圆线圈磁场的测绘[1]

圆线圈磁场的测绘[1]
圆线圈磁场的测绘[1]

圆线圈磁场的测绘

小的通电线圈称磁偶极子,是研究磁场性质的有用工具,是磁学中典型的物理模型。通常用以提供磁场的螺线管也就是多个线圈磁场叠加,各种形状线圈在磁场中的受力都基于磁偶极子受磁力矩的原理及特点来研究,因而研究圈线圈磁场分布有重要的实际意义。

磁场和以磁场为基础的器件、仪器被广泛用于科学研究和工业的各种部门,许多现代技术如宇宙航行、高能加速器、计算机、核磁共振、超导、生物医学、地磁学等,都与磁场测量有关联。

实验目的

1、研究载流线圈轴线上磁场的分布,加深对毕奥—萨伐尔定律的理解;

2、掌握感应法测磁场的原理和方法;

3、考察亥姆霍兹线圈的磁场均匀区,验证磁场叠加原理。

实验仪器

亥姆霍兹线圈,低频信号发生器,MF-20型万用表,探测线圈,直角坐标纸等。

实验原理

一、载流圆线圈轴线上的磁场分布

设圆线圈半径为R,匝数为N,在同电流I时,线圈轴线上一点P的磁感应强度B等于

(1)

式中为真空磁导率,x为P点坐标,原点在线圈中心。

二、亥姆霍兹线圈轴线上的磁场分布

亥姆霍兹线圈是由一对半径R、匝数N均相同的圆线圈组成,两线圈平行共轴、半径R 和匝数N均相等,线圈间距离正好为半径R。取二线圈连线的中心为坐标原点O,则当给二线圈通以同方向、等大小的电流I时,它们对轴线上任一点P产生的磁场方向将一致,P 点的磁场为两线圈分别在该处产生的磁场的叠加,大小为

(2)在处

(3)

在和处,Bx的相对差异约为0.012%,因此,在原点O附近的磁场非常均

匀。

三、磁场的测量

磁感应强度是一个矢量,对它的测量既要测大小,又要测方向。测磁场的方法很多,在此实验中是用试探线圈去测交变磁场。

如图1所示:给一圆线圈(在此使用亥姆霍兹线圈的一支)通以某一频率的正弦交流电。

将探测线圈接到晶体管万用表的交流毫伏档。用交流毫伏表测量磁感应强度时,显示值U 为磁感应强度的有效值,轴线上任一点x处测得的U值与圆线圈中心x=0处测得的U0之比

有如下关系

(4)

说明式子(1)是正确的。

磁场的方向如何来确定呢?磁场的方向本来可用毫伏表读数最大值时所对应的试探线圈法线方向来表示,但是磁通量的变化率小,因此测量方向的误差较大,当试探线圈转过90度时,磁场方向与探测线圈法线方向垂直,得变化量最大,故误差较小。所以利用毫伏表读数的最小值来确定磁场的方向。

四、利用亥姆霍兹线圈验证磁感应强度B的矢量叠加原理

根据矢量叠加原理,空间中任一点P的磁场由A线圈单独在P处产生的磁场BmA和B 线圈单独在P处产生的磁场BmB的叠加,设BmA与x轴夹角为,BmB与x轴夹角为,合磁场Bm(A+B)与x轴夹角为,如图2所示。

由于探测线圈测得的电动势U与Bm成正比,因此有以下关系式

(5)

(6)

如果测得的U A、U B、、和U A+B、之间满足以上二式的关系,则可认为磁感应强度B为矢量。

实验内容

1.测量载流圆线圈的磁场沿轴线的分布

将坐标纸恰当剪裁后固定在亥姆霍兹线圈箱面上。

按图1接线,信号频率取1.00kHZ,电流I取适当值。将探测线圈接到晶体管万用表的交流毫伏档。从OA开始,沿轴线方向每隔1.00cm用探测线圈测一下U及磁场方向,在

轴线方向取12~15个测量点,作曲线和曲线并进行比较。

2.圆线圈周围磁力线的描绘

(1)在探测线圈的底座上有两个小孔,这两个小孔的连线方向正好与探测线圈的法线方向垂直,用定位针穿过小孔就可在坐标纸上确定出线圈的位置。

(2)将定位针插在探测线圈的一个小孔中确定一个测量的起始点,将探测线圈绕着定位针缓慢转动,找出毫伏表示数最小的位置,保持这个位置,拔出定位针,插入另一小孔中。重复上述操作,便可在坐标纸上画出一系列连续的探测点。

(3)将坐标纸上的小孔的位置依次连成光滑的曲线,即成一条磁力线。

要求在1/4象限内测画三条磁力线,线间分布尽量均匀并能覆盖1/4图纸平面。

3.验证磁场的叠加原理

选择亥姆霍兹线圈的中心点作为坐标原点,在x、y轴上和x、y平面,分别取一至二个考察点,先测出A、B线圈磁场的大小和方向,再测出A、B串联后的磁场大小和方向(两种情况下要保持线圈中的电流相同),逐点验证叠加原理。

4.描绘亥姆霍兹线圈中心附近的匀强区。

调节音频振荡器的输出电压,使亥姆霍兹线圈中心处最大的感应电压为10.0mV,描绘亥姆霍兹线圈中心附近、最大感应电压在(10.0±0.1)mV范围内的区域,即偏差不超过1%的均匀区。

注意事项

1.探测线圈的导线易折断,使用时要特别当心,避免只朝一个方向转动。

2实验结束后,将MF-20万用表拨至流档,以切断其内部的直流电源。

讨论题

1.测磁感应强度分布时,有无必要测磁感应强度的方向?

