高三物理各类考试分类汇编专题九磁场
高考物理专题电磁学知识点之磁场分类汇编及解析
![高考物理专题电磁学知识点之磁场分类汇编及解析](https://img.taocdn.com/s3/m/0352ed7ead51f01dc281f1d9.png)
高考物理专题电磁学知识点之磁场分类汇编及解析一、选择题1.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,正确表示安培假设中环形电流方向的是()A.B. C.D.2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N2,则以下说法正确的是()A.N1>N2,弹簧长度将变长B.N1>N2,弹簧长度将变短C.N1<N2,弹簧长度将变长D.N1<N2,弹簧长度将变短3.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间4.有关洛伦兹力和安培力的描述,正确的是()A.通电直导线在匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛伦兹力的宏观表现C.带电粒子在匀强磁场中运动受到的洛伦兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行5.如图甲所示,静止在水平面上的等边三角形金属线框,匝数n=20,总电阻R=2.5Ω,边长L=0.3m,处在两个半径均为r=0.1m的圆形匀强磁场中,线框顶点与右侧圆心重合,线框底边与左侧圆直径重合,磁感应强度B1垂直水平面向外;B2垂直水平面向里,,下列说B1、B2随时间t的变化如图乙所示,线框一直处于静止状态,计算过程中取π3法正确的是()A.线框具有向左的运动趋势B.t=0时刻穿过线框的磁通量为0.5WbC.t=0.4s时刻线框中感应电动势为1.5VD.0-0.6s内通过线框横截面电荷量为0.018C6.如图所示,用一细线悬挂一根通电的直导线ab(忽略外围电路对导线的影响),放在螺线管正上方处于静止状态,与螺线管轴线平行,可以在空中自由转动,导线中的电流方向由a指向b。
专题九磁场
![专题九磁场](https://img.taocdn.com/s3/m/4cba2770be1e650e52ea99ed.png)
专题九磁场1.如图所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来,此时磁铁对水平面的压力为N1,现在磁铁左上方位置固定一导体棒,当导体棒中通以垂直纸面向里的电流后,磁铁对水平面的压力为N2 ,则以下说法正确的是()A.弹簧长度将变长 B.弹簧长度将变短C.N1>N2 D.N1<N22.电子作近核运动的时候,产生了垂直于相对运动方向的磁场。
如下图所示,为某种用来束缚原子的磁场的磁感线分布情况,以O点(图中白点)为坐标原点,沿z轴正方向磁感应强度大小的变化最有可能为()3.如图所示,一个半径为R的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B 大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向)。
若导线环上载有如图所示的恒定电流I,则下列说法正确的是()A.导电圆环所受安培力方向竖直向下B.导电圆环所受安培力方向竖直向上C.导电圆环所受安培力的大小为2BIRD.导电圆环所受安培力的大小为2πBIRsinθ4.电视显像管上的图像是电子束打在荧光屏的荧光点上产生的。
为了获得清晰的图像电子束应该准确地打在相应的荧光点上。
电子束飞行过程中受到地磁场的作用,会发生我们所不希望的偏转。
关于从电子枪射出后自西向东飞向荧光屏的过程中电子由于受到地磁场的作用的运动情况(重力不计)正确的是A.电子受到一个与速度方向垂直的恒力B.电子在竖直平面内做匀变速曲线运动C.电子向荧光屏运动的过程中速率不发生改变D.电子在竖直平面内的运动轨迹是圆周5.如图所示,有一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd的中点,如果在a点沿对角线方向以速度v射入一带负电的带电粒子,恰好从e点射出,则()A.如果粒子的速度增大为原来的二倍,将从d点射出B.如果粒子的速度增大为原来的三倍,将从f点射出C.如果粒子的速度不变,磁场的磁感应强度变为原来的二倍,也将从d点射出N SD.只改变粒子的速度使其分别从e、d、f点射出时,从f点射出所用时间最短6.正方形区域ABCD中有垂直于纸面向里的匀强磁场,一个α粒子(不计重力)以一定速度从AB边的中点M沿既垂直于AB边又垂直于磁场的方向射入磁场,正好从AD边的中点N射出。
高中物理【磁场】专题分类典型题(带解析)
