石墨烯。
该方法的制备质量较高,但实验条件复杂。
3. 化学还原法:利用还原剂还原氧化的氧化石墨烯,实现对石墨烯的制备。
该方法简单易行,但还原过程中易出现杂质的情况。
以上三种制备石墨烯的方法各具特点,研究者可以根据具体应用场景和制备要求选择相应的方法。
二、石墨烯的应用1. 电子领域:由于石墨烯对电子的传输特性很好,因此石墨烯可以作为电子器件的材料使用。
例如,石墨烯场效应晶体管可以用来构建微型高性能晶体管集成电路等微型电子器件。
2. 机械领域:石墨烯具有优异的力学性能,强度高,抗拉强度高达130GPa,可以作为高性能复合材料的增强材料。
例如,石墨烯可以与聚合物制作成复合材料,用于轮胎、飞机、汽车的外壳等领域。
3. 化学领域:石墨烯具有高表面积和良好的分子吸附性能,因此被广泛用于分离和催化反应等领域。
例如,石墨烯可以用作催化剂,在化学反应过程中发挥催化作用,促进反应的进行。
总之,石墨烯的制备和应用一直是研究人员关注的热点问题。
随着技术的不断发展和创新,石墨烯的制备方法越来越简单,制备质量也越来越好,其应用领域也在不断拓展。
相信在未来,石墨烯会在各个领域发挥越来越大的作用,为人类的生活带来更多的福利。
石墨烯及其复合材料的制备和应用
石墨烯及其复合材料的制备和应用石墨烯是一种由碳原子构成的单层蜂窝状结构的二维材料,它在近年来获得了广泛的关注和研究。
作为一种材料,石墨烯的力学性能、电学性能、热学性能以及光学性能等都十分优异。
因此,石墨烯的制备和应用成为了当前材料科学领域的研究热点之一。
石墨烯的制备方法主要有化学气相沉积和机械剥离两种方式。
化学气相沉积是一种通过高温化学反应在金属基板上合成石墨烯的方法。
在高温下,石墨烯的前体气体会在金属表面上沉积,最终形成石墨烯薄膜。
机械剥离是一种在石墨烯母体上通过机械手段剥离出石墨烯片的方法。
这种方法是最早被发现的石墨烯制备方法之一,并且也是目前制备石墨烯的主流方法之一。
尽管这两种方法都能够有效地制备出石墨烯,但是它们都存在着一定的缺陷。
化学气相沉积方法制备的石墨烯片表面质量较好,但是薄膜的制备过程比较昂贵,而机械剥离方法制备的石墨烯片可以获得较大尺寸的石墨烯,但是质量较差。
随着对石墨烯性能的深入研究,石墨烯复合材料逐渐成为了研究的重点之一。
石墨烯复合材料是将石墨烯与其他材料复合而成的材料。
这种材料由于石墨烯的优异性能加入到其他材料中,其性能将会得到有效提升。
例如,在高分子材料中加入小量的石墨烯,可以获得更好的机械性能和热导率,从而有助于其在电子器件和为汽车轻量化而设计的材料的应用中。
石墨烯与纳米颗粒复合材料也是另一个热门领域。
这种材料将石墨烯和纳米颗粒复合,可以获得更好的电催化性能和光电性能,从而有助于其在太阳能电池和电化学传感器等领域的应用。
除了在材料科学领域的应用外,石墨烯在生物医学和能源存储等领域也展现出了巨大的应用潜力。
在生物医学领域,石墨烯的生物相容性和生物活性可以帮助其在医学诊断和治疗领域的应用。
例如,将石墨烯与荧光探针复合,可以制备出可以用于癌症早期诊断和治疗的荧光探针。
在能源存储领域,石墨烯的大比表面积和优异的导电性能可以有效提升电化学性能,有助于其在高能量密度的电池和超级电容器等领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。
它是现代科学技术的重要内容,也是未来技术的主流。
是基础研究与应用探索紧密联系的新兴高尖端科学技术。
石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。
由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。
综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。
关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。
研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。
石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。
通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。
通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。
采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。
研究表明PS微球通过公家方式连接到石墨烯的表面。
通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。
制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。
