纳米氧化镍的化学法制备技术及研究现状_傅小明

纳米氧化镍的化学法制备技术及研究现状_傅小明
纳米氧化镍的化学法制备技术及研究现状_傅小明

收稿日期:2010-05-17

作者简介:傅小明(1974-),男,四川广元人,博士,主要从事纳米材料研究。基金项目:宿迁学院高级人才启动基金(SQCGJ2010002)。

文章编号:1006-2777(2010)05-0011-03

纳米氧化镍的化学法制备技术及研究现状

傅小明,印 涛

(宿迁学院,江苏宿迁 223800)

摘 要: 纳米氧化镍具有尺寸小、

比表面积大和化学活性高等特点,其应用比较广泛,国内外对纳米氧化镍的制备方法有很多研究。本文主要综述了化学法(沉淀法、溶胶)凝胶法、固相法、微乳液法、超声波分解法、熔盐法等)制备纳米氧化镍的研究现状及其优缺点,并对纳米氧化镍的研究发展趋势进行了展望。

关 键 词: 纳米氧化镍;化学法;现状;展望

中图分类号: TG138.1+

3 文献标志码: A

Preparative T echnique and Research Status of Nano N ickel

Oxide Through Che m icalM ethod

FU X iao m ing ,Y I N Tao

(Suqian Co ll ege ,Suq i an 223800Jiangsu ,Ch i na)

Abstract : N ano n ickel ox i de has w i de app licati on because o f i ts s m all scale ,larg e spec ifi c surface area ,we ll chem i ca l activ-i ty ,and so on .There are lots o f stud i es about prepara ti on o f nano n ickel ox ide at hom e and abroad .Th is arti c le i n troduces the advantages and d i sadvantages o f the prepara ti ve technique t hrough che m ical m ethod(P recipitation ,so -l ge,l so li d phase ,m icroe m u l s i on ,u ltrason ic decom position ,m o lten salt ,and so on).T he prospect of research of nano nicke l ox ide is descr i bed .

K ey W ords : nano nickel ox i d e ;che m ica lm ethod ;presen t state ;prospect 纳米氧化镍(N i O )是一种很有前途的功能材料,具有尺寸小、比表面积大和化学活性高等特点,

在磁、光、电、敏感及催化等方面有特殊的性能[1]

。它广泛应用于磁性材料、气敏元件、电极材料、催化剂、电化学电容器、功能陶瓷、光电器件、电致变色材料和特种涂料等领域[2-6]

纳米N i O 的合成方法有很多种,主要为化学法和物理法。由于物理法制备的粉体粒径大、分布宽,而且某些组分易于挥发或发生偏析,一般不被采用。化学法具有操作简单、易于控制、适合大量生产等优点,被广泛应用于制备纳米N i O 。目前,纳米N i O 的化学制备方法主要分为沉淀法、溶胶)凝胶法、固相

法、微乳液法、超声波分解法、熔盐法等。

本文综述了近年来国内外纳米N i O 的化学法制备技术和研究现状,指出了不同制备方法的优缺点和可能解决问题的途径。

1 纳米氧化镍的制备方法

1.1 沉淀法

沉淀法是制备纳米氧化物时广泛采用的一种方

第30卷第5期

2010年10月

江 西 冶 金

JI ANGX IM ETALLU RGY

V o.l 30,N o .5

O ctober

2010

法,其原理是在金属盐溶液中加入沉淀剂,在一定条件下生成的沉淀物从溶液中析出后,将阴离子除去,沉淀物经热分解制得纳米氧化物。此方法操作简便易行,对设备、技术要求不高,不易引入杂质,产品纯度高,有良好的化学计量性,且成本较低。

1.1.1直接沉淀法

直接沉淀法是指在含一种或多种离子的可溶性盐溶液中,加入沉淀剂后于一定条件下直接生成沉淀物,将沉淀物洗涤、干燥、热分解后得到纳米N i O 粉末的方法。

Zhang F B等人[7]以N i(NO3)2#6H2O为原料、NH4H CO3为沉淀剂,利用直接沉淀法制备纳米N i O 粉。其中原料阴离子可以不同,可以选择NO-3、C l-、SO2-4、C2O2-4等阴离子。以Na OH作沉淀剂,所得沉淀颗粒粒径可达几纳米至几十纳米之间,共存阴离子不同时,可制得球形、片形及针形的产品。但是,用N a OH直接沉淀镍形成的N i(OH)2这一中间产品脱水性差,呈胶状,易吸附溶液中存在的各种杂质离子,因而产品纯度难以提高,在干燥与煅烧过程中容易引起硬团聚,操作麻烦。

1.1.2均相沉淀法

均相沉淀法是指加入的沉淀剂并不立刻与被沉淀组分发生反应,而是通过化学反应使沉淀剂在溶液中缓慢地析出。在沉淀过程中,由于离子的过饱和度在整个溶液中比较均匀,所得沉淀物的颗粒均匀而致密,便于洗涤过滤,制得的产品粒度小、分布窄、团聚少。在均相沉淀法中,由于沉淀剂是通过化学反应缓慢生成的,因此,只要控制好沉淀剂的生成速度,便可以使过饱和度控制在适当的范围内,从而达到控制粒子的生长速度,获得粒度均匀、致密、纯度高的纳米粒子。均相沉淀法还具有原料成本低、工艺简单、操作简便、对设备要求低等优点,能够制备出多种纳米氧化物,在国内受到越来越广泛的关注。目前常用的均相沉淀剂有六次甲基四胺和尿素等。

