温度传感器DS18B20测温系统的设计

温度传感器DS18B20测温系统的设计
温度传感器DS18B20测温系统的设计

课程设计报告

题目:温度传感器DS18B20测温系统的设计

姓名:李彬

专业:电子信息工程B

班级号:08212

学号:08212025

2010/12/1

目录

温度传感器DS18B20测温系统的设计 (3)

摘要 (3)

关键词 (3)

一. 引言 (3)

二.元器件资料 (4)

1.DS18B20 (4)

2. STC80C52单片机芯片引脚功能介绍 (6)

3. LCD1602 (7)

三. 方案论证 (10)

采用数字温度芯片DS18B20 (10)

四.总体设计 (10)

1.硬件设计 (10)

1设计思路 (10)

2总体设计方框图 (11)

3.原理图 (11)

2.软件设计 (12)

1主程序 (12)

2读出温度子程序 (13)

3温度转换命令子程序 (13)

4计算温度子程序 (14)

5显示数据刷新子程序 (14)

6 温度数据的计算处理方法 (14)

五.总结与体会 (14)

附录一:程序 (15)

附录二:实物图 (20)

温度传感器DS18B20测温系统的设计

摘要:随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于

STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测

温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实

现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

关键词:单片机;温度检测;STC89C52;DS18B20;

一. 引言

随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和

信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。

测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:

①传统的分立式温度传感器

②模拟集成温度传感器

③智能集成温度传感器。

目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,STC89C51单片机为控制器构成的数字温度

测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用STC公司的STC89C52

单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。

二.元器件资料

1.DS18B20

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅6元左右。

在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。

新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。

DS18B20、DS1822的特性

DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

DS18B20、DS1822 "一线总线"数字化温度传感器同DS1820一样,DS18B20

也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3.0V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。

一、DS18B20的主要特性

(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电

(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,

实现组网多点测温

(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内

(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃

(6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温

(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快

(8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

二、DS18B20的外形和内部结构

DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1:

DS18B20外形及引脚排列图

DS18B20引脚定义:

(1) GND为电源地;

(2) DQ为数字信号输入/输出端;

(3) VDD为外接供电电源输入端(在寄生电源接线方式时接地)

三、DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

图3: DS18B20测温原理框图

2. STC80C52单片机芯片引脚功能介绍

单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。

⒈ 电源: ⑴ VCC - 芯片电源,接+5V;⑵ VSS - 接地端;

⒉ 时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。

⒊ 控制线:控制线共有4根,⑴ ALE/PROG:地址锁存允许/片内EPROM编程脉冲① ALE功能:用来锁存P0口送出的低8位地址② PROG功能:片内有EPROM 的芯片,在EPROM编程期间,此引脚输入编程脉冲。⑵ PSEN:外ROM读选通信号。

⑶ RST/VPD:复位/备用电源。① RST(Reset)功能:复位信号输入端。② VPD 功能:在Vcc掉电情况下,接备用电源。⑷ EA/Vpp:内外ROM选择/片内EPROM 编程电源。① EA功能:内外ROM选择端。② Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。

⒋ I/O线80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32

个引脚。P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。

STC89C52单片机芯片封装图

STC89C52芯片的封装有PLCC、PQFP以及DIP—40,本设计采用的是引脚双列直插式封装。其封装形式如图2.2.1。

图1 STC89C52 DIP-40封装

3. LCD1602

液晶显示器各种图形的显示原理线段的显示:点阵图形式液晶由M3N个显示单元组成,假设LCD显示屏有64行,每行有128列,每8列对应1字节的8位,即每行由16字节,共1638=128个点组成,屏上64316个显示单元与显示RAM 区1024字节相对应,每一字节的内容和显示屏上相应位置的亮暗对应。例如屏的第一行的亮暗由RAM区的000H——00FH的16字节的内容决定,当(000H)=FFH 时,则屏幕的左上角显示一条短亮线,长度为8个点;当(3FFH)=FFH时,则屏幕的右下角显示一条短亮线;当(000H)=FFH,(001H)=00H,(002H)=00H,……(00EH)=00H,(00FH)=00H时,则在屏幕的顶部显示一条由8段亮线和8条暗线组成的虚线。这就是LCD显示的基本原理。

1602字符型LCD简介

12字符型液晶显示模块是一种专门用于显示字母、数字、符号等点阵式LCD,目前常用16*1,16*2,20*2和40*2行等的模块。下面以长沙太阳人电子有限公司的1602字符型液晶显示器为例,介绍其用法。一般1602字符型液晶显示器实物如图