![高中物理【磁场】专题分类典型题(带解析)](https://img.taocdn.com/s3/m/1f3316acff00bed5b8f31d9b.png)
高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。
高考物理廊坊电磁学知识点之磁场分类汇编附答案解析
![高考物理廊坊电磁学知识点之磁场分类汇编附答案解析](https://img.taocdn.com/s3/m/9af9915eaef8941ea66e05a3.png)
高考物理廊坊电磁学知识点之磁场分类汇编附答案解析一、选择题1.如图,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是( )A .桌面对磁铁的支持力增大B .桌面对磁铁的支持力减小C .桌面对磁铁的支持力不变D .以上说法都有可能2.如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为2R .已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A .2qBR mB .qBR mC .32qBR mD .2qBR m3.回旋加速器是加速带电粒子的装置.其核心部分是分别与高频交流电源两极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .减小磁场的磁感应强度B .增大匀强电场间的加速电压C .增大D 形金属盒的半径D .减小狭缝间的距离4.如图所示,有abcd四个离子,它们带等量的同种电荷,质量不等.有m a=m b<m c=m d,以不等的速度v a<v b=v c<v d进入速度选择器后有两种离子从速度选择器中射出,进入B2磁场,由此可判定( )A.射向P1的是a离子B.射向P2的是b离子C.射到A1的是c离子D.射到A2的是d离子5.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间6.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( )A.轨迹为pb,至屏幕的时间将小于tB.轨迹为pc,至屏幕的时间将大于tC.轨迹为pa,至屏幕的时间将大于tD.轨迹为pb,至屏幕的时间将等于t7.如图,一带电粒子在正交的匀强电场和匀强磁场中做匀速圆周运动。
高考物理专题电磁学知识点之磁场全集汇编含答案解析
![高考物理专题电磁学知识点之磁场全集汇编含答案解析](https://img.taocdn.com/s3/m/e42651b114791711cc7917d9.png)
高考物理专题电磁学知识点之磁场全集汇编含答案解析一、选择题1.如图所示,空间中存在在相互垂直的匀强电场和匀强磁场,有一带电液滴在竖直面内做半径为R的匀速圆周运动,已知电场强度为E,磁感应强度为B,重力加速度为g,则液滴环绕速度大小及方向分别为()A.EB,顺时针B.EB,逆时针C.BgRE,顺时针D.BgRE,逆时针2.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。
如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。
分别加速氘核和氦核,下列说法正确的是()A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能3.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。
质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。
若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是()A.该束粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D.在B2磁场中运动半径越大的粒子,比荷qm越小4.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。
线圈中a、b两条导线长度均为l,未通电流时,a、b处于图乙所示位置,两条导线所在处的磁感应强度大小均为B。