吴莉莉等人[8]以尿素、硫酸镍为原料,用均相沉淀法制备了直径和长度分别为5~15nm和250 ~350nm多晶N i O纳米线。

1.1.3配位沉淀法

配位沉淀法的原理是采用容易通过热分解去除的多齿配合物,如柠檬酸为分散剂,通过配合物与不同离子的配合作用得到高度分散的前驱体,最后再通过热分解的方法去除有机配体得到纳米氧化物。

邓建成等人[9]以N i(NO3)2#6H2O、NH4HCO3、氨水和聚乙二醇-400为原料,采用配位均相沉淀法成功地制备出了粒径5~12nm的颗粒状和长度100~200nm、直径10~25nm针形的N i O。两种不同形貌的N i O均属于立方晶系,颗粒状N i O比针形N i O具有更好的电化学性能和更高的比电容。

1.2溶胶)凝胶法

溶胶)凝胶法是制备纳米氧化物最常用的方法之一,其基本方法是将金属醇盐置于一定的水解体系中使醇盐水解,聚合形成溶胶,溶胶陈化转变为凝胶,经过高温煅烧制得氧化物纳米粉末。也可在真空状态下低温干燥,得到疏松的干凝胶,再进行高温煅烧处理。该法的特点是在合成初期就对其进行控制,均匀性可达到分子级水平,制备的氧化物粉末粒度小,且粒度分布窄。但是由于该方法原料价格高,有机溶剂的毒性以及在高温下进行热处理时会使颗粒快速团聚,不适宜工业化大生产。

赵胜利等人[10]以醋酸镍、乙醇、柠檬酸为原料,在一定温度下合成了稳定的溶胶和凝胶,对凝胶在400e下进行热处理2h,获得了平均粒径为40nm 的N i O,此纳米N i O的首次和第10次充放电比容量分别高达850mA#h/g和471mA#h/g,具有良好的容量保持率。

1.3固相法

固相化学反应是新发展起来的研究领域,因其具有无溶剂、选择性强、产率高、能耗低、操作简单等优点而被广泛用于合成化学。

李生英等人[11]利用低温N i(NO3)2#6H2O与Na OH为原料,经固相反应先获得N i(OH)2前驱体,然后焙烧前驱体制备出平均粒径仅5nm的球形六方晶型N i O粉。

1.4微乳液法

微乳液法是近些年来才发展起来的一种制备纳米微粒的有效方法。它是将两种反应物分别溶于组成完全相同的两份微乳中,然后在一定条件下使其混合并发生反应。反应产物经超速离心,用有机溶剂除去附着在表面的油和表面活性剂,然后经干燥处理,即可得到纳米微粒的固体样品。

代镇亚等人[12]采用该方法制备了表面包裹表面活性剂AOT的氢氧化镍纳米微粒,热处理后得到分散性很好且粒径大约为20nm的N i O粉。

1.5超声波分解法

随着超声波在化学制粉工业中的普遍应用,

#

12

#江西冶金2010年10月

S top ic S等人[13]用超声波热分解N i C l2水溶液,当热解温度从973K变到1373K,即可获得无团聚的纳米球形N i O,并且N i O颗粒的粒径可通过热解温度和反应物的初始浓度来控制。

1.6熔盐法

龚良玉等人[14]通过聚乙二醇表面活性剂辅助低热固相反应首先制备了薄片状N i(OH)2前驱体,再将所得前驱体置于马弗炉中于KNO3熔盐存在的条件下,600e热分解5h得到平均粒径约60nm的立方相N i O片。

1.7其他方法

李秀艳等人利用微波法合成了粒径为10~40 n m的N i O;龚良玉等人[15]采用棉花纤维辅助法合成了60nm左右的球形N i O;袁艳林等人[16]利用静电纺丝法获得了20nm左右的N i O颗粒等。

2结语

纳米N i O粉体将会使其在催化剂、电极、陶瓷、气敏元件及其他功能材料方面的应用领域不断扩大和优化。因此,如何利用廉价的试剂,通过简单易行的工艺制备出纳米N i O粉体并扩大其应用领域,是当今面临的一项重要任务。

[参考文献]

[1]Yanp i ng W ang,J unw u Zhu,Xu ji e Yang,et a.l Preparation of N i O

n anoparticle and t heir cat alytic acti vity i n the t h er m al decompos-i

ti on of a mm on i um p erc h lorat e[J].Ther m ochm ica A ct a,2005,437

(1-2):106-109.

[2]H otovy I,Hu ran J,S icili ano P,et a.l E nh ance m en t of H2sens i ng

p roperties of N i O bases thin fil m s w ith a Pt s u rf ace mod i fi cati on

[J].Sen s.A ctuat ors B,2004,103(1-2):300-311.

[3]Gu Zheng,H ohn Keit h L.Catal yti c oxi d ati on ofm et han ol on nan-

oscal e copper ox i de and n i ckel ox i de[J].Ind.Eng.Che m.Res.,

2004,43(1):30-35.

[4]Zhang Fei bao,Zhou Y i ngke,L iH u li n.Nanocrystalli ne N i O as an e-

l ectrode m at eri als for el ectroche m i cal capaci tor[J].M ater.Che m.

Phys.,2004,83(2-3):260-264.