本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。
制备了石墨烯-硫化锌纳米球复合材料,该过程利用氧化石墨烯作为分散剂的生长模板,同时作为石墨烯的前驱体,醋酸作为锌源,硫代乙酰胺作为硫源和还原剂,采用微波辅助的方法再水介质中制备得到复合材料。
研究发现该纳米材料对甲基蓝呈现特异的光催化活性。
采用原位分散聚合和化学还原法制备了石墨烯和聚甲基丙烯酸甲酸的复合材料。
以石墨烯和有机硅烷为反应物,所述有机硅烷发生水解反应后与石墨烯上的羟基发生脱水缩合反应,得到有机硅烷改性的石墨烯。
与现有技术相比,所述有机硅烷改性的石墨烯加大了石墨烯的层间距,因此,有机硅烷修饰的石墨烯与聚合物混合时,有机硅烷修饰的石墨烯不易团聚,从而使有机硅烷改性的石墨烯均匀分散在聚合物基体中制备的石墨烯复合材料具有增强效果。
此外,所述有机硅烷改性的石墨烯与聚合物发生化学键合或分子间作用力,从而使制备的石墨烯复合材料具有优异的界面相容性。
实验结果表明,本发明制备的石墨烯复合材料具有良好的力学性能。
二,石墨烯复合材料的性能超级电容器是一种性能介于传统电容器和化学电池之间的新型储能元件,具有比传统电容器更高的能量密度及比普通电池更高的功率密度和更长的循环寿命。
目前,对超级电容器的研究主要集中在高性能的电极材料的制备上。
本文制备了纳米结构的石墨烯以及石墨烯/氢氧化镍复合材料,研究了他们的制备工艺和电化学性能,并通过并用傅立叶转换红外光谱、X射线衍射、X射线光电子能谱、透射电子显微镜、扫描电子显微镜、比表面积、循环伏安、交流阻抗、恒电流充放电分析等对其进行了表征。
利用hummers制备了氧化石墨,研究了于氮气气氛中不同的反应温度对石墨烯的结构和性能的影响。
测试表明反应温度为400℃时的产物具有较好的形貌,在10mA·cm~(-2)放电电流密度下,其比电容达到了187.92 F·g~(-1),充放电循环1000次之后仍能保持在173.16F·g~(-1),与氧化石墨相比,石墨烯的比容量有了较大的提高。
利用热膨胀法在空气气氛中制备得到了单层和多层石墨烯材料,测试表明空气气氛下热膨胀得到的石墨烯的含氧量低于惰气气氛下热还原得到的石墨烯,空气气氛下制备的石墨烯的电化学性能明显优于氮气气氛下制备的石墨烯材料以天然鳞片石墨为原料通过氧化还原法制备了单层,厚度为1 nm的二维碳纳米材料石墨烯,并在此基础上制备了具有高强度二维导电和耐热性的石墨烯/环氧树脂纳米复合材料,分析并研究了石墨烯对于环氧树脂复合体的电学、力学和热学等多方面性能的改善效果。
通过化学氧化和物理超声作用获得了单层氧化石墨烯,片层厚度为1 nm。
傅里叶红外光谱和X射线衍射证明含氧基团的引入大大增加了石墨的层间距离,导致石墨片层剥离,形成单片层结构;透射电子显微镜和原子力显微镜的照片显示氧化还原法获得了单层结构的氧化石墨烯。
紫外-可见光吸收光谱、拉曼光谱和热失重分析结果表明通过水合肼能够部分还原氧化石墨烯中的含氧基团,同时利用真空中热还原,能进一步恢复石墨烯的表面结构,提高其共轭程度,使其电导率和耐热性得到了较大的提升,同时表面疏水性增强,水合肼部分还原的石墨烯比进一步热还原的石墨烯具有更好的亲水性。
将两种还原法制备的石墨烯分别用偶联剂进行改性,并作为纳米填料添加到环氧树脂中,获得功能化处理的石墨烯/环氧树脂纳米复合材料。
石墨烯基纳米阻隔复合材料,是以二维纳米材料石墨烯片为增强剂,通过化学交联均匀分散在聚烯烃聚合物材料中,形成具有优良阻隔和力学性能的复合材料。
其制备方法包括:一,用偶联剂对氧化石墨烯的表面进行功能化修饰,使其表面接枝上活性官能团,然后再将修饰之后的氧化石墨烯还原成石墨烯。
二,将经修饰的石墨烯均匀分散到聚烯烃溶液中,在引发剂的作用下交联键合得到纳米复合材料。
本发明原料成本低廉易得、操作容易、工艺简单、重现性好,石墨烯能够在聚烯烃中很好分散,制得的石墨烯基纳米复合材料不仅对极性和非极性溶剂都具有优异的阻隔性能,而且其拉伸强度和断裂韧性得到明显改善。
三,石墨烯复合材料的应用石墨烯是从石墨材料中剥离出来、由碳原子组成的二维晶体,只有一层碳原子的厚度,是迄今最薄也最坚硬的材料,其导电、导热性能超强,远远超过硅和其他传统的半导体材料。
很多人认为,石墨烯可能取代硅成为未来的电子元件材料,在超级计算机、触摸屏和光子传感器等多个领域“大显身手”。
张跃刚和同事此前的研究也都专注于石墨烯在电子设备上的应用。
在最新研究中,该研究团队将石墨烯和锡交替层叠制造出了这种纳米复合材料。
他们将一层锡薄膜沉积在石墨烯上,接着在锡薄膜上方放置另一层石墨烯,然后不断重复这个过程制造出了这种复合材料。
他们还对材料进行了热处理,通过在一个充满氢气和氩气的环境中将其加热到300摄氏度,锡薄膜转变成很多柱子,增加了锡层的高度。
石墨烯以其独特的电学、机械学及热学性质,开创了广阔的应用领域,吸引了越来越多的关注。
通过对石墨烯进行功能化改性,制备出修饰后的石墨烯纳米材料,可最大程度上保留石墨烯本征属性,并通过功能化引入其它一些有意义的特性。
