3 金属材料的冲击韧性实验

合集下载

金属材料冲击实验报告

金属材料冲击实验报告

金属材料冲击实验报告1. 引言金属材料的冲击实验是评估其抗冲击性能的重要方法之一。

本实验旨在通过对金属材料进行冲击试验,分析材料的抗冲击性能和断裂行为,为材料的设计和应用提供参考。

本文将详细介绍实验的步骤、实验装置以及实验结果的分析。

2. 实验材料和装置2.1 实验材料本实验采用了常见的金属材料之一——钢材作为实验样本。

钢材具有良好的强度和韧性,在工业应用中被广泛使用。

2.2 实验装置本次实验所需的主要装置有:•冲击试验机:用于施加冲击力并记录冲击力的大小;•冲击试样:采用钢材制成的标准试样,具有一定的尺寸和形状。

3. 实验步骤3.1 准备工作首先,准备好所需的实验装置和试样。

确保冲击试验机正常工作,并根据试样的要求调整试验机的参数。

3.2 安装试样将试样放置在冲击试验机的夹持装置中,确保试样的位置正确并紧固夹持装置。

3.3 施加冲击力根据实验要求,设置合适的冲击力大小。

通过冲击试验机的控制面板或软件,选择合适的参数并启动试验。

3.4 记录实验数据在冲击试验机施加冲击力的过程中,记录冲击力的大小和持续时间等相关数据。

可以通过冲击试验机的显示屏或连接的计算机软件进行实时监测和记录。

3.5 统计破裂情况观察试样在冲击过程中的破裂情况,记录破裂面的形态和位置。

可以使用显微镜等工具对破裂面进行进一步的观察和分析。

3.6 数据处理和分析根据实验所得的数据,对冲击试验的结果进行处理和分析。

计算试样的抗冲击能力、破裂韧性等参数,并与其他材料进行对比分析。

4. 实验结果和讨论根据本次实验的数据和分析结果,我们得到了钢材的抗冲击性能和破裂行为。

通过分析试样的破裂面形态和位置,我们可以判断材料的断裂方式和破坏机理。

此外,通过与其他材料的对比分析,可以评估钢材在冲击载荷下的性能。

实验结果表明,钢材表现出较高的抗冲击能力和韧性。

其破裂面呈现出韧窝状形态,表明材料在冲击载荷下发生了塑性变形。

与其他材料相比,钢材具有更好的抗冲击性能,适用于承受冲击载荷的工程和结构应用。

金属材料冲击实验

金属材料冲击实验

冲击试件:
R1 10
55
2 8
10
A Type V型
10 10 55 2 45 0.25
试样尺寸
型片型式 開槽形狀 尺寸(mm) 高度(mm) 寬度(mm) 長度(mm)
凹槽深度(mm) 凹槽夾角(°)
曲率半徑(mm)
B&C Type U型
10 10 55 5 N/A 1mm
5
典型脆性断口和韧性断口
脆性
韌性
6
四.实验步骤
1.测量试件尺寸。 2.检查机器,校正零点。校零点用空摆实验进行。 3.试件放入钳口座,并用样板校正位置以对准刀刃。 4.按下“冲击”按钮进行冲击实验。 5.记下E值,观察样品破坏断面。整理机器,结束实验。
冲击实验机
三、实验原理概述
● 材料在冲击载荷作用下,产生塑性变形和 断裂过程中吸收能量的能力,称为材料的 冲击韧性。
● 将规定几何形状的缺口试样置于试验机两 支座之间,缺口背向打击面放置,用摆锤 一次打击试样,测定试样的吸收能量
G(h-h′) = GL(COSβ–COSα)

材料冲击实验报告

材料冲击实验报告

材料冲击实验报告1. 引言材料的抗冲击性能是评估其在受到外界冲击载荷时能否保持完整性和功能性的重要指标。

为了研究材料的冲击性能,本实验通过对不同材料的冲击实验,评估材料的抗冲击能力,并分析材料的破坏机制。

本实验选取了三种常见的材料进行了冲击测试,包括金属材料 (铝合金),塑料材料 (聚丙烯)和弹性材料 (聚氨酯)。

2. 实验目的•评估不同材料的抗冲击性能;•分析不同材料的破坏机制;•探讨材料冲击性能与材料特性的关系。

3. 实验装置和材料3.1 实验装置本实验使用的实验装置包括:•冲击试验机:用于提供冲击载荷;•冲击台:固定试样并接受冲击载荷;•冲击传感器:用于测量冲击过程中的载荷;•计算机数据采集系统:用于记录和分析实验数据。