通电后,a导线中电流方向垂直纸面向外,大小为I,则()A.该磁场是匀强磁场B.线圈平面总与磁场方向垂直C.线圈将逆时针转动D.a导线受到的安培力大小始终为BI l5.对磁感应强度的理解,下列说法错误的是()A.磁感应强度与磁场力F成正比,与检验电流元IL成反比B.磁感应强度的方向也就是该处磁感线的切线方向C.磁场中各点磁感应强度的大小和方向是一定的,与检验电流I无关D.磁感线越密,磁感应强度越大6.有关洛伦兹力和安培力的描述,正确的是()A.通电直导线在匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛伦兹力的宏观表现C.带电粒子在匀强磁场中运动受到的洛伦兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行7.教师在课堂上做了两个小实验,让小明同学印象深刻。
高考物理课件 第九章 磁场 专题九课件
![高考物理课件 第九章 磁场 专题九课件](https://img.taocdn.com/s3/m/ab8c16a8b14e852458fb57df.png)
角度 3 电场、磁场与重力场叠加
例 6 (2017·新课标全国卷Ⅰ,16)如图,空间某区域存在匀强
电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直 于纸面向里.三个带正电的微粒 a、b、c 电荷量相等,质量分别为 ma、mb、mc.已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸 面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列 选项正确的是( )
例 2 如图所示,一个质量为 m、电荷量为 q 的正离子,在 D
处沿图示方向以一定的速度射入磁感应强度为 B 的匀强磁场中,磁 场方向垂直纸面向里.结果离子正好从距 A 点为 d 的小孔 C 沿垂直 于电场方向进入匀强电场,此电场方向与 AC 平行且向上,最后离 子打在 G 处, 而 G 处距 A 点 2d(AG⊥AC)不计离子重力,离子运 动轨迹在纸面内.求:
【解析】 设质子质量为 m,电荷量为 q,则氘核质量为 2m,
A.E′k=Ek B.E′k>Ek C.E′k<Ek D.条件不足,难以确定
【解析】 设质子的质量为 m,则氘核的质量为 2m.在加速电 场中,由动能定理可得 eU=12mv2,在复合场内,由 Bqv=qE 得 v =EB;同理对于氘核由动能定理可得离开加速电场的速度比质子的 速度小,所以当它进入复合场时所受的洛伦兹力小于电场力,将往 电场力方向偏转,电场力做正功,故动能增大,选项 B 正确.
【解析】 由 A、B 相碰时动量守恒 mv=2mv′,有 v′=v2. 据题意碰后 A、B 合成的大油滴仍受重力与电场力平衡,合外力是 洛伦兹力,所以继续做匀速圆周运动,且有
r=2m2qvB′=2mqvB=R2 T=22πq2Bm=2qπBm 转动半径为R2,周期不变.选项 B 正确. 【答案】 B
高考物理复习知识点与解题方法专题讲解9---磁场
![高考物理复习知识点与解题方法专题讲解9---磁场](https://img.taocdn.com/s3/m/cd8f07e2fe4733687f21aa3b.png)
无磁极、非匀强且 相似,管内为匀强 N 极和 S 极且离圆
距导线越远处磁场
磁场且磁场最强, 环中心越远,磁场
越弱管外为非匀强磁场 Nhomakorabea越弱安培
定则
三、安培力的大小和方向 1.安培力的大小 (1)磁场和电流垂直时,F=BIL. (2)磁场和电流平行时:F=0. 2.安培力的方向 (1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同 一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向
v2 (1)向心力公式:qvB=m r .
mv (2)轨道半径公式:r=Bq.
5 / 15
2πr 2πm 1 Bq
2π
Bq
(3)周期公式:T= v = qB ;f=T=2πm;ω= T =2πf= m .
特别提示:T 的大小与轨道半径 r 和运行速率 v 无关,只与磁场的磁感应强度 B
q 和粒子的比荷m有关.
高考物理复习知识点与解题方法专题讲解
9 《磁场》 第一节 磁场的描述 磁场对电流的作用
【基本概念、规律】 一、磁场、磁感应强度 1.磁场 (1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用. (2)方向:小磁针的 N 极所受磁场力的方向. 2.磁感应强度 (1)物理意义:描述磁场强弱和方向.
考点二 安培力作用下导体运动情况的判定 1.判定通电导体在安培力作用下的运动或运动趋势,首先必须弄清楚导体所在位
3 / 15
置的磁场分布情况,然后利用左手定则准确判定导体的受力情况,进而确定导体的运 动方向或运动趋势的方向.
2.在应用左手定则判定安培力方向时,磁感线方向不一定垂直于电流方向,但安 培力方向一定与磁场方向和电流方向垂直,即大拇指一定要垂直于磁场方向和电流方 向决定的平面.