图一

221602LCD的基本参数及引脚功能

1602LCD分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别,两者尺寸差别如下图

图二

3`LCD1602主要技术参数:

显示容量:1632个字符

芯片工作电压:4.5—5.5V

工作电流:2.0mA(5.0V)

模块最佳工作电压:5.0V

字符尺寸:2.9534.35(W3H)mm

4`引脚功能说明

1602LCD采用标准的14脚(无背光)或16脚(带背光)接口,各引脚接口说明如表

表1 引脚接口说明表

第1脚:VSS为地电源。

第2脚:VDD接5V正电源。

第3脚:VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度。

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS 和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14脚:D0~D7为8位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

三. 方案论证

采用数字温度芯片DS18B20

由DALLAS半导体公司生产的DS18B20型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。与传统的热敏电阻温度传感器不同,它能够直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式,可以分别在93.75ms和750ms 内将温度值转化9位和12位的数字量。它具有体积小、接口方便、传输距离远等特点,内含寄生电源。

系统有如下特点:

(1)不需要备份电源,可通过信号线供电,电源电压范围从3.3~5V;

(2)送串行数据,不需要外部元件;

(3)温度测量范围从-55℃~+125℃,-10~+85℃时测量精度为±0.5℃,测

量分辨率为0.0625℃,;

(4)通过编程可实现9~12 位的数字值读数方式(出厂时被设置为12 位);

(5)在93.75ms 和750ms 内将温度值转化9位和12 位的数字量;

(6)零功耗等待;

(7)系统的抗干扰性好,适合于恶劣环境的现场温度测量,如环境控制、设

备过程控制、测温类消费电子产品等。

四.总体设计

1.硬件设计

1设计思路:

温度只要在所设定的上下温度界限内,就会在显示设备中精确的显示出来,如果温度超过了所设定的温度界限,就发出报警声。能够及时向温度监控人员发出温度超限信息。便于温控人员及时的调整与控制。另外此温度控制器操作简单,

体积小,灵敏度高,精度高。

2总体设计方框图:

数字温度器方框图

方框图所示为数字温度控制器的单体设计方框图。其工作原理为:当该电路上电工作以后,首先刷新显示(LED),然后,温度传感器采集温度送单片机检查温度的高低,由单片机送出信号经过驱动电路送往显示电路。

3.原理图

STC89C52原理图

DS18B20原理图

1602液晶显示原理图

2.软件设计

系统程序主要包括主程序、读出温度子程序、温度转换命令程序、计算温度子程序、显示数据刷新子程序等等。

1主程序

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量温度值,温度测量每1s进行一次。

2读出温度子程序

读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。

3温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。

4计算温度子程序

计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定。

5显示数据刷新子程序

据刷新子程序主要是对显示缓冲器中的显示数据进行刷新操作,当最高显示位为0时将符号显示位移入下一位。

6 温度数据的计算处理方法

从DS18B20读取出的二进制值必须先转换成十进制值,才能用于字符的显示。因为DS18B20的转换精度为9~12位可选项的,为了提高精度采用12位。在采用12位转换精度时,温度寄存器里的值是以0.0625为步进的,即温度值为温度寄存器里的二进制值乘以0..625,就是实际的二进制温度值。通过观察表5.2可以发现一个十进制值和二进制值之间有很明显的关系,就是把二进制的高字节的低半字节和低字节的低半字节化成十进制后,就是温度值的小数部分。小数部分因为是半个字节,所以二进制值范围是0~F,转换成十进制小数值就是0。0625的倍数(0~15)。采用1位显示小数,可以精确到0.1℃。

五.总结与体会

为期一个月的单片机实习让我深深的感受到了理论与实践相结合的重要性,平日里我们狠拿书本学习,为的就是在我们以后的工作和学习中能有更突出的发挥,我想我们这次实习,也就是我们与社会接轨的一个演练吧。我很感谢这次实习,让我明白了动手操作的必要性和重要性,也让我明白了学习的目的与方法。