3.2 实验材料本实验选取的材料包括:1.铝合金:作为典型的金属材料,具有很高的强度和硬度。

2.聚丙烯:作为典型的塑料材料,具有良好的韧性和耐冲击性。

3.聚氨酯:作为典型的弹性材料,具有很高的延展性和回弹性。

4. 实验方法4.1 样品制备首先,将铝合金、聚丙烯和聚氨酯分别加工为具有一定尺寸的试样,保证每个试样的尺寸和几何形状一致。

4.2 实验步骤1.将制备好的铝合金试样固定在冲击台上,调整冲击试验机的参数 (如冲击速度、冲击角度等)。

2.使用计算机数据采集系统连接冲击传感器,并调试传感器使其正常工作。

3.进行铝合金试样的冲击实验。

记录冲击过程中的载荷变化,并实时通过计算机数据采集系统保存数据。

4.重复上述步骤,分别对聚丙烯和聚氨酯试样进行冲击实验。

5.对实验得到的数据进行处理和分析,评估不同材料的抗冲击性能。

5. 实验结果和讨论经过冲击实验,得到了铝合金、聚丙烯和聚氨酯试样在不同冲击载荷下的载荷变化曲线。

根据实验数据,可以得到以下结论:1.铝合金在冲击载荷下承受能力较高,其载荷变化曲线较为平缓,说明其具有较好的抗冲击性能。

2.聚丙烯在冲击载荷下表现出较好的韧性,载荷变化曲线相对平缓,但其承受能力相对铝合金较低。

金属的冲击实验报告

金属的冲击实验报告

金属的冲击实验报告引言金属具有许多优秀的性能,如良好的导电性、导热性、强度等,因此被广泛应用于工业生产和科学研究中。

然而,当金属受到外力冲击时,其性能可能发生改变,甚至导致破损和失效。

为了更好地了解金属的冲击性能,我们进行了一项金属的冲击实验。

实验目的1. 掌握金属冲击测试的基本原理和方法;2. 研究金属在不同冲击条件下的性能变化;3. 分析和评价金属的冲击性能。

实验装置与材料1. 冲击试验机:用于模拟金属受到外力冲击的条件;2. 金属样品:选取常见的铁、铝和铜作为实验材料;3. 试样制备工具:包括锉刀、打磨机等。

实验步骤1. 制备金属样品:根据实验需要,将金属材料制成具有一定尺寸的试样;2. 调整冲击试验机的参数:根据金属样品的特性和实验要求,设置冲击试验机的力度和速度等参数;3. 进行冲击试验:将金属样品放置在冲击试验机上,启动试验机进行冲击测试;4. 记录实验数据:记录金属样品在冲击过程中的行为和变化情况,如变形、裂纹等;5. 进行定量分析:根据实验数据,进行定量分析,比较不同金属样品的冲击性能。

实验结果与分析经过一系列冲击试验,我们得到了以下实验结果:1. 铁在冲击试验中表现出较高的抗冲击性能,能够承受较大的冲击力而不破裂或严重变形;2. 铝在冲击试验中表现出较弱的抗冲击性能,容易发生断裂和变形;3. 铜在冲击试验中表现出较好的韧性,能够吸收冲击能量并延缓断裂的发生。

根据以上结果,我们可以得出如下结论:1. 不同金属的抗冲击性能存在差异,选择合适的金属材料可以提高产品的耐用性和安全性;2. 铁可以作为一种较好的结构材料,在需要承受大冲击力的场合具有一定的优势;3. 铜可以作为一种较好的冲击吸收材料,可用于制造护具和防护装备等。

实验结论通过本次实验,我们对金属的冲击性能进行了研究和分析。

不同金属在冲击试验中表现出不同的性能,可供我们根据实际需求进行选择和应用。

了解金属的冲击性能对于工程设计和产品制造具有重要意义,可为我们提供参考和指导。

冲击韧性实验

冲击韧性实验

3.金属材料在冲击载荷作用下塑性变形难于充分进行。 在冲击载荷下,塑性变形主要集中在某些局部区域, 这种不均匀情况限制了塑性变形的发展,导致屈服强 度和抗拉强度提高。且屈服强度提高得较多,抗拉强 度提高得较少。 4.塑性和韧性随着应变率增加而变化的特征与断裂方式 有关。
§3.2 金属材料的低温脆性
3.工程意义
(1)考核材料的多次冲击抗力; (2)作为受多次冲击零件的设计依据。
三.冲击脆化效应
1.冲击弹性变形总能跟上冲击外力的变化,因而应变率 对金属材料的弹性行为及弹性模量没有影响。而应变 速率对塑性变形、断裂及有关的力学性能有显著的影 响。 2.在冲击载荷作用下,瞬间作用于位错上的应力相当 高,结果造成位错运动速率增加,使派纳力 τp-n 增大。 运动速率愈大,则能量愈大、宽度愈小,故派纳力愈大。 结果滑移临界切应力增大,金属产生附加强化。
2.试验结果
样品破坏前 N ﹤1000~500次者,破坏规律及形态与一 次冲击相同; 样品破坏前 N﹥100000次者,破坏规律及形态与疲劳相 似。可概括为如下一些规律: (1)冲击能量高时,材料的多次冲击抗 力主要取决于塑 性;冲击能量低时,材料的多冲抗力主要取决于强度。 (2)不同的冲击能量要求不同的强度与塑性配合。 (3)材料强度不同对冲击疲劳抗力的影响不同。高强度钢 和超高强度钢的塑性和冲击韧性对提高冲击疲劳抗力有较 大作用;而中、低强度钢的塑性和冲击韧性对提高冲击疲 劳抗力作用不大。
在低碳合金钢中,经不完全等温处理获得贝氏体和马氏 体的混合组织,其韧性比单一马氏体或单一贝氏体组织要 好。 在马氏体钢中存在稳定残余奥氏体,可以抑制解理断 裂,从而显著改善钢的韧性。马氏体钢中的残余奥氏体膜 也有类似作用。 钢中碳化物及夹杂物等第二相对钢的脆性的影响程度取 决于第二相质点的大小、形状、分布、第二相性质及其与 基体的结合力等性质有关。

金属低温冲击实验报告

金属低温冲击实验报告

一、实验目的1. 了解金属在低温条件下冲击性能的变化规律。

2. 测定不同金属在低温下的冲击吸收功,分析其冲击韧性的变化。

3. 掌握金属低温冲击试验方法及试验设备的操作。

二、实验原理冲击试验是一种测定材料在冲击载荷作用下抗断裂能力的试验方法。

在低温条件下,金属的冲击性能会发生变化,表现为冲击韧性的降低。

本实验通过测定不同金属在低温下的冲击吸收功,分析其冲击韧性的变化,从而了解金属在低温条件下的抗冲击性能。

三、实验材料及设备1. 实验材料:低碳钢、铸铁、铝合金等。

2. 实验设备:低温冲击试验机、低温箱、游标卡尺、试样加工设备等。

四、实验步骤1. 试样制备:按照国家标准GB/T 229—1994《金属夏比缺口冲击试验方法》制备试样,试样尺寸为10mm×10mm×55mm,缺口形式为U型或V型。

