风力和太阳能发电原理、蓄电池充放电原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电原理、太阳能发电原理、蓄电池充放电原理一、风力发电原理
风力发电概念:把风能转变成机械能,再把机械能转化为电能。

风力发电原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

电磁感应原理:电磁感应现象是指放在变化磁通量中的导体或者导体切割磁感线,会产生电动势。

此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)。

直流发电机是把机械能转化为直流电能的机器。

它主要作为直流电动机、电解、电镀、电冶炼、充电及交流发电机的励磁等所需的直流电机。

用电动机拖动电枢使之逆时针方向恒速转动,线圈边ab和cd 分别切割不同极性磁极下的磁力线,感应产生电动势。

直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势,因为电刷A通过换向片所引出的电动势始终是切割N 极磁力线的线圈边中的电动势。

所以电刷A始终有正极性,同样道理,电刷B始终有负极性。

所以电刷端能引出方向不变但大小变化的脉动电动势。

二、太阳能发电原理
光伏效应:光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。

它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。

有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。

利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。

太阳能光发电是将太阳能直接转变成电能的一种发电方式。

它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。

太阳能热发电是先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式。

一种是将太阳热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热电离子发电,碱金属热电转换,以及磁流体发电等。

另一种方式是将太阳热能通过热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来自燃料,而是来自太阳能。

三、蓄电池充放电原理
胶体铅酸蓄电池的性能优于阀控密封铅酸蓄电池,胶体铅酸蓄电池具有使用性能稳定,可靠性高,使用寿命长,对环境温度的适应能力(高、低温)强,承受长时间放电能力、循环放电能力、深度放电及大电流放电能力强,有过充电及过放电自我保护等优点。

胶体铅酸蓄电池使用一段时间后胶体开始干裂和收缩,产生裂
缝,氧气通过裂缝直接到负极板进行氧循环。

排气阀就不再经常开启,胶体铅酸蓄电池接近于密封工作,失水很少。

采用胶体铅酸蓄电池可获得非常好的效果。

胶体电解质是通过在电解液中加入凝胶剂将硫酸电解液凝固成胶状物质,通常胶体电解液中还加有胶体稳定剂和增容剂,有些胶体配方中还加有延缓胶体凝固和延缓剂,以便于胶体加注。

气相二氧化硅在胶体蓄电池中主要是利用其优异的增稠触变性能。

胶体电解质由气相二氧化硅和一定浓度的硫酸溶液按一定的比例配置而成,这种电解液中的硫酸和水被“存贮”在硅凝胶网络中,呈“软固态状凝胶”,静止不动时显固态状。

当电池被充电时,由于电解质中的硫酸浓度增加使之“增稠”并伴有裂隙产生,充电后期的“电解水”反应使正极产生的氧气通过这无数的裂隙被负极所吸收,并进一步还原成水,从而实现蓄电池密封循环反应。

放电时电解质中的硫酸浓度降低使之“变稀”,又成为灌注电池前的稀胶状态。

因此,胶体电池具有“免维护”的作用。

电池充电时,正极会析出氧气,负极会析出氢气。

正极析氧是在正极充电量达到70%时就开始了。

析出的氧到达负极,跟负极起下述反应,达到阴极吸收的目的。

2Pb十O2=2PbO 2PbO十2H2SO4:2PbS04+2H20
负极析氢则要在充电到90%时开始,再加上氧在负极上的还原作用及负极本身氢过电位的提高,从而避免了大量析氢反应。

对AGM密封铅蓄电池而言,AGM隔膜中虽然保持了电池的大部分电解液,但必须使10%的隔膜孔隙中不进入电解液。

正极生成的氧就是通过这部分孔隙到达负极而被负极吸收的。

胶体电解液的主要成份为一种粒径近乎于纳米级的功能化合物,流变性较好,容易实施对铅蓄电池的配液灌装。

胶体电解液进入蓄电池内部或充电若干小时后,会逐渐发生胶凝,使液态电解质转态为胶状物,胶体中添加有多种表面活性剂,有助于灌装蓄电池前抗胶凝,而且有助于灌装蓄电池后防止极板硫酸盐化,减小对板栅的腐蚀,提高极板活性物质的反应利用率。

在蓄电池充、放电时,正极、负极活性物质和电解液同时参加化学反应。

铅酸蓄电池充、放电化学反应的原理方程式如下:正极: PbO2 + 2e + HSO4- + 3H+ == PbSO4 + 2H2O
负极: Pb + HSO4- == PbSO4 + H+ + 2e
总反应:PbO2 + 2 H2SO4 + Pb == 2 PbSO4 + 2H2O
从以上的化学反应方程式中可以看出,铅酸蓄电池在放电时,正极的活性物质二氧化铅和负极的活性物质金属铅都与硫酸电解液反应,生成硫酸铅,在电化学上把这种反应叫做“双硫酸盐化反应”。

在蓄电池刚放电结束时,正、负极活性物质转化成的硫酸铅是一种结构疏松、晶体细密的结晶物,活性程度非常高。

在蓄电池充电过程中,正、负极疏松细密的硫酸铅,在外界充电电流的作用下会重新变成二氧化铅和金属铅,蓄电池就又处于充足电的状态。

正是这种可逆转的电化学反应,使蓄电池实现了储存电能和释放电能的功能。

人们在
日常使用中,通常使用蓄电池的放电功能,把充电阶段作为对蓄电池的维护工作。

铅酸蓄电池在充足电的情况下可以长时间保持电池内化学物质的活性,而在蓄电池放出电以后,如果不及时充足电,电池内的活性物质很快就会失去活性,使蓄电池内部产生不可逆转的化学反应。

相关文档
最新文档