一个月的实习,通过不断的上网查资料,去图书馆查信息,通过对以往书本的重新学习,让我对以往所学过的知识有了个重新的认识。我是原来职业高中过来的学习,按道理来讲,我们的动手与专业技术水平应该还是不错的,可以通过这次动手操作实习,我发现在强中更有强中手,每一个人都不是弱者,在学习方面我逐渐有了攀比意识,我知道与别人攀比是不好的,但是在学习上,动手能力上与别人攀比则是好的,所以在以后的学习与实习中我更应该注重自己的动手能力,还有与别人的竞争意识。这一个月实习,我们同时还有考试,但是这一切都不能阻碍我们,平时我们一边实习,一边又抽空复习,学习与复习的交替,使这一个月过得既忙碌又充实,我想这才是大学校园里真正应该学到的东西。

未来的社会是一个竞争与机遇同时存在的社会,有了技术,有了能力,走到哪里都不怕,所以在学校我们都应该尽可能尽力的去学习更多的知识,去培养更大的能力,以便使我具有更大的竞争能力。这次实习正是我们理论知识的一个实践,也是我们动手操作能力的一个提高。在这次实习中我们老师也投入了很大的时间和精力,在此我感谢老师们的辛苦培养。

附录一:程序

#include

#define uchar unsigned char

#define uint unsigned int

sbit DQ=P3^2; //定义ds18b20的接口

sbit RS=P2^0; //定义1602的三个控制位

sbit RW=P2^1;

sbit E=P2^2;

unsigned char code firstline[]={"temperature is"};

uchar data disdata[5];

uint tvalue; //温度值

uchar tflag; //温度正负标志

/*************************lcd1602程序**************************/ void delay(unsigned int n) //延时

{

unsigned int i,j;

for(i=0;i

for(j=0;j<100;j++);

}

void wr_com(unsigned char com) //写指令

{

delay(1);

RS=0;

RW=0;

E=0;

P0=com;

delay(1);

E=1;

delay(1);

E=0;

}

void wr_dat(unsigned char dat) //写数据

{

delay(1);;

RS=1;

RW=0;

E=0;

P0=dat;

delay(1);

E=1;

delay(1);

E=0;

}

void lcd_init() //初始化设置

{

delay(15);

wr_com(0x38);delay(5);

wr_com(0x08);delay(5);

wr_com(0x01);delay(5);

wr_com(0x06);delay(5);

wr_com(0x0c);delay(5);

}

void display(unsigned char *p) //显示第一行字母

{

while(*p!='\0')

{

wr_dat(*p);

p++;

delay(1);

}

}

init_play() //初始化显示

{

lcd_init();

wr_com(0x80);

display(firstline);

}

/******************************ds18b20程序***************************************/

void delay_18B20(unsigned int i)//延时

{

while(i--);

}

void ds1820rst() //ds1820复位

{

DQ = 1; //DQ复位

delay_18B20(4); //延时

DQ = 0; //DQ拉低

delay_18B20(100); //精确延时大于480us DQ = 1; //拉高

delay_18B20(40);

}

uchar ds1820rd() //读数据

{

unsigned char i=0;

unsigned char dat = 0;

for (i=8;i>0;i--)

{

DQ = 0; //给脉冲信号

dat>>=1;

DQ = 1; //给脉冲信号

if(DQ)

dat|=0x80;

delay_18B20(10);

}

return(dat);

}

void ds1820wr(uchar wdata) /*写数据*/

{

unsigned char i=0;

for (i=8;i>0;i--)

{ DQ=0;

DQ=wdata&0x01;

delay_18B20(10);

DQ=1;

wdata>>=1;

}

}

read_temp() //读取温度值并转换

{

uchar a,b;

ds1820rst();

ds1820wr(0xcc); //跳过读序列号

ds1820wr(0x44); //启动温度转换

ds1820rst();

ds1820wr(0xcc); //跳过读序列号

ds1820wr(0xbe); //读取温度

a=ds1820rd();

b=ds1820rd();

tvalue=b;

tvalue<<=8;

tvalue=tvalue|a;

if(tvalue<0x0fff) //判断温度的正负值

tflag=0;

else

{

tvalue=~tvalue+1;

tflag=1;

}

tvalue=tvalue*(0.625); //DS18B20的精确度为0.0625度, 即读回数据的最低位代表0.0625度

//将它放大10倍, 使显示时可显示小数点后一位, 并对小数点后第二2进行4舍5入(也就是说tvalue中有n个0.0625)

return(tvalue);