2. 低温冲击试验:将试样置于低温箱中,设定不同的低温,将试样放入低温箱内,待试样温度稳定后,进行冲击试验。

3. 数据记录:记录每个试样的冲击吸收功和断口形貌。

4. 结果分析:分析不同金属在不同低温下的冲击吸收功和断口形貌,比较其冲击韧性的变化。

五、实验结果与分析1. 低碳钢在低温下的冲击性能:随着温度的降低,低碳钢的冲击吸收功逐渐降低,冲击韧性降低。

在-50℃时,低碳钢的冲击吸收功降低至原来的50%,表明其冲击韧性显著降低。

2. 铸铁在低温下的冲击性能:铸铁的冲击吸收功在低温下也呈现下降趋势,冲击韧性降低。

在-50℃时,铸铁的冲击吸收功降低至原来的30%,表明其冲击韧性明显降低。

3. 铝合金在低温下的冲击性能:铝合金的冲击吸收功在低温下同样降低,冲击韧性降低。

在-50℃时,铝合金的冲击吸收功降低至原来的60%,表明其冲击韧性降低。

六、结论1. 金属在低温条件下的冲击性能显著降低,冲击韧度降低。

2. 低碳钢、铸铁、铝合金等金属在低温下的冲击性能变化规律基本一致,冲击吸收功随温度降低而降低。

3. 本实验为金属材料在低温条件下的抗冲击性能提供了实验依据,对工程设计和材料选择具有一定的指导意义。

金属冲击试验实验报告

金属冲击试验实验报告

一、实验目的1. 了解金属冲击试验的基本原理和方法。

2. 通过冲击试验,测定金属在不同温度下的冲击吸收功,分析其冲击韧性和韧脆转变温度。

3. 比较不同金属的冲击性能,为金属材料的应用提供参考。

二、实验原理金属冲击试验是一种常用的力学性能试验方法,用于测定金属在冲击载荷作用下的力学性能。

冲击试验原理如下:1. 冲击试验采用摆锤冲击试验机进行,摆锤的势能转化为试样的冲击能,使试样在冲击过程中产生断裂。

2. 试样在冲击过程中吸收的能量称为冲击吸收功(Ak),其计算公式为:Ak = 1/2 mgh,其中m为摆锤质量,g为重力加速度,h为摆锤高度。

3. 通过测定冲击吸收功,可以分析金属的冲击韧性和韧脆转变温度。

三、实验材料与设备1. 实验材料:低碳钢、T8钢、工业纯铁。

2. 实验设备:金属摆锤冲击试验机、游标卡尺、温度计、冲击试样。

四、实验步骤1. 准备试样:将实验材料加工成标准冲击试样,试样尺寸符合GB/T 229-1994《金属夏比缺口冲击试验方法》的要求。

2. 设置试验参数:根据实验要求,调整冲击试验机的摆锤能量和冲击速度。

3. 进行冲击试验:将试样放置在冲击试验机的支座上,缺口位于冲击相背方向,并使缺口位于支座中间。

调整摆锤高度,使摆锤获得一定的势能,然后释放摆锤进行冲击试验。

4. 测量冲击吸收功:记录摆锤冲击试样后剩余的高度,计算冲击吸收功。

5. 测量试样温度:在冲击试验过程中,实时测量试样温度,分析金属的韧脆转变温度。

五、实验结果与分析1. 冲击吸收功:根据实验数据,绘制不同金属在不同温度下的冲击吸收功曲线,分析其冲击韧性和韧脆转变温度。

2. 冲击韧度:根据冲击吸收功,计算不同金属的冲击韧度,比较其冲击性能。

3. 韧脆转变温度:根据冲击吸收功曲线,确定不同金属的韧脆转变温度。

六、实验结论1. 低碳钢、T8钢和工业纯铁在不同温度下的冲击吸收功存在明显差异,说明不同金属的冲击性能存在差异。

2. 低碳钢的冲击韧度最高,T8钢次之,工业纯铁最低。

材料性能与测试-第3章材料的冲击韧性和低温脆性

材料性能与测试-第3章材料的冲击韧性和低温脆性

低温脆性的危害
❖ 发生脆变时,裂纹的扩展速度可高达1000~3000m/s,无法加以 阻止,无任何征兆。
❖ 1938 年和1940 年, 在比利时的哈塞尔特城和海伦赛贝斯城先后 发生了两次钢桥坍塌事故。经研究,这些事故正是材料的冷脆 造成的。
§3.2 低温脆性
❖ 定义:体心立方或某些密排六方晶体金属及其合金,特别是工程上常用的 中、低强度结构钢,在试验温度低于某一温度tk时,会由韧性状态变为脆 性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理,断
§3.1 冲击载荷下金属变形和断裂特点 §3.2 冲击弯曲和冲击韧性 §3.3 低温脆性 §3.4 影响韧脆转变温度的因素
§3.1 冲击载荷下金属变形和断裂特点
冲击载荷和静载荷的区别
加载速率的不同
加载速率:载荷施加于试样或机件时的速率,用单位时间内应力增加
的数值表示。
形变速率可间接反应加载速率的变化。
口特征由纤维状变为结晶状,这就是低温脆性。
屈服强度/MPa
840
700 W
560 Mo
420 Байду номын сангаасe
280
140 Ni
几类不同冷脆倾向的材料
0 200 400 600 800 1000
温度/℃
❖ 测量不同温度下冲击韧性aK(AK)与温度t的关系曲线(AK~t)。tk称为韧脆转
变温度或冷脆转变温度,是安全性指标之一。
(3) FTE(fracture transition elastic):低阶能和高阶能平均值对应的温度。
➢ 冲击弯曲试验,冲击吸收功-温度曲线 Ak急剧减小;
(4) 以Akv为 20.3 N·m对应的温度作为韧脆转变温度,记为 V15TT。