2.测磁力线时,是测定磁感应强度的方向,还是其大小?

3.如何用简单的实验方法判断亥姆霍兹线圈的两线圈是同向串联的?

圆线圈与亥姆霍兹线圈轴线上磁场的测量

圆线圈与亥姆霍兹线圈轴线上磁场的测量 加灰色底纹部分是预习报告必写部分 圆线圈和亥姆霍兹线圈磁场描绘是一般综合性大学和工科院校物理实验教学大纲中重要实验之一。通过该实验可以使学生学习并掌握对弱磁场的测量方法,验证磁场的迭加原理,按教学要求描绘出磁场的分布图。本实验仪器选用先进的玻莫合金磁阻传感器,测量圆线圈和亥姆霍兹线圈磁场。该传感器与传统使用的探测线圈、霍尔传感器相比,具有灵敏度高、抗干扰性强、可靠性好及便于安装等诸多优点,可用于实验者深入研究弱磁场和地球磁场等,是描绘磁场分布的最佳升级换代产品。 【实验目的】 1. 了解和掌握用一种新型高灵敏度的磁阻传感器测定磁场分布的原理; 2. 测量和描绘圆线圈和亥姆霍兹线圈轴线上的磁场分布,验证毕—萨定理; 【实验仪器】 1.516FB 型磁阻传感器法磁场描绘仪(见图5)套(共2件): 2.仪器技术参数: ① 线圈有效半径:cm 0.10R =,单线圈匝数: 匝100N =; ② 数显式恒流源输出电流:mA 0.199~0连续可调;稳定度为字1%2.0±; ③ 数显式特斯拉计:μT 1 ,μT 1999~0 2 ,μT 1.0 ,μT 9.199~0 1分辨率量程分辨率量程; ④ 测试平台:mm 160300?; ⑤ 交流市电输入: Hz 50 %,10V 220AC ±。 【实验原理】 1. 磁阻效应与磁阻传感器: 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

杜海龙 21102019 计算电流线圈产生的磁场

求截面为矩形的圆线圈周围产生的磁场 一、数值方法 (一)数学模型:所研究的电流圆线圈产生磁场的问题在柱坐标系下研究, 根据磁场强度跟矢势之间的关系,得到磁场; 磁场为B ,矢势为A B A =?? r r z z A A e A e A e θθ=++ A e θθ= (,)A r z e θθ= (由A 具有轴对称得到) 所以B A =?? A e θθ=?? 在柱坐标系中,由公式1()()11()()r r z z z r r z r z f f e f e f e f f f r z f f f z r f f rf r r r θθθ θθθθ ?=++??????=-?????????=-?????? ???=-???? -得 B A =?? 1()r z f e rf e z r r θθ?? =-+?? 即r A B z θ ?=-?,1()z B rA r r θ? =? (1)先求矢势A 4L Idl A r μπ=? 一个电流为I ,半径为a 的线圆环周围空间产生的磁场,其矢势表示为 202220cos (,)42cos Ia A r z d r z a ar πθμ? ?π?=++-? 推广到截面为矩形的圆环线圈中 22 11202220 cos (,)4()2cos R z R z I r A r z d dz dr s r z z r r r πθμ? ?π?'''='''+-+-??? 其中S 为矩形截面的面积,12,R R 为矩形截面的两边距圆环中心的距离,12,z z 为矩形截面的上下面的z 轴坐标。 (二)数值模型离散化(均匀网格有限差分) (1)高斯方法计算三重积分(参考书:徐士良常用算法程序集第二版)

利用MATLAB分析圆环电流的磁场分布解读

第 29卷第 1期 V ol 129 N o 11 长春师范学院学报 (自然科学版 Journal of Changchun N ormal University (Natural Science 2010年 2月 Feb. 2010 利用 MAT LAB 分析圆环电流的磁场分布 王玉梅 , 孙庆龙 (陕西理工学院物理系 , 陕西汉中 723003 [摘要 ]根据毕奥—萨伐尔定律推导出圆环电流磁场分布的积分表示 , 利用M AT LAB 的符号积分给 出计算结果 , 并绘制磁场分布的三维曲线。在数值结果中选取一些代表点讨论磁场的分布规律。 [关键词 ]圆环电流 ; 磁场 ; M AT LAB ; 符号积分 ; 三维绘图 [中图分类号 ]O4-39 [文献标识码 ]A []--04 [收稿日期 ]2009-08-18 [作者简介 ]王玉梅 (1975- , 女 , 山西芮城人 , 陕西理工学院物理系讲师 , 从事大学物理教学与研究。 毕奥— , 强度。 , 可以计算任意形状的电流所产生的磁场。 , 利用 MAT LAB 软件进行计算 , 并绘制磁场分布的三维曲线 , 最后对结果进行讨论 1圆环电流在空间任一点的磁场分布

图 1圆环电流磁场分析用图 如图 1所示 , 根据毕奥—萨伐尔定律 , 任一电流元 Id l _ 在 P 点产生 的磁感应强度 d B _ =μ4π_ ×e _ r 2 , [1]其中 r _和r _′ 分别为 P 点相对于坐标 原点和电流元 Id l _的位矢, r _″ 为电流元 Id l _ 相对于坐标原点的位矢。 r _′ =r _+r _ ″ , r _′ =x i _ +y j _ +z k _ , r _ ″ =R(cos θi _ +sin θj _ (其中 R 为圆环电流半径 ,

(整理)13怎样计算磁感应强度.