}

/*********************温度值显示部分**********************************/

void ds1820disp() //温度值显示函数

{

uchar flagdat;

disdata[0]=tvalue/1000+0x30; //百位数,其中0的ASCII代码为

disdata[1]=tvalue%1000/100+0x30; //十位数

disdata[2]=tvalue%100/10+0x30; //个位数

disdata[3]=tvalue%10+0x30; //小数位

if(tflag==0)

flagdat=' '; //正温度不显示符号

else

flagdat='-'; //负温度显示负号:-

if(disdata[0]=='0')

{

disdata[0]=' '; //如果百位为0,不显示

if(disdata[1]=='0')

{

disdata[1]=' ';

} //如果百位为0,十位为0也不显示}

wr_com(0xc0);

wr_dat(flagdat); //显示符号位

wr_com(0xc1);

wr_dat(disdata[0]); //显示百位

wr_com(0xc2);

wr_dat(disdata[1]); //显示十位

wr_com(0xc3);

wr_dat(disdata[2]); //显示个位

wr_com(0xc4);

wr_dat('.'); //显示小数点

wr_com(0xc5);

wr_dat(disdata[3]); //显示小数位

}

/*******************************主程序**********************************/ void main()

{

init_play(); //初始化1602显示

while(1)

{

read_temp(); //读取温度

ds1820disp(); //在第二行显示温度

}

}

附录二:实物图

正面

反面

DS18B20 数字温度传感器

应用指引:在MC430F14板上是标配了DS18B20数字温度传感器器,同时希望用户通过以下DS18B20的讲解能够了解更多1线 MC430F14实物图如下: >>关于MC430F14开发板详情>> 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅10元左右。 DS18B20、DS1822 "一线总线"数字化温度传感器 同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20、DS1822的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 一、DS18B20的主要特性 (1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 (2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

基于热敏电阻的温度控制器设计

基于热敏电阻的温度控制器设计 王芬 电子信息学院测控技术与仪器1031班 摘要:介绍一种以单片机为核心的温度控制系统。该系统利用热敏电阻的阻值随温度的变化转化为频率的变化,再由单片机处理后显示温度值,并 实时处理。可以通过编程实现设置和显示温度的上下限和加热控制。测量 范围为10度到80度,适合用于空调机内部。 关键字:单片机、温度、控制系统、非线性、线性化 1 引言 在现实生活中,温度的监测和控制在纺织工业、林业、化工、各种军用、民用房以及气象和模拟人工气侯环境中等方面都有着广泛的应用。因此,能否有效地对这些领域的环境温度进行实时监测,是一个必须解决的重要课题目前,国际上新型温度测控系统从集成化向智能化、网络化的方向飞速发展,小型、低功耗、高可靠性、低成本的温度测控系统已经越来越受到关注,并广泛应用于工业控制和自动化测量系统中,给人们的生活带来了根本性的变化。基于其现实的诸多作用,设计了该温度控制器,也可在此基础上修改为其他非电量的测量系统。 2本系统工作原理 基于热敏电阻的温度控制器系统由前向通道、单片机、后向通道组成。前 向通道是单片机对被测控温度的输入通道,后向通道是单片机把处理后的数字 量进行传递、输出显示、控制和调节的通道。其结构框图如图1所示: 图1. 基于热敏电阻的温度控制器系统结构框图 3硬件的实现 3.1 温度传感器 温度传感器采用负温度系数的热敏电阻(NTC),NTC的温度系数大,价格低

廉,用此制造的测温、控温装置在科研、生产等方面使用非常广泛。但由于NTC 的温度特性存在严重的非线性,其非线性曲线图如图2所示。因此必须对系统进行线性化处理,线性化处理的方法很多。有硬件电路的互补法,软件上的最小二乘法等。下面文章将介绍一种新的方法。 图2:NTC 的非线性曲线图 通过观察由理想情况的测得的热敏电阻t R 和温度T 的多组数据,在Excel 上拟和出得出t R 与T 的曲线图,根据图形观察得到t R 和T 的表达式为: t a bT R c dT += + (1) 再通过C 语言编程计算出表达式中的系数a,b,c 和d 。再根据R/F 转换器中 1 0.7(2) t f C R R = + (2) 精确计算出参数C 和t R ,就能得到f 与T 的线性表达式。 T mf n =+ (3) (3)式中的系数m 和n 可通过(1)式和(2)式计算得到。 3.2 R/F 转换器 本系统的特点是用555定时器构成的多谐振荡器能产生矩形脉冲波,把NTC 电阻的变化直接转换为频率的变化,通过555的3脚接到单片机P3.4口定时/计数器0来对R/F 的脉冲计数,计数结果即为A/D 转换的结果。555内部的比较器灵敏度较高,而且采用差分电路形成,它的振荡频率受电源和温度的变化的影响很小。这种方法省去了传统方法中的的放大电路,采样保持器,放大器,A/D 转换器,不论是在硬件电路还是在软件设计上都的到了简化。R/F 转换器的原理图如图3:

基于DS18B20的多点温度测量系统设计

一、绪论 1.1 课题来源 温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时它也是一种最基本的环境参数。人民的生活与环境温度息息相关,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,在电力、化工、石油、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对环境温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境,许多电子设备不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。可见,研究温度的测量具有重要的理论意义和推广价值。 随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。 本设计要求系统测量的温度的点数为4个,测量精度为0.5℃,测温范围为-20℃~+80℃。采用液晶显示温度值和路数,显示格式为:温度的符号位,整数部分,小数部分,最后一位显示℃。显示数据每一秒刷新一次。 1.2 课题研究的意义 21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于: (1)掌握数字温度传感器DS18B20的原理、性能、使用特点和方法,利用C51对系统进行编程。

DS18b20温度传感器

最小的温度显示程序-c51 (2010-12-07 00:45:27) 转载 分类:51单片机 标签: 杂谈 #include #include sbit DQ=P2^0; bit presence; unsigned char templ,temph; char array[10]={0x7e,0x48,0x3d,0x6d,0x4b,0x67,0x73,0x4c,0x7f,0x4f}; void Delay(unsigned int num)//可定义延时 { while( --num ); } bit Init_DS18B20(void) { DQ = 1; //DQ复位 Delay(8); //稍做延时 DQ = 0; //单片机将DQ拉低 Delay(90); //精确延时大于 480us DQ = 1; //拉高总线 Delay(8); presence = DQ; //如果=0则初始化成功 =1则初始化失败 Delay(100); DQ = 1; return(presence); //返回信号,0=presence,1= no presence } unsigned int ReadOneChar(void) { unsigned char i = 0; unsigned char dat = 0;

for (i = 8; i > 0; i--) { DQ = 0; // 给脉冲信号 dat >>= 1; //位右移 DQ = 1; // 给脉冲信号等待传感器返回脉冲 if(DQ) dat |= 0x80; Delay(4); } return (dat); } void WriteOneChar(unsigned char dat) { unsigned char i = 0; for (i = 8; i > 0; i--) { DQ = 0; DQ = dat&0x01; Delay(5); DQ = 1; dat>>=1; } } void Read_Temperature(void) { Init_DS18B20(); WriteOneChar(0xcc); // 跳过读序号列号的操作 WriteOneChar(0x44); // 启动温度转换 Init_DS18B20(); WriteOneChar(0xCC); //跳过读序号列号的操作 WriteOneChar(0xBE); //读取温度寄存器 templ = ReadOneChar(); //温度低8位 temph = ReadOneChar(); //温度高8位 }

热敏电阻测温电路设计

电子设计大赛论文 (B组) 热敏电阻测温电路设计 第三十组 K3队 组队成员:顾代辉黄龑罗程 2010年5月23日

摘要:科技发展,很多工业化的生产都需要温度测量,这使得温度测量仪器变成一个 很重要的东西。下面我们将题目所给的温度测量电路进行分析和改动设计。题目所给图是一个在工业场合的温度测量系统,采用RTD 电阻温度检测器。通过分析可知,ref R 两端分到的电压即为ref V ,Vo3输出的电压即为NTC 两段分到的电压。而要求我们设计的电路所用的是NTC 负温度系数热敏电阻器。题目要求我们将电流产生电路的电流控制在0.1m A 。这里我们简 单的将 ref R 改成25k 。对于滤波电路,我们设计各个参数使得其截至频率在100Hz 左右,就 能滤掉1000HZ 的干扰信号;对于基准源,我们都用基本的连接方法,输出电压为2.5V ;对于稳压管,输出电压为恒定的5V ;对于串口连接,我们用到MAX232芯片其中一个接口,与单片机的RXD/TXD 连接传输数据。 关键词:温度传感器 AVR 串口显示 I .电路分析 (1) 电流产生电路分析: 首先对于运放A1,由虚短和虚断,可知 111211 120 V V I I === 有: 1121221 O V V V R R --= 可解得:1121122=O V V V = 即第一个运放功能为将信号放大两倍。 对于运放A2,同理,有 212221 220 V V I I === 有:221O V V =可见,运放A2是一个电压跟随器。