2020年浙江省学考选考浙江物理53A高三物理复习资料专题九磁场
![2020年浙江省学考选考浙江物理53A高三物理复习资料专题九磁场](https://img.taocdn.com/s3/m/e10927eb5acfa1c7aa00ccd9.png)
专题九磁场挖命题【考情探究】考点考向5年考情预测热度考试要求考题示例关联考点素养要素磁场、安培力磁现象和磁场b2016.04选考,4,3分2018.04选考,12,3分2017.04选考,3,3分物质观念★★☆☆☆磁感应强度c2018.06学考,18,2分2018.04选考,12,3分科学论证★★★☆☆几种常见的磁场b2018.11选考,7,3分2018.06学考,9,2分2017.04选考,9,3分物质观念★★★☆☆通电导线在磁场中受到的力d2018.11选考,22,10分2018.06学考,21,6分2018.04选考,7,3分2016.10选考,10,3分2015.10选考,9,3分2016.04选考,9,3分闭合电路欧姆定律、电磁感应科学本质★★★★☆洛伦兹力、带电粒子在匀强磁场中的运动运动电荷在磁场中受到的力c2018.11选考,10,3分2017.11选考,23,10分科学本质★★☆☆☆带电粒子在匀强磁场中的运动d2018.11选考,10,3分2018.11选考,23,10分2018.04选考,22,10分2017.11选考,23,10分2017.11选考,8,3分带电粒子在电场中的运动、动量定理科学论证★★★★☆分析解读本专题是考查的热点,以往浙江省高考物理中关于带电粒子在复合场中的运动几乎每年必考,近两年浙江选考仍将带电粒子在电磁场中的运动作为考查重点,且通常将力与运动的关系、功能关系和电磁场等知识综合,主要以计算题形式出现,难度较高,也会以选择题形式出现,该题型通常涉及安培定则、安培力与左手定则等知识,难度较低,但对学生的空间思维能力要求较高。
本专题知识与现代科技联系较多,如带电粒子在磁场中运动与速度选择器、质谱仪、回旋加速器、等离子发电机、电磁流量计、霍尔效应等联系密切,对学生的知识应用要求较高。
【真题典例】破考点【考点集训】考点一磁场、安培力1.(2018浙江6月学考,9)如图所示,小磁针a、b、c、d放在通电螺线管产生的磁场中,稳定后指向正确的是()A.磁针aB.磁针bC.磁针cD.磁针d【参考答案】D2.(2019届浙江台州中学9月统练,11)如图所示,无限长导线均通以恒定电流I,直线部分和坐标轴接近重合,弯曲部分是以坐标原点O为圆心的相同半径的一段圆弧,已知直线部分在原点O处不形成磁场,在第一象限圆弧电流在原点产生的磁感应强度为B,现在原点O处放一小段与x轴重合的长为L的通电导线P(可以视为电流元),导线P的电流大小为I,电流方向沿x轴正方向,则通电导线P受到的安培力的大小和方向是()A.2BIL,方向与y轴正方向相同B.2BIL,方向与y轴负方向相同C.4BIL,方向与y轴正方向相同D.4BIL,方向与y轴负方向相同【参考答案】A3.(2018浙江4月选考,7,3分)处于磁场B中的矩形金属线框可绕轴OO'转动,当线框中通以电流I时,如图所示,此时线框左右两边受安培力F的方向正确的是()【参考答案】D考点二洛伦兹力、带电粒子在匀强磁场中的运动1.(2017浙江11月选考,8,3分)如图所示,在两水平金属板构成的器件中,存在着匀强电场与匀强磁场,电场强度E和磁感应强度B相互垂直。
专题九 第1讲 磁场 磁场对电流的作用
![专题九 第1讲 磁场 磁场对电流的作用](https://img.taocdn.com/s3/m/aaeae3280066f5335a81213c.png)
则可知在磁针所处的磁场方向沿OO′轴向左,由于磁针N 极指
向为磁场方向,所以应选C. 答案:C
6.如图 9-1-2 所示,a、b、c 三枚小磁针分别放在通电螺 线管的正上方、管内和右侧.当这些小磁针静止时,小磁针 N 极 的指向是( ) A.a、b、c 均向左 B.a、b、c 均向右
C.a 向左,b 向右,c 向右
磁场力 F 的方向相同
解析:根据磁感应强度的定义,A 正确;通电导线(电流 I )
与磁场平行时,磁场力为零,B 错误;C 中结论成立的前提是
通电导线(电流 I )必须与磁场垂直,C 错误;B 与F 方向一定垂 直,D 错误. 答案:A
3.(双选)关于磁感线,下列说法中正确的是(
)
A.磁感线上每一点的切线方向都跟该点的磁场方向一致 B.磁感线是磁场中客观存在的、肉眼看不见的曲线
(2)特点:不仅与B、I、L有关,还与夹角θ有关;L是有效 长度,不一定是导线的实际长度.弯曲导线的有效长度 L 等于 两端点所连直线的长度,所以任意形状的闭合线圈的有效长度
L=0.