§13 怎样计算磁感应强度 在稳恒磁场中的磁感应强度,可用毕奥-沙伐尔定律和安培环路定律来求解。 毕奥-沙伐尔定律在成块中的地位,好像静电场中的库仑定律一样,是很重要的。它是计算磁感应强度最普遍、最基本的方法。安培环路定律,是毕奥-沙伐尔定律的基础上加上载流导线无限长等条件而推导出来的。困此,用安培环路定律遇到较大的限制。但是,有一些场合,应用安培环路定律往往给我们带来不少方便。 一、用毕奥-沙伐尔定律计算 真空中有一电流元Idl ,在与它相距r 处的地方所产生的磁感应强度dB ,由毕奥-沙伐尔定律决定。 03 (1)4Idl r dB r μπ?= 式中,r 是由电流元Idl 指向求B 点的距离矢量。式(1)是矢量的矢积,故dB 垂直于dl 与r 组成的平面,而且服从右手螺旋法则。真空的磁导率7 0410/H m μπ-=?。 B 是一个可叠加的物理量,因此,对于一段(弯曲的或直的)载流导线L 所产生的B 磁感 应强度为: 03 (2)4L Idl r B r μπ?= ? 1、 基本题例 在磁场的计算中,许多习题是载流直导线和圆弧导线不同组合而成的。因此,必须熟练掌握一段载流的长直导线和一段载流的圆弧导线的磁场的计算公式。 图2-13-1所示为一段长直载流导线,它的磁感应强度的计算公式为: ()0 12cos cos 4B a μθθπ= - 或: ()0 21cos cos 4B a μββπ= - 当载流直导线“无限长”时,02I B a μπ= ;

半无限长时,04I B a μπ= 运用时,应注意a 是求B 点到载流导线的垂直距离;辨认θ与β的正负,请辨认图2-13-2中的θ,β的正负。 一段载流圆弧,半径为R ,在圆心O 点的磁感应强度为: 004I B R μθ π= 方向由右手螺旋法则决定。 当2 π θ= 时, 002I B R μ= 当θπ=时, 004I B R μ= 2、 组合题例 [例1]已知如图2-13-3所示,求P 点的磁感应强度。 [解法一]由图可见,此载流导线由两根半无限长载流导线和一个半圆弧组成。 两根半无限长的载流导线在P 点产生的磁感应强度为: 011222P I B R μπ=? 载流半圆弧在P 点产生的磁感应强度为发: 0222P I B R μ=? 故总的磁感应强度: ()01224P P P I B B B R μππ=+= + [解法二]图示载流导线也可以看成两根无限长 载流导线和一个载流圆环组成(如图2-13-3)。将所得结果除以2,即为题设答案。 两根无限长载流导线和一个载流圆环在P 点所

圆线圈和亥姆霍兹线圈的磁场

圆线圈和亥姆霍兹线圈的磁场 磁场测量是磁测量中最基本的容,最常用的测量方法有三种;感应法、核磁共振法和霍尔效应法。本实验要求学生用霍尔效应法测量载流亥姆霍兹线圈的磁感应强度沿轴线的分布。 〔实验目的〕 1.掌握弱磁场测量原理及如何用集成霍尔传感器测量磁场的方法。 2.验证磁场迭加原理。 3.学习亥姆霍兹线圈产生均匀磁场的特性。 〔实验原理〕 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图3.14.1所示。 根据毕奥-萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R R B ?+?= 2 /322 2 0) (2μ (3.14.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.14.2) 轴线外的磁场分布情况较复杂,这里简略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.14.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B '为 3/23/22222201222R R B N I R R x R x μ--????????????'=???++++-?????? ? ????????????????? (3.14.3) 在亥姆霍兹线圈轴线上中心O 处磁感应 强度大小'0B 为 003/2 85N I B R μ??'= (3.14.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴线上任一点的磁感应强度大小B ''为 3/23/22222201222d d B N I R R x R x μ--????????????''=???++++-?????? ? ????????????????? (3.14.5) 四、霍尔传感器 1.霍尔传感器