又:24211234( )2 REF O REF O O V V R V V V V R R -?+=+=+ 11122O REF O V V V V ==+ 故: REF R 两端分到的电压为 122R O REF REF O O REF V V V V V V V =-=+-= 由此可见: REF R 两端分压恒为基准电压 REF V ,只要基准电压和 REF R 的值不变,则 通过 REF R 的电流REF REF V I R = 2.5 12.5mA k ==为恒定值,该电路的作用为产生恒定电流。 由于3233p n V V V ==,故Rline 和R6相当于并联, 66'1001R R I I Rline ==,故100'101 I I I =≈ 故可认为恒定电流I 都通过热敏电阻RTD 。 运放A3以及NTD 分析: 由叠加法分析,当31V 接地时,033131317100'6100R k V V V V R k =- =-=- 当32V 接地时,03323276100100''26100R R k k V V V R k ++= == 故0303033231'''2V V V V V =+=- …………………… ① 而32()'RTD V Rline R I =+? …………………… ② 31(2)'RTD V Rline R I =+? …………………… ③

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

DS18B20温度传感器使用方法以及代码

第7章 DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温 度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个 I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。 7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS^导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9?12位的数字 值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入 DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的 DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较 DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口 线即可实现微处理器与DS18B20勺双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 C。固有测温分辨率为0.5 C。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个 DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. 引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式 DS18B20的原理图。 3. 工作原理 单片机需要怎样工作才能将DS18B2 0中的温度数据独取出来呢?F面将给出详细分析

半导体热敏电阻温度测量的设计

信息与控制工程学院硬件课程设计说明书 设计题目 半导体热敏电阻测温仪表的设计 学生学号: 学生姓名: 专业班级: 指导教师: 职称: 起止日期:

信息与控制工程学院硬件课程设计说明书 课程设计任务书 一、设计题目:半导体热敏电阻测温仪表的设计 二、设计目的 1、掌握对电路板的设计流程及焊接技巧; 2、掌握C8051F410单片机体系结构及C语言程序设计方法; 3、掌握半导体热敏电阻的测温及热敏电阻测温过程的标定方法; 4、掌握利用Keil进行软件仿真及对可编程逻辑器件进行硬件下载的方法; 5、用Protel 软件进行电路图的绘制, 译码器及LED动态扫描显示驱动电路设计的方法。 三、设计任务及要求 要求学生设计出能够采集R25=10K的热敏电阻测温仪表,分析热敏电阻测温原理,能够通过软件将热敏电阻的阻值-温度特性转换出来,掌握热敏电阻测温过程的标定方法。 热敏电阻测温仪表具体设计指标: 1.输入信号:热敏电阻; 2.显示方法:LED数码管; 3.供电电源:220VAC; 4.测温误差:≤1℃。 四、设计时间及进度安排 设计时间共三周(2011.03.7~2011.03.25),具体安排如下表: 周次设计内容设计时间 第一周1.学习C8051F410单片机体系结构及程序开发;2.设计半导体热敏电阻测温电路,并应用Protel画出其电路原理图。 第二周1.完成半导体热敏电阻测温系统的焊装和硬件调试; 2. 编写实验程序。 第三周1.整机调试; 2.撰写设计说明书; 3.答辩。

设计题目 五、指导教师评语及学生成绩 指导教师评语: 年月日成绩指导教师(签字):

基于DS18B20的温度测量系统设计

课程设计(论文) 题目名称基于DS18B20温度测量系统设计 课程名称单片机原理及应用 学生姓名尹彬涛 学号1341301075 系、专业电子信息工程 指导教师江世民 2015年 6 月12 日

摘要 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机; DS18B20; 温度传感器; 数字温度计; STC89C52

目录 摘要 (1) 引言 (3) 一、方案介绍 (3) 1、显示部分 (3) 2、温度采集 (5) 3、方案流程图 (5) 二、总体方案设计 (6) 1、硬件设计 (6) 1.1 温度采集设计 (6) 1.2温度显示设计 (6) 2、软件设计 (7) 2.1 DS18B20程序设计 (7) 2.2显示部分程序设计 (8) 三、实验调试过程 (10) 1、软件调试 (10) 1.1 显示部分调试........................................ . (10) 四、心得体会 (10) 五、致谢 (11) 六、参考文献 (12) 七、附录 (12) 附录一程序代码 (12) 附录二仿真电路图 (18)