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告摘要:本实验旨在通过对金属材料的力学性能进行测试和分析,以探究其力学行为和性能。

在本实验中,我们选取了一种常见的金属材料进行测试,并使用了相关的测试方法和设备,包括拉伸试验、硬度测试和冲击试验。

通过对实验结果的分析与比较,我们探讨了该金属材料的力学性能表现以及对其应用的影响。

实验结果显示,该金属材料表现出高强度、良好的塑性和韧性,适用于各种工程应用。

1. 引言金属材料是广泛应用于工程领域的重要材料,其力学性能直接关系到其在工程中的可靠性和安全性。

因此,了解金属材料的力学性能是进行工程设计和材料选择的基础。

本实验旨在通过力学性能测试来了解金属材料的力学特性和表现,以提供工程实践的依据。

2. 实验方法和设备2.1 材料样品选择选取了某种常见的金属材料作为研究对象,样品形状和尺寸符合标准要求。

2.2 拉伸试验使用拉伸试验机进行拉伸试验,按照标准规范进行测试,记录载荷-位移曲线,计算材料的弹性模量、屈服强度、抗拉强度和断后延伸率等指标。

2.3 硬度测试使用硬度计对材料进行硬度测试,选择适当的测试方法,如布氏硬度或洛氏硬度,记录测试结果并计算平均硬度值。

2.4 冲击试验利用冲击试验机对材料进行冲击试验,记录冲击能量和冲击韧性等指标。

3. 实验结果与分析3.1 拉伸试验拉伸试验结果显示,该金属材料在加载过程中呈现明显的弹性阶段、塑性阶段和断裂阶段。

载荷-位移曲线呈现出典型的应力-应变曲线特征。

根据试验数据计算得到的材料力学性能指标如下:- 弹性模量:XXX GPa- 屈服强度:XXX MPa- 抗拉强度:XXX MPa- 断后延伸率:XXX %3.2 硬度测试通过硬度测试,我们得到了该金属材料的平均硬度值为XXX。

硬度是材料抵抗局部塑性变形和耐刮削能力的指标,较高的硬度值表示该金属材料具有较好的耐磨性和抗刮削性能。

3.3 冲击试验冲击试验结果显示,该金属材料在受到冲击负荷时具有较高的韧性和抗冲击性能。

第三章材料的冲击韧性及低温脆性

第三章材料的冲击韧性及低温脆性

击 韧
击实验,得到不同温度下材料的系列冲击值Ak
性 (或αk),从而获得Ak—t,或αk—t曲线。





2、低温脆性
第 三
体心立方、密排六方金属或合金在温度低于tk时,由
章 材 料
塑韧性状态变为脆性状态,Ak↓↓的现象,称为 低温脆性。




性 材料发生冷脆性转变的温度→冷脆性转变温度tk



低 迟屈服现象,б>бs高速加载,体心立方金属瞬间
温 脆
并不屈服,经过一段时间后才发生屈服,且温度越
性 低,持续时间越长(不屈服,就不能削减应力峰值),
这为裂纹的发生和扩展创造了有利条件。
2、化学成分的影响
① 间隙溶质元素含量增加, 晶格畸变程度加大,位
第 三
错运动阻力提高,屈服强度升高,脆性增大,韧脆转
性 c、相同强度水平,上贝氏体的tk高于下贝氏体组织
与 低
(低碳钢低温上贝氏体的韧性高于回火马氏体的韧性)



d、低温合金钢,经不完全等温处理获得贝氏体和马
氏体的混合组织,其韧性比单一贝氏体或单一马氏
体组织好。


章 晶粒细小的混合组织。裂纹在此种组织内扩展要多
材 料
次改变方向(多裂纹陶瓷相似)消耗能量较大,故
章 形成的间隙式固溶体。

料 的
渗碳体:是铁和碳形成的稳定化合物Fe3C.
冲 击
贝氏体:铁素体和渗碳体的非层片状混合物。铁素体
韧 性
为基,渗碳体为分散的圆形质点。具有硬度、强度、
与 韧性的最佳组合。

金属材料的韧性及其测定

金属材料的韧性及其测定
• 显然,冲击能量KU或者KV越大,表示金属抵抗冲击 了的作用而不被破坏的能力越强。
五.布置作业,巩固提高
• 练习1.( ) 是指金属在断裂前吸收变形能量的能力。 • 练习2.材料的冲击吸收能量K越大,其韧性就( )。
六.情感升华
• 我们在初中物理上学习了能量转换,动量守恒等概 念,今天呢,我们利用这些知识设计了夏比摆锤实 验,通过这次实验,我们完成了对韧性的理解,这 就提醒我们要善于将所学知识综合利用起来,由简 单的单线思维向多线的综合的思维转换。
1.3 金属材料的韧性及其测定
一.导入新课,展示目标
• 前面几节我们学习了强度,硬度等力学性能,本节 课我们一起了解一下韧性的概念。
• 知识与技能 • 掌握金属材料力学性能指标韧性的含义 • 了解金属材料力学性能指标韧性的测定方法。 • 过程与方法 • 通过与学生探讨实验原理,了解韧性的概念
一.导入新课,展示目标
• 情感态度与价值观 • 本次实验涉及到动量,能量的转换,循循善诱,激
发学生学习兴趣,培养学生思考能力。
二.设疑激探,自主学习
• 疑问1.韧性的定义及其单位。 • 疑问2.夏比摆锤冲击试验的原理是什么? • 疑问3:冲击试样开口的作用是什么?
三.合作讨论,师生探究
• 讨论1:夏比试验的原理是什么? • 讨论2:冲击吸收能量KV或KU与力学性能验的实验原理:实验时,将带有缺口的试样安放在
试验机的机架上,使试样的缺口位于两固定支座中间,并
背向摆锤的冲击方向,将质量的摆锤升高到规定高度h1,
则摆锤具有势能KV1(V形缺口试样)或KU1(U形缺口试
样)。当摆锤落下将试样冲断后,摆锤继续向前升高到h2,
此时摆锤的剩余势能为KV2或KU2.摆锤冲断试样所失去的