[5]M agnus B orgstrom,E rro l B lart,Gerrit Bosch l oo,et a.l Sen siti zed

ho l e i n j ecti on ofphosphorus porphyri n i n t o N i O:to w ard ne w photo-

voltai c devi ces[J].J.Phys.Che m.B,2005,109(48):22928-

22934.

[6]桑林.纳米氢氧化镍与氧化镍的制备及其电容性能研究

[D].天津:天津大学,2007.

[7]Zhang F B,Zhou Y K,L iH L.Nanocrys t alli ne N i O as an el ectrode

m ateri al f or electroche m i ca l capacitor[J].M ater.Che m.Phys.,

2004,83(2-3):260-264.

[8]吴莉莉,吕伟,吴佑实,等.均相沉淀法制备氧化镍纳米线

[J].中国有色金属学报,2005,15(1):61-65.

[9]邓建成,邓晶晶,刘博,等.不同形貌纳米氧化镍的制备及其

电容特性研究[J].湘潭大学自然科学学报,2009,31(1):47-

52.

[10]赵胜利,文九巴,王红康,等.N i O纳米晶的制备和电化学性能

[J].材料研究学报,2008,22(4):415-419.

[11]李生英,高锦华,杨武,等.固相合成纳米N i O微粒[J].西

北师范大学学报(自然科学版),2003,39(1):46-48.

[12]代镇亚,胡天斗,郭林,等.表面活性剂修饰的纳米氧化镍

的EXAFS研究[J].中国科学技术大学学报,2000,30:18-

21.

[13]Stop ic S,Iiic I,U s kokovic D.S truct u ral and m orphol ogical tran s-

for mati on s duri ng N i O and N i particl es gen erati on fro m chlo-

ri d eprecurs or by u ltras on ic spray pyrol ysis[J].M ater.L ett.,

1995,24(6):369-376.

[14]龚良玉,曹艳霞,曲宝涵,等.熔盐辅助固相反应合成N i O纳

米片[J].应用化工,2008,37(6):648-650.

[15]龚良玉,张君涛,曹艳霞,等.棉花纤维辅助合成纳米氧化镍

及其电容性能[J].无机盐工业,2009,41(7):15-17.

[16]袁艳林,王志文,于金山,等.纳米氧化镍纤维的制备及表征

[J].东北电力大学学报,2009,29(2):29-31.

(上接第7页)菱锰矿资源有较好的技术可行性,盐酸、硫酸的浸出可以分别制备得到氯化锰和硫酸锰浸出液,通过后续的净化、浓缩结晶等工艺可以制得相应的锰盐产品,为解决低品位锰矿资源的利用问题提供了一个好的思路。

[参考文献]

[1]周志明,苏文征,李坤.由富锰渣制备无水氯化锰的工艺探

索[J].无机盐工业,2003(3):50-52.

[2]韩阳,陈思学,姚文溪,尚新华.菱锰矿硫酸浸取试验的研究

[J].矿业快报,2007(2):32-33.

[3]汪锦瑞,方刚,杨浙云.富锰渣制备工业硫酸锰的工艺研究

[J].中国锰业,2008(11):24-26.

[4]张碧泉,卢兆忠,陈安.以富锰渣为原料制备氯化锰溶液

[J].中国锰业,2000(1):30-32.

#

13

#

第30卷第5期傅小明,印涛:纳米氧化镍的化学法制备技术及研究现状

(完整版)氧化镍和氮化镍纳米颗粒的制备毕业设计

毕业论文 题目氧化镍和氮化镍纳米颗粒的制备学院化学化工学院 专业化学工程与工艺 班级 学生 学号 指导教师 二〇一五年月日

摘要 纳米氧化镍、氮化镍在电磁学、催化等方面具有高活性、高选择性等一系列优异的性质,被广泛应用于磁性材料领域、气体传感领域、燃料电池领域和催化领域,是比较有前景的功能性无机材料。本文一方面探索直接利用液相法制备氧化镍,以克服传统的两步法制备氧化镍----先制备前躯体再通过高温热处理----的缺点;另一方面,也对纳米氮化镍的制备进行了初步探索。实验以硫酸镍和氯化镍两种镍盐为镍源,以蒸馏水和无水乙醇为溶剂,探索了反应时间、温度、有无沉淀剂和表面活性剂对产物的影响。所制备的产物通过X射线衍射(XRD)、紫外可见吸收光谱(UV-vis)等手段进行了表征,并进一步对所获得的数据进行了分析。 关键词:纳米氧化镍;一步溶剂热法;氮化镍

ABSTRACT Because of the highly active, high selectivity and a series of excellent properties of the nano nickel oxide and nano nickel nitride in electromagnetics, chemistry, so widely applied in the field of magnetic materials, gas sensing and catalysis, fuel cell areas, is a more promising functional inorganic material. In this paper, on the one hand, explore direct nickel oxide prepared by liquid phase method, to overcome the shortcomings of the traditional two-step preparation of nickel oxide: Preparation before the body first, then through the high temperature heat treatment. On the other hand, for the preparation of nanometer nickel nitride has carried on the preliminary exploration. Experiment with nickel sulfate and nickel chloride as the source of nickel, with distilled water and anhydrous ethanol as solvent, to explore the reaction time, temperature, presence of precipitant and the influence of surfactants on product. The preparation of the product by X-ray diffraction (XRD), UV-vis absorption spectra have been characterized, and further analyses the data obtained. Keywords:nickel oxide; one step solvothermal; nitride nickel