矩形激励线圈的分析

矩形激励线圈的分析 摘要:本文由毕奥?D莎伐定律出发,首先讨论了由一定长度的线电流源和矩形环流源的磁感应强度分布,然后在此基础上,详尽的论述了基于体电流源的矩形线圈产生的磁场分布。 一、引言 载流线圈是大量电工设备中不可缺少的装置,是科学研究和工程问题中最常用的一种磁体,在线圈磁体的设计与研制中,常需要计算线圈的磁场分布。由于工程实际需要和研究问题方便,人们对轴对称线圈进行了大量而广泛的研究,取得了大量成果。在科学研究和工程设计中,矩形线圈的应用也是相当广泛的,但人们对矩形线圈的研究却很少,仅研究了长方形载流导体的磁场计算问题,而未真正涉及矩形线圈的磁场计算。 为了实现对弱磁场或者对不均匀磁场的测量,都需要一个激励源,以产生在一定体积范围内具有一定磁场强度(一般为几个nT到0.1mT)的匀强磁场。在实际运用中,用于产生匀强的装置很多,如螺线管、Helmholtz线圈、矩形线圈等,在本文设计的无损检测系统采用的是矩形线圈,本文将对矩形线圈产生匀强磁场的原理及计算方法进行详尽的分析。 二、具有一定长度带电直导线的磁场计算 根据毕奥?D莎伐定律,空间线电流源产生的磁场强度为:(1)式中: B?D空间点的磁感应强度,其方向垂直于直导线与空间点构成的平面; ?D真空导磁率(4p′10-7T×m/A); I?D导线的电流强度; l?D导线长度; R?D源点到场点的距离; eR?DR方向的单位矢量。 为了计算具有一定长度的电流源在其周围产生的磁场,建立如图1坐标系,并用毕奥?D 莎伐定律的积分形式:(2)

电流的方向为Ii (x方向),场点坐标为P(0,0,Z)=Zk,而导线上的点可以表述为 (x,Y,0)=xi+Yj,则有带入上式,利用计算可得: (3) (4) (5) (6) 对于一般的情况而言: ?D该空间点到带电导线的垂直距离,即|PQ|,; a?D导线底端到该空间点在导线上投影间的距离,即|QA|; b?D导线顶端到该空间点在导线上投影间的距离,即|QB|; Y?D 在XOY平面的投影,即|OQ|; Z?D 在XOZ平面的投影,即|OP|。这样空间点与其在导线和XOY平面的投影点构成一直角三角形DPOQ。

第九节 磁场对载流线圈的作用

10-7 磁场对载流线圈的作用 一、磁场作用于载流线圈的磁力矩 下面用安培定律来研究磁场对载流线圈的作用。 如下图所示,在磁感强度为B 的均匀磁场中,有一刚性矩形载流线圈MNOP ,它的边长分别为1l 和2l ,电流为I ,流向自M P O N M →→→→,设线圈平面的单位正法向矢量n e 的方 向与磁感强度B 方向之间的夹角为θ,即线圈平面与B 之间夹角为φ() 2/π=+θφ,并且MN 边及OP 边均 与B 垂直。 由安培定律知磁场对导线NO 段和PM 般作用力大小相等,方向相反,并且在同一直线上,所以对整个线圈来讲,它们的合力及合力矩都为零。导线MN 和OP 段受磁场力大小则分别为 21BIl F = 2 2BIl F = 这两个力大小相等,方向亦相反,但不在同一直线上,对线圈要产生磁力矩φ cos 11l F M =。 由于 θ φ-=2/π,所以 θ φsin cos =,则有 θ θsin sin 1211l BIl l F M ==

或 θsin BIS M =(10-17a ) 式中 2 1l l S =为矩形线圈的面积,磁矩 n e m IS =,此处 n e 为线圈平面的正法向矢量. 所以上 式用矢量表示则为 B m B e M ?=?=n IS (10-17b ) 如果线圈不只一匝,而是N 匝,那么线圈所受的磁力矩应为 B e M ?=n NIS (10-17c ) 讨论: 载流线圈在均匀磁场中的运动问题 (1)当载流线圈的 n e 方向与磁感强度B 的方向相同(即?=0θ),亦即磁通量为正向极大 时,M=0,磁力矩为零,此时线圈处于平衡状态[图(a)]。 (2) 当载流线圈的 n e 方向与磁感强度B 的方向相垂直(即?=90θ),亦即磁通量为零时, M=NBIS ,磁力矩最大[图(b)] (3)当载流线圈的 n e 方向与磁感强度B 的方向相反(即?=180θ)时,M=0,这时也没有磁 力矩作用在线圈上[图(c)],不过,在这种情况下,只要线圈稍稍偏过一个微小角度,它就会在磁力作用下离开这个位置,而稳定在?=0θ时的平衡状态,总之,磁场对载流线圈作用的磁力矩, 总是要使线圈转到它的 n e 方 向与磁场方向相一致的稳定 平衡位置(M10-8)。 (4)式(10-17)虽然是从矩形线圈推导出来的,但可以证明它对任意形状的平面线圈都是成立的。

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

磁场公式

计算两圆柱形磁铁间力的公式 F x =πμ04 M 2R 4 1x +1 x+2t +2 x+t (1) 永久磁铁磁场 B r =μ 4πr [3 μ?r r ?μ](2) 磁偶极子磁场强度计算公式 B m ,r = μ04π||r ||3 [3 m ?r r ?m ](3) r 是单位向量:( x ||r || i + y ||r || j + z ||r || k ) r 是从磁铁位置至场位置的位移矢量 m 是磁铁的磁转矩(0.0,m) 由于只需要关心z 方向的磁场强度 所以由(3)式推导如下 B z =μ04π||r ||[3 m ?z ||r ||k z ||r ||k ?m ](注:任何单位向量的平方均为1,不同单位向量相乘为0) 由于单位向量k =z ||r ||(注:单位向量等于对应轴的坐标值除以所求的点到原点的距离) (注:向量点积计算公式 (axi+ayj+azk).(bxi+byj+bzk)=(axbx+ayby+azb)=|a||b|cos(zita) 其中zita 为向量a 与向量b 的夹角) 所以B z = μ04π||r || 3[3 m z r z r ?m ](4) =μ03m 3 z 2?1 3| r |2 r 2 将(4)式写成圆柱坐标系形式(r,z ) B z (m,γ,z)= μ0 4π(z 2+γ2)32 γ22 γ22 ?m (5) = μ0m 4π(z 2+γ2)3 2 ( 3z 2γ+z ?1)(6) (6)式即为一个磁偶极子的磁感应强度公式