金属冲击实验报告

金属冲击实验报告

金属冲击实验报告金属冲击实验报告引言:金属冲击实验是一种常见的实验方法,用于研究金属材料在受到冲击时的性能和行为。

通过对金属材料的冲击实验,我们可以了解金属的强度、韧性、断裂特性以及变形行为等重要参数,从而为工程设计和材料选择提供依据。

本文将介绍金属冲击实验的基本原理、实验装置和测试方法,以及实验结果的分析和讨论。

一、实验原理金属冲击实验是通过给金属材料施加冲击载荷,观察其在冲击载荷下的变形和破坏行为,以评估材料的性能。

金属材料在受到冲击载荷时,会发生塑性变形、断裂或破坏。

冲击载荷的大小和速度会对金属材料的响应产生重要影响。

二、实验装置金属冲击实验通常使用冲击试验机进行。

冲击试验机包括一个冲击头、一个试样支撑台和一个测量系统。

冲击头用来施加冲击载荷,试样支撑台用来固定试样,测量系统用来记录试样在冲击载荷下的变形和破坏行为。

三、实验方法1. 准备试样:根据实验需求,选择适当的金属材料,并根据标准规范制备试样。

试样的尺寸和形状应符合实验要求。

2. 安装试样:将试样放置在试样支撑台上,并确保试样的位置和方向正确。

3. 施加冲击载荷:通过冲击试验机的控制系统,控制冲击头施加冲击载荷。

载荷的大小和速度可以根据实验要求进行调整。

4. 记录数据:使用测量系统记录试样在冲击载荷下的变形和破坏行为。

可以记录的数据包括载荷-位移曲线、载荷-时间曲线等。

5. 分析实验结果:根据记录的数据,分析试样的变形和破坏行为,并评估金属材料的性能。

四、实验结果分析与讨论通过金属冲击实验,我们可以得到试样在冲击载荷下的变形和破坏行为。

根据载荷-位移曲线和载荷-时间曲线,我们可以评估金属材料的强度、韧性和断裂特性等重要参数。

在实验结果分析中,我们可以比较不同金属材料的性能差异。

例如,对比不同金属材料的载荷-位移曲线,我们可以观察到不同材料的强度和韧性差异。

某些金属材料可能具有较高的强度,但在受到冲击载荷时容易发生断裂。

而其他材料可能具有较高的韧性,能够在受到冲击载荷时发生较大的塑性变形而不断裂。

冲击韧性试验

冲击韧性试验

八)、冲击韧性实验冲击韧性实验大纲1.用摆锤冲击试验机,冲击简支梁受载条件下的低碳钢和铸铁试样,确定一次冲击负载作用下折断时的冲击韧性αku2.通过分析计算,观察断口,比较上述两种材料抵抗冲击载荷的能力冲击韧性实验指导书衡量材料抗冲击能力的指标用冲击韧度来表示。

冲击韧度是通过冲击实验来测定的。

这种实验在一次冲击载荷作用下显示试件缺口处的力学特性(韧性或脆性)。

虽然试验中测定的冲击吸收功或冲击韧度,不能直接用于工程计算,但它可以作为判断材料脆化趋势的一个定性指标,还可作为检验材质热处理工艺的一个重要手段.这是因为它对材料的品质、宏观缺陷、显微组织十分敏感,而这点恰是静载实验所无法揭示的。

一﹑冲击实验的类型及名称测定冲击韧度的试验方法有多种。

国际上大多数国家所使用的常规试验为简支梁式的冲击弯曲试验。

在室温下进行的实验一般采用GB/T229-1994标准《金属夏比冲击试验方法》,另外还有“低温夏比冲击实验”,“高温夏比冲击实验”。

由于冲击实验受到多种内在和外界因素的影响。

要想正确反映材料的冲击特性,必须使用冲击实验方法和设备标准化、规范化,为此我国制定了金属材料冲击实验的一系列国家标准(例如GB2106、GB229-84、GB4158-84、GB4159-84)。