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

纳米氧化镍的制备及性能表征

晋中学院 本科毕业论文(设计) 题目超细纳米氧化镍的制备及性能 表征 院系化学化工学院 专业化学 姓名肖海宏 学号1309111134 学习年限2013年10月至2017年7月 指导教师吕秀清副教授 申请学位理学学士学位 2017年 4 月 10 日

超细纳米氧化镍的制备及研究性能 学生姓名:肖海宏指导教师:吕秀清 摘要:随着纳米技术和纳米材料的不断发展,纳米氧化物的研究已经达到了一定的水平。就电学和催化两方面而言,纳米氧化镍就具有非常好的性能,并且应用较为广泛,比如应用于制备催化剂的原材料,电池的电极,在材料学、化学化工领域中生产超级传感器、电容器等,在陶瓷方面用于添加剂和染色剂等。就本文的内容而言,主要针对纳米氧化镍的制备方法的进行分析探讨以及通过采用均匀沉淀法制备纳米氧化镍晶粒并使用TEM、XRD等仪器进行性能表征。 关键字:超细纳米氧化镍应用制备性能表征

Preparation And Characterization of Superfine NiO Nanometer Author’s Name: Xiao Haihong Tutor:Lv Xiuqing ABSTRACT:With the continuous development of nanotechnology and nanomaterials, nano-oxide research has reached a certain level. In terms of electrical and catalytic aspects, nano-nickel oxide has a very good performance, and the application is more extensive, such as the preparation of the catalyst for the preparation of raw materials, battery electrodes, in the field of materials, chemical and chemical production of super sensors, capacitors, etc. , In the ceramic for additives and stains and so on. In this paper, the preparation method of nano-nickel oxide was studied and the nano-nickel oxide grains were prepared by uniform precipitation method and characterized by TEM and XRD. KEYWORDS:Superfine NiO Application Preparation Performance characterizati

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

纳米氧化锡的研究进展

纳米氧化锡的用途及研究进展 付高辉0909404018 高分子材料与工程 1 前言 氧化锡是一种宽带系半导体材料,带宽范围为 3.6~4.0 eV。它用途广泛,在有机合成中,可用作催化剂。在陶瓷工业中,可作为釉料和搪瓷乳浊剂。由于小尺寸效应及表面效应,纳米氧化锡具有特殊的光电性能、气敏性能、催化性能以及具有化学和机械稳定性,在气敏元件、半导体元件、电极材料、液晶显示器、保护性涂层及太阳能电池等方面有着潜在的应用。是一种重要的半导体金属氧化物功能材料。 鉴于纳米材料的表面原子数与体相原子数之比随颗粒尺寸的减小而急剧增大,从而显示出体积效应、量子尺寸效应、表面效应和宏观量子隧道效应,在光、电、磁、力、化学等方面呈现出一系列独特的性质,人们自然致力研究SnO 纳米 2 材料的制备。[1-3 ] 2 纳米氧化锡的性质 2.1 化学稳定性 纳米氧化锡材料因其也为惰性金属氧化物,不易发生化学反应。因此在好多反应中都保持了自己的性质,这为开发多功能的新型材料提供了保证。 2.2 量子尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射 周边性的边界条件将被破坏,导致声、深度等物理尺寸相当或更小时,纳米SnO 2 光、电、磁、热、力学等性质呈现出新的小尺寸效应。利用这些小尺寸效应,在使用技术方面开辟了一些新的领域。 2.3 宏观量子隧道效应 宏观量子隧道效应即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。而纳米SnO 的宏观量 2 子隧道效应为其在微电子器件发面的发展奠定了良好的基础。

纳米氧化镍综述

纳米氧化镍综述 1、氧化镍性质 氧化镍的化学式为NiO,是一种绿色至黑绿色立方晶系粉末,密度为 6.6---6.89/cm3,熔点为1984℃,溶于酸和氨水,不溶于水和碱液。Ni原子周围有6个O原子,O原子周围也有6个Ni原子,他们的配位数均为6。由于多面体的型式主要取决于正负半径比,且Ni2+的半径值为69pm,0的半径值为140pm,正负离子的比值为0.1507,大于O.1414,所以得出氧化镍是八面体配位,也是由于这样的特殊结构成为了氧化镍不导电的主要原因。过渡金属氧化物P型半导体 2、应用 2.1催化剂 乙烷脱氢制乙烯的反应过程中作为催化剂,在甲酸盐分解中的非凡催化作用 2.2纳米NiO在光电材料方面的应用 能产生3.55eV的不连续光带,呈现出很强的原子电致变色特性。以此材料制成的灵巧窗不仅可根据季节的变化改变最佳光,还可以实现对光能控制的智能化;以此材料制成的反光镜用于汽车后视镜,可以根据改变电致变色层的吸收特性达到强光照射下的无炫光效果,已成为美国多数汽车制造商提供的标准配置。 2.3纳米NiO在电池、电极材料方面的应用 普通氧化镍蓄电池放电30min后,其端电压就接近衰竭,而纳米氧化镍蓄电池到了90min以后才出现衰竭,表现出良好的放电性能。产生这一现象的原因是因为这些纳米微粒与导电材料分布于正极活性物质的空隙中,这样既有利于电子电荷的传递,也有利于离子电荷的传递。并且其小尺寸效应增加了活性物质的空隙率和反应的表面积。普通氧化镍蓄电池一开始就表现为较大电流的充电,而纳米氧化镍蓄电池则表现为小电流充电,60min后电流趋于相等,表现出良好的充电性能。因此纳米氧化镍蓄电池具有优良的应用前景。有研究表明颗粒状氧化镍比针形氧化镍具有更好的电化学性能和更高的比电容. 2.4新型光电化学太阳能电池(DSSC)中的应用 为了提高DSSC效率和稳定性,HeJia~un等¨考虑到NiO作为P型半导体具有稳定性和宽带隙等优点而首次将其作为DSSC 中的阴极。 2.5在电化学电容器中的应用 过渡金属氧化物RuO ,IrO等作为电极材料虽具有较大比容,但由于高成本限制了其商品化。LiuXianming等制成的海胆状纳米NiO电极材料具有典型的电容性能,恒流充放电实验证明电极材料比容可达290F/g,循环使用500次以后仍具有217F/g。WangYonggang 等。。利用复制模板SBA一15合成的有序中空结构纳米NiO电容量可达120F/g。还有一种复合材料制作的电池如