将(4)式写成空间中任意点(x 0,y 0,z 0)处的磁偶极子在空间中(x,y,z)点处B z 的平面直角坐标系形式 B z m ,x ,y ,z ,x 0y 0,z 0 = μ0m 4π 3 z?z 0 2?[(x?x 0)2+(y?y 0)2+(z?z 0)2][(x?x 0)2+(y?y 0)2+(z?z 0)2]5 2 (7) 根据(7)式,计算圆柱形磁铁在空间任意点处磁场强度公式 将圆柱形磁铁看成是无数个磁偶极子的集合,其磁化强度为M ,由公式m=MV 得:dm=MdV B z m ,x ,y ,z ,x 0y 0,z 0 =μ0m 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0 )2+(z ?z 0 )2]5 V 圆柱 = 3 z?z 0 2?[ x?x 0 2+(y?y 0)2+(z?z 0)2][ x?x 0 2+(y?y 0)2+(z?z 0)2]5 2 R 2?y 222dx dy dz R ?R 0?H (8) 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] 5 2 R 2?y 2 ? R 2?y 2 dx =

载流圆线圈周围磁场分布

载流圆线圈周围磁场分布 孟雨 孟雨物理工程学院11级物理学类三班 Email:1240123245@https://www.360docs.net/doc/a0955498.html, 摘要:本文第一次在直角坐标系中直接从磁感应强度的计算公式毕奥-萨伐尔定律出发,精确求解了圆电流空间任一点磁场分布。并通过数值模拟,给出了圆电流周围磁场的空间分布情况。 关键词:载流圆线圈、椭圆积分、磁感应强度、数值模拟 0.引言 圆电流的磁场分布是电磁学中一个重要而典型的问题,不少学者进行求解此方面问题时一般采用矢势方法,而即使采用最为基本的毕奥-萨伐尔定律求解时,求解的也是简化后的磁场在固定平面内的分布,而非整个三维空间内的分布。究其原因,在于积分的复杂性。即使求解磁场在平面内的分布,也涉及复杂的椭圆积分,因此对于磁场在三维空间任意处的分布,很多学者避而不答。本文仅采用最为基本的毕奥-萨伐尔定律,通过一系列变量替换直接在直角系给出了磁场分布的级数形式解。 本文与已发文章《闭合载流导线周围磁感应强度的空间分布》5【】(物理学刊27期)、《一个重要公式在电磁学中的应用》6【】(物理学刊29期)同属姊妹篇。第一篇文章提出了解决 该问题的一般方法,并推广到任意形状的闭合载流线圈,同时作为例子计算了过垂直载流圆线圈环面中心直线上的磁感应强度。第二篇文章是对第一篇文章的进一步探索,运用椭圆积分精确求解了载流圆线圈在其所在整个平面的强度分布情况。本文是前两篇文章的更深一步探索,最终精确求解了载流圆线圈在空间任意处的分布情况。通过这三篇文章,希望给大家带来的不仅仅是问题的答案,更为重要的是将作者一步步探索问题的过程呈献给大家,希望能给大家未来的学习和研究带来帮助。 1.载流圆线圈磁感应强度 这里直接引用文章【5】、【6】中的结果:

磁场,感应计算题

稳恒磁场计算题 144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以 电流I ,求O 点的磁感应强度. 解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中: DC 产生 )21(4)2sin 4(sin 45cos 400 01-=-= R I R I B πμπ π πμ 方向向里 CB 产生 R I R I B 16224002 μμππ == 方向向里 BA 产生 03=B R I R I B B B B O 16)12(400321μπμ+-=++= 方向向里 145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。若导线的流过电流I ,求圆心O 处的磁感应强度。 解:两段直电流部分在O 点产生的磁场 01=B 弧线电流在O 点产生的磁场 R I B 2202μπα= R I R I B B B O πα μπαμ42220 021== +=∴ 146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生 01=B 大半圆 产生 1 024R I B μ= 方向向里 小半圆 产生 2 034R I B μ= 方向向里 竖直直电流产生 2 044R I B πμ= 方向向外 4321B B B B B O +++=∴ )1 11(44442 210202 01 0R R R I R I R I R I B O πμπμμμ-+=- + = 方向向里 147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求 、解:取垂直纸面向里为正,如图设X 轴。 ) 1.0(102102)(2272010x x x x d I x I B --?=-+= -πμπμ 在电流1I 左侧,B 方向垂直纸面向外 在电流1I 、2I 之间,B 方向垂直纸面向里 在电流2I 右侧,当m x 2.0<时,B 方向垂直纸面向外 当m x 2.0>时,B 方向垂直纸面向里

电磁场与电磁波公式总结

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:?????===?θθ?θd r dl rd dl dr dl r sin ,面积元:??? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元: ?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ? ? ? ??==+=?????===z z x y y x r z z r y r x arctan ,sin cos 2 2??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 22 2 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2 '2 2''arccos ,cos sin z r z z r r r z r r 3、梯度