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

基于DS18B20的多点温度测量系统(毕业设计)

目录 中文摘要......................................................................................................... III 英文摘要......................................................................................................... I V 1 绪论. (1) 1.1课题来源 (1) 1.2课题研究的目的意义 (1) 1.3国内外现状及水平 (2) 1.4课题研究内容 (2) 2 系统方案设计 (3) 2.1基于模拟温度传感器设计方案 (3) 2.2基于数字温度传感器设计方案 (4) 2.3方案论证 (4) 3 电路设计 (6) 3.1工作原理 (6) 3.2DS18B20与单片机接口技术 (7) 3.3键盘电路设计 (14) 3.4显示电路设计 (15) 3.5报警电路设计 (16) 3.6电源电路设计 (17) 4 程序设计 (18) 4.1系统资源分配 (18) 4.2系统流程设计 (18) 4.3程序设计 (24) 5 系统仿真 (34) 5.1PROTEUS仿真环境介绍 (34) 5.2原理图绘制 (35) 5.3程序加载 (35) 5.4系统仿真 (36) 5.5仿真结果分析 ............................................................................................... 错误!未定义书签。 6 PCB板设计 (39) 6.1PCB板设计 (39)

温度传感器DS18B20工作原理

温度传感器: DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。 2 DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 图1 DS18B20的内部结构

图2DS18B20的管脚排列 DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 温度值高字节 高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下: R1、R0决定温度转换的精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度。 高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。 3 DS18B20的工作时序 DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。其工作时序包括初始化时序、写时序和读时序,如图3(a)(b)(c)所示。

热敏电阻测温电路的设计说明

课程题目:热敏电阻测温电路的设计院系:机电汽车工程学院 班级: 学生: 学号: 小组成员: 指导教师:

目录 一、设计目的、要求及方案选择-----------------------------------------------------(2) 1、设计目的---------------------------------------------------------------------------(2) 2、设计要求---------------------------------------------------------------------------(2) 3、设计方案的选择--------------------------------------------------------------------( 2) 二、硬件系统各模块电路的设计---------------------------------------------------(3) 1、单片机系统的设计---------------------------------------------------------------(3)1-1、AT89C51的简介及管脚功能---------------------------------------------(3) 1-1、AT89C51的最小系统介绍-----------------------------------------------(5) 2、基于MF58的NTC热敏电阻温度测量电路设计 ---------------------------(7) 2-1、MF58热敏电阻的介绍---------------------------------------------------(8) 2-2、温度测量电路的设计----------------------------------------------------(10) 3、LED数码管显示电路的设计---------------------------------------------------(11) 3-1、显示电路驱动系统的设计

DS18B20的测温原理

3.2.3 DS18B20的测温原理 DS18B20的测温原理如图3-2-2-6所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。 另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同。 图3-2-3-1 DS18B20与处理器连接图 3.2.4 DS18B20与单片机的典型接口设计 以MCS51单片机为例,图3-2-3-1中采用寄生电源供电方式,P1 1口接

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

DS18B20温度传感器工作原理及其应用电路图

DS18B20温度传感器工作原理及其应用电路图 时间:2012-02-16 14:16:04 来源:赛微电子网作者: 前言 温度与工农业生产密切相关,对温度的测量和控制是提高生产效率、保证产品质量以及保障生产安全和节约能源的保障。随着工业的不断发展,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。现在,新一代的DS18B20温度传感器体积更小、更经济、更灵活。DS18B20温度传感器测量温度范围为-55℃~+125℃。在-10℃~+85℃范围内,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。基于DS18B20温度传感器的重要性,小编整理出DS18B20温度传感器工作原理及其应用电路图供大家参考。 一、DS18B20温度传感器工作原理(热电阻工作原理) DS18B20温度传感器工作原理框图如图所示: DS18B20温度传感器工作原理框图 图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 二、DS18B20温度传感器的应用电路 1.DS18B20温度传感器寄生电源供电方式电路图 寄生电源方式特点: (1)进行远距离测温时,无须本地电源。 (2)可以在没有常规电源的条件下读取ROM。 (3)电路更加简洁,仅用一根I/O口实现测温。 (4)只适应于单一温度传感器测温情况下使用,不适于采用电池供电系统中。