纳米材料的制备与表征摘录(打印)

纳米材料的制备与表征方法摘录 作者姓名:彭家仁 单位:五邑大学广东江门 摘要:被誉为“21世纪最有前途的材料”的纳米材料同信息技术和生物技术一样已经成为21世纪社会经济发展的三大支柱之一和战略制高点。由于纳米材料的特殊结构以及所表现出来的特异效应和性能,使得纳米材料具有不同于常规材料的特殊用途。本文就纳米材料的结构特性和性能、应用及制备方法与表征进行了综述。旨在为纳米材料的应用及其制备提供理论指导。 关键词:纳米材料;结构特性;特异效应;应用;制备方法 Methods of Preparation and Characterization of nano-materials Kevin Peng (WUYI University Jiangmen Guangdong) Abstract:The nano-materials known as“the most promising material in the21st century”along with the information technology and the biotechnology has become one of the three pillars of the socio-economic development and the strategic high ground in the21st century.Because of the special structure of the nano-materials,as well as its specific effects and performance,thenano-materials have the special purposes other than the conventional materials. In this paper,we search for the structural properties,specific effect and the performance and the Synthesis and Characterization of nano-materials.The purpose is to provide theoretical guidance for the application and preparation of nano-materials. Keywords:nano-materials;structural properties;specific effect;applications;preparation methods 0前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。

纳米限域研究取得新进展

纳米限域研究取得新进展 分子在纳米孔道限域环境中扩散和反应显示了非常独特的物理化学特性,理论工作者已经进行了大量的计算和模拟。最近,我所包信和研究员带领的“界面和纳米催化”研究组(502组)在自行研制的一套与固体核磁共振仪耦合的动态催化反应系统中,采用激光诱导超极化129Xe技术,首次在模拟催化反应条件下直接观察到了甲醇分子在孔径为0.8nm的CHA分子筛孔道扩散和脱水过程,并精确获得了分子扩散和反应的动力学参数。相关方法和实验结果以研究论文形式(Article)发表在最近一期的《美国化学会志》(J.Am.Chem.Soc.,131(2009)13722-13727),被认为是“一种对纳米孔催化反应研究具有重要意义”的发明。 纳米限域效应在光学、电子器件以及催化反应等领域具有很大的应用前景,分子在纳米限域空间中的吸附和反应动力学一直受到理论和实验研究者的广泛关注。理论研究已经预示,限域在纳米空间中物质将会显示出与自由状态下明显不同的物理化学特性,但是,由于在真实条件下分子的扩散速度很快,而且纳米孔道中分子浓度极低,实验研究需要发展原位-动态和高灵敏的检测手段。该研究组张维萍、包信和研究员和博士研究生徐舒涛等对商用核磁共振“魔角旋转”(Magic Angle)的探头进行改进,自行研制了一套与固体核磁共振仪器相耦合、适合于分子扩散和催化研究的高

温原位-动态研究系统,并将国际上已广泛采用的激光诱导超极化129Xe技术引入动态反应过程的研究,使NMR的检测灵敏度提高了1万多倍,从而使固体核磁采谱时间缩短到10秒以内。将该技术成功用于研究甲醇在CHA纳米分子筛笼内的吸附、扩散和脱水反应过程,首次获得了接近真实反应条件下纳米孔道中活性位在反应过程中的动力学参数,大大加深了对甲醇在分子筛孔道中酸助脱水和转化过程机理的理解和认识。 近年来,该研究组系统地将高灵敏核磁共振技术用于催化反应过程和材料合成过程的原位-动态研究,不断取得重要进展。相关信息: 纳米收音机 纳米科学技术 "纳米"饭,香不? 纳米污染:看不见的子弹