深入研究将获得一系列性能更为优异的新型石墨烯功能材料,并从科学及技术上为实现该类材料的实际应用奠定基础。
本研究就如何实现石墨烯功能化,实现何种形式功能化,功能化后的石墨烯纳米复合材料在电学及催化等领域中的应用等方面进行了详细的阐释,并重点围绕石墨烯功能化材料的便捷、高效制备及功能化石墨烯材料在电学及催化等领域中的应用等两方面开展了详细研究: 1.功能化石墨烯纳米材料的便捷、高效制备我们通过一步法便捷制备了锗纳米颗粒/石墨烯纳米复合材料,也通过温和的乙二醇还原法成功制备了钯纳米颗粒/壳聚糖修饰的石墨烯纳米复合材料,还设计制备了钯纳米颗粒/石墨烯氧化物纳米复合材料及具有生物相容性及超大比表面的的三维石墨烯介孔材料等。
此外,我们在微波辅助条件下,直接从石墨出发,高效剥离出大尺寸石墨烯(尺寸可达4微米),且最大程度保留石墨烯本征性质新纳米复合材料中石墨烯层之间的高度变化会对电池的电化学循环有所改善,锡高度的变化会改进电极的性能。
另外,这种适应性也意味着电池能被快速地充电,而且重复充放电也不会降低其性能,这对电动汽车内的可充电电池来说非常关键参考文献:[1] 倪芳. 双氢氧化物膜修饰电极对电活性物质的直接电分析[D]. 安徽师范大学, 2010 .[2] 杜庆来. 石墨烯及其复合材料的制备、表征和超电容性能研究[D]. 南京航空航天大学, 2010 .[3] 张立逢. 以石墨烯为载体制备直接甲醇燃料电池阳极催化剂的研究[D].南京航空航天大学, 2010 .[4] 游从辉. 低温化学解理石墨烯的改性及电化学性质研究[D]. 天津大学,2010 .[5] 徐方强. 氧化石墨泡沫材料的制备及其对气体的吸附性能研究[D]. 天津大学, 2010 .[6] 李帅. 石墨烯及其复合材料的制备及性能研究[D]. 天津大学, 2010 .[7] 董建会. 碳纳米材料制备及其场发射特性研究[D]. 电子科技大学, 2009 .[8] 季兆林. 石墨微结构磁电效应及甚小电阻信号读取[D]. 南京理工大学,2009 .[9] 韦勇. 拉力调控下石墨烯电子性质的理论研究[D]. 浙江师范大学, 2009 .[10] 牛亮. 半导体纳米晶体光伏器件的性能测试系统[D]. 长春理工大学,2010 .The Preparation And Applications Of Graphene Hybrid Materialname:zhongshengliang student number:5602209104 class:shenggong092Abstract:Graphene had been successfully produced in 2004. This type of new material has been paying great attention due to its unique physical, chemical, and mechanics properties. In this thesis, graphene were synthesized by the chemical reduction and thermal exfoliation of graphite oxide, respectively. In addition, graphene oxide/amorphous carbon, FGS300/FDU15, FGS300/RuO_2·xH_2O composites are prepared by the blending and self-assembly method. The obtained samples were characterized by XRD, SEM, TEM, N2 adso... Since the graphene was successfully prepared in 2004,it has been one of the researching hotspots for the science and technology all over the world.It has been confirmed that graphene has unique structure and excellent properties in electricity,calorifics,mechanics,andotherwise.Because of the properties of huge surface-to-volume ratio and unique high-conductivity of graphene,graphene and graphene-based composites hold great promising for potential applications in the electrochemistry field.And so,the resear...Key word: gangplow plumbaginous Naziism。