圆线圈与亥姆霍兹线圈轴线上磁场的测量

实验15 圆线圈与亥姆霍兹线圈轴线上磁场的测量 磁场是物理学中一个基本的问题,在实际工作中也会经常遇到要对磁场进行测量。稳恒电流所产生的磁场,由于电流的分布各不相同,因而磁场分布也就会有各种各样的形式。测量磁场时,所采用的方法各有不同。本实验是采用霍尔传感器对圆线圈和亥姆霍兹线圈通以稳恒电流时所产生的磁场进行测量。 [实验目的] 1.了解霍尔传感器测量磁场的原理与方法。 2.测量圆线圈和亥姆霍兹线圈轴线上磁场的分布,进一步加强对磁场叠加原理的认识。 [实验原理] 如果在一个半径为R 的圆形线圈中,通以电流I ,则在圆电流轴线上到圆心距离为x 的任一点处之磁感强度为 2 32 2 2 02/) R x (IR B += μ 其方向沿轴线向外。当x=0,即在圆线圈中心点时, R I B 20μ= 若在一条直线上有两个完全相同共轴密绕的圆形短线圈,两线圈半径都是R ,线圈匝数均为N ,且两线圈间距亦为R ,通有大小和方向都相同的电流。在两线圈间轴线中点a 附近,磁场叠加结果基本保持均匀。这就是亥姆霍兹线圈的特点。 以轴线为x 轴,且以左边圆电流的圆心为原点,于是两圆电流在轴线上任一点产生的磁场B 1和B 2方向均沿着轴正向,如图1。 因两两线圈间轴线上任一点处的磁感强度分布函数为 ]] )x R (R [)R x ([ NIR B B B //2 32223222 021112 ?+++= +=μ 对轴线中点a ,x=R/2,即有 R NI B /R 0232 58μ= 在a 点附近,各点的B 值与中点比较相对误差非常小(<1%),说明磁场足够均匀。因此,亥姆霍兹线圈成为能提供良好均匀磁场的常用设备。 [实验仪器] 实验所用仪器为FD-HM-1型新型圆线圈和亥姆霍兹线圈磁场测定仪,其主要组成部 图1 亥姆霍兹线圈

磁场计算练习

1.如图所示,矩形线圈匝数N=100匝,ab=30 cm,ad=20 cm,匀强磁场磁感应强度B=0.8 T,绕轴OO′从图示位置开始匀速转动,角速度ω=100π rad/s,试求: (1)穿过线圈的磁通量最大值Φm为多大?线圈转到什么位置时取得此值? (2)线圈产生的感应电动势最大值E m为多大?线圈转到什么位置时取得此值? (3)写出感应电动势e随时间变化的表达式,并在图乙中作出图象. 2.如图所示,有一倾斜的光滑平行金属导轨,导轨平面与水平面的夹角为,导轨间距为L,接在两导轨间的电阻为R,在导轨的中间矩形区域内存在垂直斜面向上的匀强磁场,磁感应强度大小为B,一直量为m、有效电阻为r的导体棒从距磁场上边缘d处释放,整个运动过程中,导体棒与导轨接触良好,且始终保持与导轨垂直。不计导轨的电阻,重力加速度为g。 (1)求导体棒刚进入磁场时的速度; (2)求导体棒通过磁场过程中,通过电阻R的电荷量q; (3)若导体棒刚离开磁场时的加速度为0,求异体棒通过磁场的过程中回路中产生的焦耳热Q。

3.如图所示是一个交流发电机的示意图,线框处于匀强磁场中,已知,匀强磁场的磁感应强度,线圈的匝数,线圈的总电阻,外电路负载电阻,线圈以, 电表是理想电表求 (1)电压表的示数? (2)从图示位置开始经时感应电动势的瞬时值多大? (3)从图示位置开始经的这段时间通过R的电量? (4)线圈匀速转动一周外力做多少功? 4.如图所示,平行导轨倾斜放置,倾角θ=37°,匀强磁场的方向垂直于导轨平面向上,磁感应强度B=T,质量为m=1kg的金属棒ab垂直放在导轨上,ab与导轨平面间的动摩擦因数μ=0.25。ab的电阻r=1Ω,平行导轨间的距离L=1m, R1 =R2=4Ω,导轨电阻不计,ab由静止开始下滑运动x=3.5m后达到匀速。sin37°=0.6,cos37°=0.8。求: (1)ab在导轨上匀速下滑的速度多大? (2)ab由静止到匀速过程中电路产生的焦耳热为多少?

用Mathematica计算椭圆形电流的磁场分布

分类号UDC单位代码10642 密级公开学号2002466040 重庆文理学院 学士学位论文 论文题目:用Mathematica计算椭圆形电流的磁场分布 论文作者:王伯超 指导教师:石东平教授 专业:物理学 提交论文日期:2006年06月日 论文答辩日期:2006年06月日 学位授予单位:重庆文理学院 中国 重庆 2006年06月

Graduate Thesis of Chongqing University of Arts and sciences Calculation on the Magnetic Field Distribution of the Ellipse Current with Mathematica Candidate: Wang Bo-chao Supervisor: Shi Dong-ping Major: Physics Department of Physics & Information Engineering Chongqing University of Arts and Sciences June 2006