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

硅纳米管的水热法合成与表征

第26卷 第8期2005年8月 半 导 体 学 报 CHIN ESE J OURNAL OF SEMICONDUCTORS Vol.26 No.8 Aug.,2005 3教育部博士点基金资助项目(批准号:20040532014)  裴立宅 男,1977年出生,博士研究生,从事硅及相关纳米材料的研究.Email :lzpei1977@https://www.360docs.net/doc/a08911775.html, 唐元洪 通信联系人,男,1965年出生,教授,博士生导师,从事纳米信息材料的研究.Email :yhtang @https://www.360docs.net/doc/a08911775.html, 2004212214收到,2005201224定稿 Ζ2005中国电子学会 硅纳米管的水热法合成与表征 3 裴立宅 唐元洪 陈扬文 郭 池 张 勇 (湖南大学材料科学与工程学院,长沙 410082) 摘要:采用水热法成功合成了新型的硅纳米管一维纳米材料,并采用透射电子显微镜、选区电子衍射分析、能量色散光谱及高分辨透射电子显微镜对合成的硅纳米管进行了表征.研究表明硅纳米管是一种多壁纳米管,为立方金刚石结构,生长顶端呈半圆形的闭合结构,由内部为数纳米的中空结构,中部为晶面间距约0131nm 的晶体硅壁层,最外层为低于2nm 的无定形二氧化硅等三部分组成.关键词:硅纳米管;水热法;结构;表征 PACC :6146;8160C 中图分类号:TN30411 文献标识码:A 文章编号:025324177(2005)0821562205 1 引言 自从碳纳米管[1]及硅纳米线[2,3]等一维纳米材 料被成功合成后,立刻引起了诸多领域科学家的极大关注与浓厚兴趣,一维纳米材料的研究成为了当今基础和应用研究的热点.碳纳米管能否具有金属或半导体特性取决于纳米管的石墨面碳原子排列的螺旋化方向[4,5],然而到目前为止,还没有人成功制备出金属或半导体碳纳米管,因此虽然碳纳米管作为场效应晶体管(FET )及纳米电子集成电路的研究已有报道[6,7],但是碳纳米管在应用上还有很大的局限性.同时由于硅纳米一维材料与现有硅技术极好的兼容性,使其具有代替碳纳米管的潜力.目前已经采用物理及化学方法成功合成了硅的实心一维纳米材料———硅纳米线[8,9],但是由于元素硅的硅键为sp 3杂化,而不是易于形成管状具有石墨结构的sp 2杂化,所以硅的中空一维纳米材料,硅纳米管难于合成.因此,目前在硅纳米管,尤其是自组生长的硅纳米管的合成方面仍是一个极具挑战性的难题.对硅纳米管模型进行理论研究表明硅纳米管可以稳定存在,同时也发现稳定的硅纳米管结构总是具有 半导体性能[10,11].最近Sha 等人[12]以纳米氧化铝沟道(NCA )为衬底模板,以硅烷为硅源、金属Au 为催化剂,于620℃,1450Pa 时通过化学气相沉积催化生长了直径小于100nm 的硅纳米管;J eong 等人[13]在617×10-8Pa 的真空分子束外延生长(MB E )室中于400℃在氧化铝模板上溅射硅原子或硅团簇,并于600或750℃氧化处理后制备了直径小于100nm 的硅纳米管.虽然目前模板法可以制得硅纳米管,但是此法制备过程较复杂,需要模板及金属催化剂,同时实质上所得硅纳米管是硅原子在模板内壁无序堆积形成的. 水热法是制备纳米粉末的常用方法,对于制备具有一维结构的纳米材料鲜有报道.水热法成功合成了碳纳米丝及碳纳米管[14,15]表明,此法在制备一维纳米材料方面也有极大的应用潜力.水热法具有成本低廉、容易操作控制及可重复性好等特点.本文报道在没有使用催化剂及模板的前提下,采用高压反应釜,在超临界水热条件下合成了自组生长的一维纳米硅管,并用TEM ,EDS ,SA ED 和HR TEM 对其结构及成分进行了表征.这是一种真正意义上的硅纳米管,对于组装纳米器件具有重大的应用与研究意义.

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

纳米氧化镍的制备及性能表征

纳米氧化镍的制备及性能 表征 The Standardization Office was revised on the afternoon of December 13, 2020

晋中学院 本科毕业论文(设计) 题目超细纳米氧化镍的制备及性能 表征 院系化学化工学院 专业化学 姓名肖海宏 学号 34 学习年限2013年10月至2017年7月 指导教师吕秀清副教授 申请学位理学学士学位 2017年 4 月 10 日

超细纳米氧化镍的制备及研究性能 学生姓名:肖海宏指导教师:吕秀清 摘要:随着纳米技术和纳米材料的不断发展,纳米氧化物的研究已经达到了一定的水平。就电学和催化两方面而言,纳米氧化镍就具有非常好的性能,并且应用较为广泛,比如应用于制备催化剂的原材料,电池的电极,在材料学、化学化工领域中生产超级传感器、电容器等,在陶瓷方面用于添加剂和染色剂等。就本文的内容而言,主要针对纳米氧化镍的制备方法的进行分析探讨以及通过采用均匀沉淀法制备纳米氧化镍晶粒并使用TEM、XRD等仪器进行性能表征。 关键字:超细纳米氧化镍应用制备性能表征

Preparation And Characterization of Superfine NiO Nanometer Author’s Name: Xiao Haihong Tutor:Lv Xiuqing ABSTRACT:With the continuous development of nanotechnology and nanomaterials, nano-oxide research has reached a certain level. In terms of electrical and catalytic aspects, nano-nickel oxide has a very good performance, and the application is more extensive, such as the preparation of the catalyst for the preparation of raw materials, battery electrodes, in the field of materials, chemical and chemical production of super sensors, capacitors, etc. , In the ceramic for additives and stains and so on. In this paper, the preparation method of nano-nickel oxide was studied and the nano-nickel oxide grains were prepared by uniform precipitation method and characterized by TEM and XRD. KEYWORDS:Superfine NiO Application Preparation Performance characterizati