本次实验介绍“金属夏比冲击实验”(即GB/T229-1994)测定冲击韧度。

二﹑实验目的测定低碳钢和铸铁两种材料的冲击韧度,观察破坏情况,并进行比较。

三﹑实验设备1.冲击试验机2.游标卡尺图2-26 冲击试验机结构图四﹑试样的制备若冲击试样的类型和尺寸不同,则得出的实验结果不能直接比较和换算。

本次试验采用U型缺口冲击试样。

其尺寸及偏差应根据GB/T229-1994规定,见图2-27。

加工缺口试样时,应严格控制其形状﹑尺寸精度以及表面粗糙度。

试样缺口底部应光滑﹑无与缺口轴线平行的明显划痕。

图2-27 冲击试样五﹑实验原理冲击试验利用的是能量守恒原理,即冲击试样消耗的能量是摆锤试验前后的势能差。

工程材料实验报告,金属的冲击试验报告

工程材料实验报告,金属的冲击试验报告

工程材料实验报告,金属的冲击试验报告金属系列冲击试验报告金属系列冲击试验报告一.试验目的1. 了解摆锤冲击试验的基本方法。

2. 通过系列冲击试验,测定低碳钢、工业纯铁和T8钢在不同温度下的冲击吸收功,拟合三种金属韧脆转变温度。

二.基本原理:韧性是材料承受载荷作用导致发生断裂的过程中吸收能量的特性。

冲击吸收功的测量原理为冲击前以摆锤位能形式存在的能量中的一部分被试样在受冲击后发生断裂的过程中所吸收。

摆锤的起始高度与它冲断试样后达到的最大高度之间的差值可以直接转换成试样在冲断过程中所消耗的能量,试样吸收的功称为冲击功(Ak)。

采用系列冲击试验,即测定材料在不同温度下的冲击吸收功,可以确定其韧脆转变温度,即当温度下降时,由韧性转变成脆性行为的温度范围,在Ak-T曲线上表现为Ak值显著降低的温度。

曲线冲击功明显变化的中间部分称为转化区,脆性区和塑性区各占50%时的温度称为韧脆转变温度(DBTT)。

当断口上结晶或解理状脆性区达到50%时,相应的温度称为断口形貌转化温度(FATT)。

脆性断裂:材料在低温断裂时会呈现脆性断裂,所谓脆性断裂即材料在极微小甚至没有塑性变形及其预警的情况下所发生的断裂,低倍放大镜下断口形貌往往是光亮的结晶状。

解理断裂:当外加正应力达到一定数值后,以极速率沿特定晶面产生的穿晶断裂现象称为解理。

解理断口的基本微观特征是台阶、河流、舌状花样等。

全韧型断口:断口晶状区面积百分比定为0%;全脆型断口:断口晶状区面积百分比定为100%;韧脆型断口:断口晶状区面积百分比需用工具显微镜进行测量,计算出断口解理部分面积,计算出断口晶状区面积百分比三.试验材料、试样、以及设备仪器2.1 按照相关国标标准GB/T229-1994 (金属夏比缺口冲击试验方法)要求完成试验测量工作。

2.2 试验材料:低碳钢、工业纯铁和T8钢。

试样外型尺寸:10mm*10mm*55mm,缺口部位为U型槽。

2.3 试验设备与仪器实验仪器:冲击试样机:JB-30B,冲击试验机的标准打击能量为300J(±10J),打击瞬间摆锤的冲击速度应为 5.0~5.5m/s。

金属材料冲击试验

金属材料冲击试验

金属材料冲击试验金属材料的冲击试验是评估金属材料在受到外部冲击或撞击时的抗冲击性能的重要手段。

通过冲击试验,可以了解金属材料在受到冲击载荷时的变形、破裂行为,为工程设计和材料选择提供重要参考。

本文将介绍金属材料冲击试验的一般流程、常用试验方法和相关标准,以及一些注意事项。

一、冲击试验流程。

1. 试样准备,首先需要准备好符合标准要求的金属试样,通常是标准化的试样几何形状和尺寸。

试样的制备要求严格,以保证试验结果的准确性和可比性。

2. 试验设备准备,冲击试验常用的设备有冲击试验机和落锤式冲击试验机。

在进行试验前,需要对试验设备进行检查和校准,以确保试验的准确性和可靠性。

3. 试验参数设定,根据试验标准和试样特性,设定合适的试验参数,包括冲击能量、冲击速度等。

这些参数会直接影响试验结果,因此需要进行合理的选择和设定。

4. 进行试验,将试样装入冲击试验机中,根据设定的参数进行试验。

在试验过程中,需要对试样的变形、破裂情况进行观测和记录。

5. 数据分析,根据试验结果,进行数据分析和处理,得出试样的冲击性能参数,如冲击强度、冲击韧性等。

二、常用试验方法。

1. 夏比冲击试验,夏比冲击试验是一种常用的金属材料冲击试验方法,通过将冲击钢锥或冲击锤自一定高度自由落下,冲击试样表面,观察试样的变形和破裂情况,得出冲击性能参数。

2. 夏尔皮冲击试验,夏尔皮冲击试验是另一种常用的金属材料冲击试验方法,通过使用冲击试验机对试样进行冲击,观察试样的冲击行为和破裂形态,得出冲击性能参数。

3. 落锤式冲击试验,落锤式冲击试验是一种简单直观的冲击试验方法,通过使用落锤将试样冲击,观察试样的冲击响应和破裂情况,得出冲击性能参数。

三、注意事项。

1. 试样制备,试样的制备要求严格,需要按照标准要求进行制备,以保证试验结果的准确性和可比性。

2. 试验设备校准,在进行试验前,需要对试验设备进行检查和校准,以确保试验的准确性和可靠性。

3. 试验参数选择,合理选择试验参数对试验结果至关重要,需要根据试验标准和试样特性进行合理的选择和设定。

钢板的冲击韧性冲击试验

钢板的冲击韧性冲击试验

钢板的冲击韧性冲击试验简介冲击韧度指标的实际意义在于揭示材料的变脆倾向,是反映金属材料对外来冲击负荷的抵抗能力;一般由冲击韧性值(ak)和冲击功(Ak)表示,其单位分别为J/cm2和J(焦耳)。

分析介绍冲击韧性或冲击功试验(简称冲击试验),因试验温度不同而分为常温、低温和髙温冲击试验三种;若按试样缺口形状又可分为"V"形缺口和"U"形缺口冲击试验两种。

冲击韧性(冲击值)ak工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。

而用试样缺口处的截面积F去除Ak,可得到材料的冲击韧度(冲击值)指标,即ak=Ak/F,其单位为κJ/m2或J/cm2。

因此,冲击韧度ak表示材料在冲击载荷作用下抵抗变形和断裂的能力。

ak值的大小表示材料的韧性好坏。

一般把ak值低的材料称为脆性材料,ak值高的材料称为韧性材料。

k值取决于材料及其状态,同时与试样的形状、尺寸有很大关系。

ak值对材料的内部结构缺陷、显微组织的变化很敏感,如夹杂物、偏析、气泡、内部裂纹、钢的回火脆性、晶粒粗化等都会使ak值明显降低;同种材料的试样,缺口越深、越尖锐,缺口处应力集中程度越大,越容易变形和断裂,冲击功越小,材料表现岀来的脆性越高。