热敏电阻及测温系统课程设计

热敏电阻及测温系统课程设计

目录 1、总体设计 (1) 1.1 课设任务 (1) 1.2 小组成员及分工 (1) 1.2.1 小组成员组成 (1) 1.2.2 组员分工 (1) 1.3 总体设计方案 (1) 2、硬件设计 (3) 2.1 热敏电阻温度传感器 (3) 2.2 A/D转换器 (3) 2.2.1 AD0809简介 (3) 2.2.2 基于AD0809的数模转换电路4 2.2.3 模数转换单元电路的设计 (4) 2.3 LED数码管显示原理 (5) 2.4 AT89S52单片机 (6) 3 软件设计 (9) 3.1 模数转换 (9) 3.2数码显示 (10) 4、仿真及计算 (11) 4.1 实验步骤 (11) 4.2利用MATLAB对实验数据进行处理 (11) 4.3 仿真公式 (14) 4.4 结果分析 (14) 5、心得体会 (16) 6、参考文献 (17) 附录 (18)

1、总体设计 1.1 课设任务 1.了解热敏电阻的工作原理; 2.掌握热敏电阻调理电路和AD转换; 3.了解非线性特性和其校正方式; 4.使用单片机读取转换值并显示。 本课程设计使用热敏电阻为传感器,结合后端处理电路和AD转换器,并用AT89C51单片机获取数据,测得温度数码管显示出来。 1.2 小组成员及分工 1.2.1 小组成员组成 组长:黄波 组员:华林峰、黄奔涛、柯良 1.2.2 组员分工 当我们拿到这个课题“热敏电阻及温度测试系统”后,首先全组人员开了一个小的讨论会,大家都提出了自己的想法,然后根据课程设计的任务要求进行了明确的分工:组长黄波负责系统的总体的设计和程序的编写;黄奔涛主要负责上网查找相关热敏电阻传感器和AD0809数模转换器的工作原理;华林峰负责对设计过程中实验数据的记录并利用MATLAB软件对实验数据进行处理;柯良则负责文字的处理,撰写课程设计报告;然后,大家一起对热敏电阻调理电路和AD转换进行学习研究,并进行软件的调试;最终实现了课程设计的任务要求,达到了胥老师所预期的结果及“热敏电阻传感器将采集到的电压信号经过 AD0809模数转换器将模拟信号转换为数字信号并在单片机上显示当前的温度值。 1.3 总体设计方案 图1-1 设计方案图 首先通过热敏电阻进行温度采集,然后利用AD0809芯片进行A/D模数转换,再经过AT89C51芯片进行处理,最后通过LED数码管显示温度。

DS18B20中文资料

第一部分:DS18B20的封装和管脚定义 首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO(DS18B20Z)和μSOP(DS18B20U)形式封装的产品,下面为DS18B20各种封装的图示及引脚图。 了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即

为该芯片的管脚定义: 上面的表中提到了一个“奇怪”的词——“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD 引脚,此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp)中,当总线为低电平时释放能量供给器件工作使用。所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。 第二部分:DS18B20的多种电路连接方式 如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。 (1)外部供电模式下的单只DS18B20芯片的连接图

(2)外部供电模式下的多只DS18B20芯片的连接图 这里需要说明的是,DS18B20芯片通过达拉斯公司的单总线协议依靠一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。在多只DS18B20连接时,每个DS18B20都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的DS18B20,这一特性在环境控制、探测建

(推荐)热敏电阻测温电路

热敏电阻测温电路 热敏电阻测量电路 本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 2.2.1 原理电路 本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。 RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。S 为转换开关。 图2.2.1 测温控温电路由RT检测到的温度信息,输入D1的反馈回路。该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。当被控对象的实际温度升到预设值时, D4同相输入电压的绝对值大于反相输入电压的绝对值, D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。如此反复运行,达到预设的控温目的。

2.2.2 主要元器件选择本测温控温电路选用PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内, 其电阻-温度特性见图2.2.3. 图2.2.2 线化电路线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。继电器的选型取决于负载功率。为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。 2.2.3 安装与调试调试工作主要是调整指示器的零点和满度指示。先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。然后将S接通R1,调节RP2使微安表指满度。最后,按RT的标准阻-温曲线,将RP3调到与设定温度相应的阻值,即可投入使用。本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃.

相关文档
最新文档