碳纳米管复合材料的制备_表征和电化学性能

第11卷 第2期2005年5月 电化学 ELECTROCHE M ISTRY V o.l 11 N o .2M ay 2005 文章编号:1006-3471(2005)02-0152-05 收稿日期:2004-11-02,*通讯联系人T el :(86-592)2185905,E -m a il :qfdong @x m u .edu .cn 973项目(2002CB211800),国家自然科学基金(20373058),福建省科技项目(2003H 044)资助 碳纳米管复合材料的制备、表征和电化学性能 董全峰* ,郑明森,黄镇财,金明钢,詹亚丁,林祖赓 (厦门大学化学系,厦大宝龙电池研究所,固体表面物理化学国家重点实验室,福建厦门361005) 摘要: 作为锂离子电池负极材料,碳纳米管和金属锡或其氧化物都曾引起过人们浓厚的兴趣,但由于其自 身的缺陷,这些材料均未能得到进一步的发展.本文以不同方法合成了碳纳米管和金属锡或其氧化物的复合材料,对其结构、形貌进行表征,并考察它的电化学性能. 关键词: 碳纳米管; 复合材料;制备;电化学性能中图分类号: O 646;T M 911 文献标识码: A 碳纳米管(CNT )是一种新型的碳材料[1,2] .碳纳米管在结构上与其它的碳材料有很大的不同,它不仅具有典型石墨层状结构(管壁),同时又具有无序碳的结构(内外表面的碳层及所附着的无序碳微粒),还具有与MC MB 类似的内腔结构,而且表面及边缘又存在结构缺陷,管与管之间为纳米间隙,管中还存在部分的H 原子掺杂.在制备上,碳纳米管可以通过控制一定的反应条件来调控它的几何结构参数,如管的管壁,外径、内径大小,及管的长度.基于其特殊的结构和高的导电率,吸引了众多研究者开展了大量研究工作,希望它能成为新一代锂离子电池“理想”的负极材料[3,4] . 由于碳纳米管的高比表面及其结构缺陷,锂不仅能嵌入管中的石墨层,还能嵌入它的孔隙及边缘缺陷中,使得它尽管具有高的嵌锂容量,但由于比表面积较大而表现出很大的不可逆容量.又因为在碳纳米管的结构中含有氢原子以及管壁层间和管 腔之内有间隙碳原子的存在[5] ,故其嵌锂容量出现较大的滞后现象.这些都限制了C NT 作为电极活性材料在实际中的应用,所见者只是被用作电极添加剂的报道.本文综合了碳纳米管和锡基材料的优点,规避其本身固有的缺陷,在碳纳米管的表面沉积/包覆锡或氧化锡形成CNT 复合材料,这样不仅可减少碳纳米管的比表面积,同时直接采用金属锡取代锡基氧化物,不存在氧化物的还原过程,从 而大大降低初次充电不可逆容量损失;通过控制反应条件在表面沉积过程中包覆纳米级的锡,使表面沉积/包覆锡的碳纳米管能在保持高容量的同时,也具有良好的循环寿命.此外,还提高了它的体积能量密度. 1 实 验 1.1 碳纳米管的制备 应用Sol -ge l 法制备N i -M g -O 催化剂,方法见文献[6],所用试剂N i (NO 3)2 6H 2O 、M g (NO 3)2 6H 2O 和柠檬酸均为分析纯(上海化学试剂有限公司).将制备好的催化剂称取一定量置于陶瓷舟内,放在反应器的恒温区内,于氢气氛下缓慢升温至700℃,还原一段时间后,降温到600℃稳定10m in ,然后以20m L /m i n 的流量导入C H 4气体,经反应一定时间后自然冷却至室温(冷却过程中继续通气体).用分析纯硝酸(上海化学试剂有限公司,AR 65%)处理反应后的样品,洗涤、烘干后即得到碳纳米管.反应装置是在一个水平放置的管式电炉内放一内径为5c m 的石英管(长140c m ),其恒温区为20c m ,电炉为SK -2-4-12型管式电阻炉(上海实验电炉厂),额定功率4k W ,额定温度1200℃,控温装置为A1-708P A 型程序控温仪(厦门宇光电子技术研究所),流量计为D08-4C /Z M 质量流量控制仪(北京建中机器厂).