2002级物理学专业毕业论文目录 目录 摘要 ......................................................................................................................................... I Abstract ...................................................................................................................................... II 1 引言 . (1) 1.1 问题的提出及研究意义 (1) 1.1.1 问题的提出 (1) 1.1.2 研究的意义 (1) 1.2 国内外研究现状 (1) 1.2.1 圆形电流磁场分布研究现状 (1) 1.2.2 椭圆形电流磁场分布研究现状 (1) 2 基本原理 (1) 3 椭圆形电流的磁场分布 (2) 3.1 物理模型的建立 (2) 3.2 运用Mathematica进行计算 (3) 4 讨论 (3) 4.1 椭圆电流垂直轴上的磁场 (3) 4.2 椭圆电流焦点的磁场 (4) 4.3 圆形电流的磁场 (4) 5 结语 (5) 参考文献 (5) 致谢 (7)

精编【激励与沟通】矩形激励线圈的分析

【激励与沟通】矩形激励线圈 的分析 xxxx年xx月xx日 xxxxxxxx集团企业有限公司 Please enter your company's name and contentv

矩形激励线圈的分析 摘要:本文由毕奥?D莎伐定律出发,首先讨论了由一定长度的线电流源和矩形环流源的磁感应强度分布,然后在此基础上,详尽的论述了基于体电流源的矩形线圈产生的磁场分布。 一、引言 载流线圈是大量电工设备中不可缺少的装置,是科学研究和工程问题中最常用的一种磁体,在线圈磁体的设计与研制中,常需要计算线圈的磁场分布。由于工程实际需要和研究问题方便,人们对轴对称线圈进行了大量而广泛的研究,取得了大量成果。在科学研究和工程设计中,矩形线圈的应用也是相当广泛的,但人们对矩形线圈的研究却很少,仅研究了长方形载流导体的磁场计算问题,而未真正涉及矩形线圈的磁场计算。 为了实现对弱磁场或者对不均匀磁场的测量,都需要一个激励源,以产生在一定体积范围内具有一定磁场强度(一般为几个nT到0.1mT)的匀强磁场。在实际运用中,用于产生匀强的装置很多,如螺线管、Helmholtz线圈、矩形线圈等,在本文设计的无损检测系统采用的是矩形线圈,本文将对矩形线圈产生匀强磁场的原理及计算方法进行详尽的分析。

二、具有一定长度带电直导线的磁场计算 根据毕奥?D莎伐定律,空间线电流源产生的磁场强度为:(1) 式中:B?D空间点的磁感应强度,其方向垂直于直导线与空间点构成的平面; ?D真空导磁率(4p′10-7T×m/A);I?D导线的电流强度;l?D导线长度; R?D源点到场点的距离;eR?DR方向的单位矢量。 为了计算具有一定长度的电流源在其周围产生的磁场,建立如图1坐标系,并用毕奥?D莎伐定律的积分形式:(2) 电流的方向为Ii (x方向),场点坐标为P(0,0,Z)=Zk,而导线上的点可以表述为(x,Y,0)=xi+Yj,则有带入上式,利用计算可得: (3) (4) (5) (6) 对于一般的情况而言: ?D该空间点到带电导线的垂直距离,即|PQ|,;

圆线圈磁场的测绘[1]

圆线圈磁场的测绘 小的通电线圈称磁偶极子,是研究磁场性质的有用工具,是磁学中典型的物理模型。通常用以提供磁场的螺线管也就是多个线圈磁场叠加,各种形状线圈在磁场中的受力都基于磁偶极子受磁力矩的原理及特点来研究,因而研究圈线圈磁场分布有重要的实际意义。 磁场和以磁场为基础的器件、仪器被广泛用于科学研究和工业的各种部门,许多现代技术如宇宙航行、高能加速器、计算机、核磁共振、超导、生物医学、地磁学等,都与磁场测量有关联。 实验目的 1、研究载流线圈轴线上磁场的分布,加深对毕奥—萨伐尔定律的理解; 2、掌握感应法测磁场的原理和方法; 3、考察亥姆霍兹线圈的磁场均匀区,验证磁场叠加原理。 实验仪器 亥姆霍兹线圈,低频信号发生器,MF-20型万用表,探测线圈,直角坐标纸等。 实验原理 一、载流圆线圈轴线上的磁场分布 设圆线圈半径为R,匝数为N,在同电流I时,线圈轴线上一点P的磁感应强度B等于 (1) 式中为真空磁导率,x为P点坐标,原点在线圈中心。 二、亥姆霍兹线圈轴线上的磁场分布 亥姆霍兹线圈是由一对半径R、匝数N均相同的圆线圈组成,两线圈平行共轴、半径R 和匝数N均相等,线圈间距离正好为半径R。取二线圈连线的中心为坐标原点O,则当给二线圈通以同方向、等大小的电流I时,它们对轴线上任一点P产生的磁场方向将一致,P 点的磁场为两线圈分别在该处产生的磁场的叠加,大小为

(2)在处 (3) 在和处,Bx的相对差异约为0.012%,因此,在原点O附近的磁场非常均 匀。 三、磁场的测量 磁感应强度是一个矢量,对它的测量既要测大小,又要测方向。测磁场的方法很多,在此实验中是用试探线圈去测交变磁场。 如图1所示:给一圆线圈(在此使用亥姆霍兹线圈的一支)通以某一频率的正弦交流电。 将探测线圈接到晶体管万用表的交流毫伏档。用交流毫伏表测量磁感应强度时,显示值U 为磁感应强度的有效值,轴线上任一点x处测得的U值与圆线圈中心x=0处测得的U0之比