因此不同类型和尺寸的试样,其ak或Ak值不能直接比较。

材料的ak值随温度的降低而减小,且在某一温度范围内,ak值发生急剧降低,这种现象称为冷脆,此温度范围称为"韧脆转变温度(Tk)"。

详细说明冲击韧性(ak):材料抵抗冲击载荷的能力,单位为焦耳/平方厘米(J/cm2)代号:ak单位:J/cm2简介:将冲击吸收功除以试样缺口底部处横截面积所得的商。

注:用夏氏U形缺口试样求得的冲击功和冲击值,代号分别为AkU和akU;用夏氏V形缺口试样求得的冲击功和冲值,代号分别为AKV和aKV。

用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以ak表示。

冲击韧性(excel画的图)

冲击韧性(excel画的图)

材料力学性能实验报告实验名称实验一缺口冲击韧性实验实验目的 1.掌握常温及低温下金属冲击试验方法;2.学会用能量法确定金属冷脆能变温度t;k3.了解冲击试验机结构、工作原理及正确使用方法。

实验设备 1.游标卡尺;2.20#钢退火态试样和40Cr调质态试样各三根;3.JBW-300示波冲击试验机;4.液氮,酒精;5.温度计。

试样示意图图1 冲击试验标准试样示意图实验结果记录20#退火态和40Cr调质态试样的冲击吸收总功记录见附录。

根据裂纹形成能量、裂纹扩展能量以及总冲击能量,以及冲击记录的示波图,得到,裂纹萌生功= 裂纹形成能量;裂纹扩展功=裂纹扩展能量-裂纹形成能量;裂纹撕裂功=总冲击能量-裂纹扩展能量。

20#退火态和40Cr调质态试样的裂纹萌生功、裂纹扩展功和裂纹撕裂功分别见表1和表2:表1 20#退火态各试样的裂纹萌生、扩展、撕裂功记录表试样编号温度/℃裂纹萌生功/J 裂纹扩展功/J 裂纹撕裂功/J 1-1 20 45.8112 0.4700 1.33701-3 20 44.0039 2.2082 20.17314-4 20 30.6656 1.7666 15.3820-2 0 38.8878 0.2872 1.05400-3 0 38.8078 0.2678 2.39715-3 0 37.4989 0.7339 2.47645-2 0 35.4670 0.3494 1.76661-4 -30 6.6485 0.3104 2.40011-6 -30 6.7921 0.3238 2.8115表1 40Cr调质态各试样的裂纹萌生、扩展、撕裂功记录表试样编号温度/℃裂纹萌生功/J 裂纹扩展功/J 裂纹撕裂功/J1-2 20 50.2343 1.4006 18.3959A-1 20 42.0885 2.1613 26.5258B-3 0 41.405 1.4651 14.6755D-3 0 33.6908 0.7463 25.86235-3 0 39.5793 1.1635 4.59205-2 -30 33.9825 1.2214 5.18192-2 -30 26.9017 2.6659 29.03643-2 -60 32.2844 1.4816 19.57542-2 -60 47.6899 0.3546 9.17776-3 -90 40.5959 2.3280 10.0549实验数据处理根据表1和表2,以及各试样在不同温度下的冲击吸收功,做各试样的冲击吸收总功、裂纹萌生功、裂纹扩展功和裂纹撕裂功与温度的关系曲线,分别得到图2—9八幅图:0102030405060-100-80-60-40-202040冲击总功/J温度/℃28.7-11.5ETT 50图2 20#退火态试样冲击总功与温度关系曲线05101520253035404550-40-30-20-10102030裂纹萌生功/J温度/℃图3 20#退火态试样裂纹萌生功与温度关系曲线图4 20#退火态试样裂纹扩展功与温度关系曲线0510152025-40-30-20-10102030裂纹撕裂功/J温度/℃图5 20#退火态试样裂纹撕裂功与温度关系曲线01020304050607080-100-80-60-40-202040冲击总功/J温度/℃-33.056.7EET 50图6 40Cr 调质态试样冲击总功与温度关系曲线图7 40Cr 调质态试样裂纹萌生功与温度关系曲线图8 40Cr调质态试样裂纹扩展功与温度关系曲线图9 40Cr调质态试样裂纹撕裂功与温度关系曲线冷脆转变温度金属韧脆转变温度:有些金属在其使用温度降低时,其塑性、韧性便急剧降低,使材料脆化,冲击值降低,这一现象为冷脆。