纳米材料的制备以及表征教学总结

纳米材料的制备以及表征 纳米科技作为21世纪的主导科学技术,将会给人类带来一场前所未有的新的工业革命。纳米科技使我们人类认识和改造物质世界的手段和能力延伸到原子和分子。纳米材料是目前材料科学研究的一个热点,纳米材料是纳米技术应用的基础。科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。 低维纳米材料因其具有独特的物理化学特性以及在各个同领域的广泛应用 而受到国内外许多科研小组的广泛关注。钒氧化物纳米材料因为具有良好的催化性能、传感特性及电子传导特性而成为研究低维纳米材料物理化学现象的理想体系。尤其是对钒氧化合物纳米线、纳米带、纳米管的结构与性能的研究日益深入。另外,稀土正硼酸盐纳米材料因其独特的发光性能、电磁性能引起了广大科研小组的浓厚兴趣,是低维纳米材料领域研究的一个热点内容。 1.绪论 1.1纳米材料的发展概况 早在60年代,东京大学的久保良吾(Kubo)就提出了有名的“Kubo效应”, 认为金属超微粒子中的电子数较少,而不遵守Femri统计,并证实当结构单元变得比与其特性有关的临界长度还小时,其特性就会发生相应的变化。70年代末80年代初,随着干净的超微粒子的制取及研究,“Kubo效应”理论日趋完善, 为日后纳米技术理论研究打下了基础。人们对纳米颗粒的结构、形态和特性进行了比较系统的研究,描述金属微粒费密面附近电子能级状态的久保理论日趋完善,并且用量子尺寸效应成功地解释了超微粒子的某些特性[3]。最早使用纳米颗粒 制备三维块体试样的是德国萨尔兰大学教授H.Gletier,他于1984年用惰性气体蒸发、原位加压法制备了具有清洁表面的纳米晶Pd、cu、Fe等[4],并从理论及性能上全面研究了相关材料的试样,提出了纳米晶材料的概念,成为纳米材料的创始者。1987年美国Argon实验室sigeel博士课题组用相同方法制备了纳米陶 瓷TIOZ多晶体。纳米技术在80年代末和90年代初得到了长足发展,并逐步成为一个纳米技术体系。1990年7月,第一届国际纳米科技会议在美国巴尔的摩 召开,标志着纳米科学技术的正式诞生;正式提出了纳米材料学、纳米生物学、

纳米材料的测试与表征

报告 课程名称纳米科学与技术专业班级电气1241 姓名张伟 学号32 电气与信息学院 和谐勤奋求是创新

纳米材料的测试与表征 摘要:介绍了纳米材料的特性及测试与表征。综合使用各种不同的分析和表征方法,可对纳米材料的结构和性能进行有效研究。 关键词:测试技术;表征方法;纳米材料 引言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米材料的化学组成及其结构是决定其性能和应用的关键因素,而要探讨纳米材料的结构与性能之间的关系,就必须对其在原子尺度和纳米尺度上进行表征。其重要的微观特征包括:晶粒尺寸及其分布和形貌、晶界及相界面的本质和形貌、晶体的完整性和晶间缺陷的性质、跨晶粒和跨晶界的成分分布、微晶及晶界中杂质的剖析等。如果是层状纳米结构,则要表征的重要特征还有:界面的厚度和凝聚力、跨面的成分分布、缺陷的性质等。总之,通过对纳米材料的结构特性的研究,可为解释材料结构与性能的关系提供实验依据。 纳米材料尺度的测量包括:纳米粒子的粒径、形貌、分散状况以及物相和晶体结构的测量;纳米线、纳米管的直径、长度以及端面结构的测量和纳米薄膜厚度、纳米尺度的多层膜的层厚度的测量等。适合纳米材料尺度测量与性能表征的仪器主要有:电子显微镜、场离子显微镜、扫描探测显微镜Χ光衍射仪和激光粒径仪等。 紫外和可见光谱是纳米材料谱学分析的基本手段,分为吸收光谱、发射光谱和荧光光谱。吸收光谱主要用于监测胶体纳米微粒形成过程;发射光谱主要用于对纳米半导体发光性质的表征,荧光光谱则主要用来对纳米材料特别是纳米发光材料的荧光性质进行表征。红外和喇曼光谱的强度分别依赖于振动分子的偶极矩变化和极化率的变化,因而,可用于揭示纳米材料中的空位、间隙原子、位错、晶界和相界等方面的信息。纳米材料中的晶界结构比较复杂,与材料的成分、键合类型、制备方法、成型条件以及热处理过程等因素均有密切的关系。喇曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的喇曼频移。喇曼频率特征可提供有价值的结构信息,利用喇曼光谱可以对纳米材料进行分子结构、键态特征分析和定性鉴定等。喇曼光谱具有灵敏度高、不破坏样品、方便快速等优点,是研究纳米材料,特别是低维纳米材料的首选方法。 目前对纳米微观结构的分析表征手段主要有扫描探针显微技术,它包括扫描隧道电子显微镜、原子力显微镜、近场光学显微镜等。利用探针与样品的不同相互作用,在纳米级至原子级水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质。例如用STM不仅可以观察到纳米材料表面的原子或电子结构,还可以观察表面存在的原子台阶、平台、坑、丘等结构缺陷。高分辨电子显微镜用来观察位错、孪晶、晶界、位错网络等缺陷,核磁共振技术可以用来研究氧缺位的分布、原子的配位情况、运动过程以及电子密度的变化;用核磁共振技术可以研究未成键电子数、悬挂键的类型、数量以及键的结构特征等。 测试技术的发展 纳米测试技术的研究大致分为三个方面:一是创造新的纳米测量技术,建立新理论、新方法;二是对现有纳米测量技术进行改造、升级、完善,使它们能适应纳米测量的需要;三是多种不同的纳米测量技术有机结合、取长补短,使之能适应纳米科学技术研究的需要。纳米测试技术是多种技术的综合,如何将测试技术与控制技术相融合,将探测、定位、测量、控制、信号处理等系统结合在一起构成一个大系统,开发、设计、制造出实用新型的纳米测量系统,是亟待解决的问题,也是今后发展的方向。随着纳米材料科学的发展和纳米制备技术的进步,将需要更新的测试技术和手段来表征、评价纳米粒子的粒径、形貌、分散和团聚

相关文档
最新文档