例1长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂

例1长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场 中垂 【错解】t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。 【错解缘故】 磁通量Φ=BS ⊥BS〔S ⊥ 是线圈垂直磁场的面积〕,磁通量的变化ΔΦ=Φ 2 -Φ 1 , 两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。 【分析解答】 实际上,线圈在匀强磁场中绕垂直于磁场的轴转动时,产生交变电动势e=εm cosωt=Babωcosωt。当t=0时,cosωt=1,尽管磁通量 可知当电动势为最大值时,对应的磁通量的变化率也最大,即 【评析】 弄清概念之间的联系和区别,是正确解题的前提条件。在电磁感应中要弄清磁通量Φ、磁通量的变化ΔΦ以及磁通量的变化率ΔΦ/Δt之间的联系和区别。 例2在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?

【错解】 当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定那么可知,AB中的电流方向是从A 流向B,从而判定电源的上端为正极。 【错解缘故】 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【分析解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,因此,AB中电流的方向是由B流向A,故电源的下端为正极。 【评析】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例3一个共有10匝的闭合矩形线圈,总电阻为10Ω、面积为0.04m2,置于水平面上。假设线框内的磁感强度在0.02s内,由垂直纸面向里,从1.6T均匀减少到零,再反向均匀增加到2.4T。那么在如今间内,线圈内导线中的感应电流大小为______A,从上向下俯视,线圈中电流的方向为______时针方向。 【错解】 由于磁感强度均匀变化,使得闭合线卷中产生感应电流,依照法拉第电磁感应定律,感应电动势

圆环形电流的磁场分布

圆环形电流的磁场分布 福建省石狮市石光中学 陈龙法 摘 要 本文详细推算出圆环形电流的磁场分布(包括磁标势、磁感应强度),证明了圆电流平面上圆内的磁感应强 度为r 的单调增函数,且在圆心处磁感应强度有极小值。 设圆环形电流强度为I ,圆半径为R 0,以圆心为原点,过圆心垂直于圆面的轴为极轴,建立球坐标系。如图所示。用半径为R 0的球面把整个空间分成两个区域,在这两个区域内,磁场的标势分别满足拉普拉斯方程 012=?m φ (rR 0) 由于具有轴对称性,磁标势与方位角φ无关,所以满足边界条件 有限??→?→01r m φ, 有限??→?∞ →r m 2φ 的通解可取为: ()θφcos 1n n n n m P r a ∑= (rR 0) ⑵ r=R 0的球面上,21m m φφ和满足边值关系: ()φααφφe e f f m m r -=-=?-??12 ⑶ ()012=?-??m m r φφe ⑷ 解上列⑴⑵⑶⑷式得: ()()f n n n n n n n n d dP R b d dP R a αθθθθ=-∑∑+-cos cos 2 10 ⑸ ()()()0cos cos 1101 =++∑ ∑--n n n n n n n n P R na P R b n θθ ⑹ 其中,面电流密度??? ??-=20πθδαR I f ,I 是圆环中的电流强度 。??? ? ? -2πθδ可按连带勒让德函数展 开: ()()()()θθπθδcos ! 1!12 12cos 2n n n n n P n n n P f '+-+==?? ? ? ? -∑∑ ⑺ )

磁场强度与磁感应强度

B=F/IL=F/qv=E/Lv =Φ/S F:洛伦兹力或者安培力 q:电荷量 v:速度 E:感应电动势 Φ(=ΔBS或BΔS,B为磁感应强度,S为面积):磁通量 S:面积 描述磁场强弱和方向的基本物理量。是矢量,常用符号B表示。 在物理学中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。这个物理量之所以叫做磁感应强度。 点电荷q以速度v在磁场中运动时受到力F的作用。在磁场给定的条件下,F的大小与电荷运动的方向有关。当v 沿某个特殊方向或与之反向时,受力为零;当v与此特殊方向垂直时受力最大,为fm。fm与|q|及v成正比,比值与运动电荷无关,反映磁场本身的性质,定义为磁感应强度的大小,即。B的方向定义为:由正电荷所受最大力fm的方向转向电荷运动方向v 时,右手螺旋前进的方向。定义了B之后,运动电荷在磁场B 中所受的力可表为f =qv×B,此即洛伦兹力公式。 除利用洛伦兹力定义B外,也可以根据电流元Idl在磁场中所受安培力dF=Idl×B来定义B,也就是我们常用的公式:F=ILB 在国际单位制(SI)中,磁感应强度的单位是特斯拉,简称特(T)。 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N × Ae) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N 为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 磁场强度是作用于磁路单位长度上的磁通势,用H表示,单位是安/米,磁场强度是矢量,它的大小只与电流的大小和导体的几何形状以及位置有关,而与导体周围物质的磁导率无关。 磁感应强度是描述磁场在某一点的磁场强弱和方向的物理量,用B表示,单位是特斯拉,磁感应强度是矢量,他的大小不仅决定于电流的大小及导体的几何形状,而且还与导体周围的物质的磁导率有关。 磁场中某点的磁感应强度的大小就等于该点的磁场强度和物质的磁导率的乘积,即B=μH。 师:电场中,比值F/q由谁确定?它反映了什么? 生:由电场确定,反映了电场的强弱。

相关文档
最新文档