断裂韧性冲击实验

断裂韧性冲击实验

断裂韧性冲击实验一、实验目的:1.学习低温温度下金属冲击韧性测定的操作方法;2.测定温度对金属材料冲击韧性的影响,掌握确定金属材料的脆性转化温度T k 的方法。

二、实验设备:1.冲击试验机。

本次实验用J B-30型冲击试验机进行。

2.试样标准夏比冲击试样有V型缺口和U 型缺口两种,U 型缺口深度亦有2mm和5mm 两种。

三、实验原理:本实验按冲击试验的最新国家标准G B/T229-1994进行。

用规定高度的摆锤对处于简支粱状态的缺口试样进行一次性打击,可测量试样折断时的冲击吸收功A k。

(A k 除以试样缺口处截面积得冲击韧性值a k)。

为了表明材料低温脆性倾向大小,常用方法就是测定材料的“韧脆转化温度”。

一般使用标准夏比V型缺口冲击试样测定。

根据不同温度下的冲击试验结果,以冲击吸收功或脆性断面率为纵坐标,以试验温度为横坐标绘制曲线见图1。

韧脆转变温度确定方法:a. 冲击吸收功-温度曲线上平台与下平台区间规定百分数(n)所对应的温度,用ETT n 表示。

如冲击吸收功上平台与下平台区间50%所对应的温度记为ETT50(℃)。

b. 脆性断面率-温度曲线中规定脆性断面率(n)所对应的温度,用FTT n表示。

如脆性断面率为50%所对应的温度记为F TT50(℃)。

用不同方法测定的韧脆转变温度不能相互比较。

五、试验过程:1.加热或冷却装置:室温到90℃可用水浴,80℃—200℃可以用油浴,室温以下用干冰(CO2)和低熔点液体混合物作为制冷剂。

低熔点液体可以是煤油、酒精或其它无毒性挥发物的有机液体,进行适当配合而得到所要求的温度。

例如:采用酒精加干冰调和可达到-70℃~0℃间不同温度。

室温以上调节的温度要比规定的温度高3-5℃,以补偿从试样取出到冲断时温度的变化。

2.检查试验机:指针、螺帽是否过紧过松。

将摆锤抬起,空冲3.准备试样:将领到的试样擦干净,打上钢印(编号),测量试样尺寸(精确到0.1mm),并记录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3 金属材料的冲击韧性实验
一、实验目的
1、了解冲击韧性的含义。

2、测定低碳钢和铸铁的冲击韧性,比较两种材料的冲击性能和破坏断口的形貌。

二、实验概述
衡量材料抗冲击能力的指标用冲击韧度来表示。

冲击韧度是通过冲击实验来测定的。

这种实验在一次冲击载荷作用下显示试件缺口处的力学特性(韧性或脆性)。

虽然试验中测定的冲击吸收功或冲击韧度不能直接用于工程计算,但它可以作为判断材料脆化趋势的一个定性指标,还可作为检验材质热处理工艺的一个重要手段。

测定冲击韧度的试验方法有多种。

国际上大多数国家所使用的常规试验为简支梁式的冲击弯曲试验。

在室温下进行的实验一般采用GB/T229-1994标准《金属夏比冲击试验方法》,另外还有“低温夏比冲击实验”,“ 高温夏比冲击实验”。

由于冲击实验受到多种内在和外界因素的影响。

1.实验原理
冲击实验机由摆锤、机身、支座、度盘、指针等几部分组成(图3-1)。

实验时,将带有缺口的受弯试样安放于试验机的支座上,举起摆锤使它自由下落将试样冲断。

若摆锤的重量为G ,冲击中摆锤的质心高度由H0变为H1,势能的变化为G(H0-H1),它等于冲断试样所消耗的功W ,亦即冲击中试样所吸收的功为
)(10H H G W A k -==
图1 冲击实验机及原理图
A
值可由指针指示的位置从度盘上读出。

因为试样缺口处的高度应力集k
的绝大部分为缺口局部所吸收。

中,A
k
依据GB/T229-1994《金属夏比缺口冲击试验方法》,夏比缺口冲击试验
的原理是:用扬起一定高度的摆锤一次性打击处于简支梁状态的缺口试样,
测定试样折断时所吸收的功。

冲击过程中所消耗的能量,除大部分为试样断裂所吸收外,还有一小
部分消耗于机座振动等方面,只因这部分能量相对较小,一般可以省略。

2.实验设备
冲击试验机,如上图所示。

游标卡尺
3.冲击试样
冲击韧性的数值与试样的尺寸、缺口形状和支撑方式有关。

国家标准规定两
种形式的试样:(1)U型缺口试样(梅氏试样),尺寸形状如图3-2所示;(2)V
型缺口试样,尺寸形状如下图所示。

两者皆为简支梁形式。

式样上开有缺口是为
了使缺口区形成高度应力集中,吸收较多的能量。

本次试验采用冲击试样,尺寸
及偏差应根据GB/T229-1994规定。

加工缺口试样时,应严格控制其形状﹑尺寸
精度以及表面粗糙度。

试样缺口底部应光滑﹑无与缺口轴线平行的明显划痕。

(a) V型缺口试样
(b) U型缺口试样
图2 冲击试样要求
三﹑实验步骤
1.测量试样的几何尺寸及缺口处的横截面尺寸。

2.根据估计材料冲击韧性来选择试验机的摆锤和表盘。

3.安装试样。

如图3所示。

图2-29 冲击实验示意图
图3 试样安放位置示意图
4.进行试验。

将摆锤举起到高度为H 处并锁住,然后释放摆锤,冲断试样后,待摆锤扬起到最大高度,再回落时,立即刹车,使摆锤停住。

5.记录表盘上所示的冲击功AKU 值.取下试样,观察断口。

试验完毕,将试验机复原。

6.冲击试验要特别注意人身的安全。

四﹑实验结果处理
1.计算冲击韧性值αK .
S A K K =α ((J/cm 2)) 式中:A K 为缺口试样的冲击吸收功(J);S 0为试样缺口处断面面积(cm2)。

冲击韧性值αK 是反映材料抵抗冲击载荷的综合性能指标,它随着试样的绝对尺寸﹑缺口形状﹑试验温度等的变化而不同。

2.比较分析两种材料的抵抗冲击时所吸收的功。

观察破坏断口形貌特征。

五﹑思考题
1.击韧性值αKU 为什么不能用于定量换算,只能用于相对比较?
2.冲击试样为什么要开缺口?。

相关文档
最新文档