(3)安培力的方向:安培力的方向既与磁场方向垂直,又与
电流的方向垂直,即 F 总是垂直于 B 和 I 所在的平面,可以用 左手定则来判定.
N 闭合 (3)磁感线是永不相交的_____曲线:在磁体外部,从___极
S N 指向___极;在磁体内部,由___极指向___极. S (4)注意:熟记条形磁体、蹄形磁体、直线电流、环形电流、 通电螺线管的磁感线分布状况.
4.磁通量 (1)定义:设在磁感应强度为B的匀强磁场中,有一个面积
为S且与磁场方向垂直的平面,磁感应强度B与面积 S 的乘积,
(4)推论分析法:两电流相互平行时无转动趋势,方向相同
高考物理一轮复习 专题九 磁场课件
![高考物理一轮复习 专题九 磁场课件](https://img.taocdn.com/s3/m/dfc7112a770bf78a642954b1.png)
临界状态不唯一
带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因 此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,于是形成多解
(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小; (2)已知一粒子的初速度大小为v(v>v1),为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x轴 正向的夹角)有几个?并求出对应的sin θ值; (3)如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿y轴 正向发射。研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所 在位置的y坐标成正比,比例系数与场强大小E无关。求该粒子运动过程中的最大速度值vm。
解题思路 解答本题要求能够做到物理与数学相结合。图中的OA若从数学角度看其实就是一 条弦,过该弦可以作出两个相交圆,两相交圆对应的两切线即为所求的粒子速度方向所在直线。 解析 (1)带电粒子以速率v在匀强磁场B中做匀速圆周运动,半径为R,有
qvB=m v 2 ①
R
当粒子以初速度v1沿y轴正向入射,转过半个圆qB
例2 如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T。磁 场内有一块平面感光板ab,板面与磁场方向平行。在距ab为l=16 cm处,有一个点状的α粒子放射
源S,它向各个方向发射α粒子,α粒子的速率都是v=3.0×106 m/s。已知α粒子的电荷量与质量之
方法二 带电粒子在磁场中运动的多解问题的分析方法
2025年高考物理总复习专题九磁场第1讲磁场、磁场对电流的作用
![2025年高考物理总复习专题九磁场第1讲磁场、磁场对电流的作用](https://img.taocdn.com/s3/m/a726b1507dd184254b35eefdc8d376eeaeaa17c1.png)
第1讲磁场、磁场对电流的作用知识巩固练1.(2023年佛山模拟)如图(俯视图),在竖直向下、磁感应强度大小为2 T的匀强磁场中,有一根长0.4 m的金属棒ABC从中点B处折成60°角静置于光滑水平面上,当给棒通以由A 到C、大小为5 A的电流时,该棒所受安培力为()A.方向水平向右,大小为4.0 NB.方向水平向左,大小为4.0 NC.方向水平向右,大小为2.0 ND.方向水平向左,大小为2.0 N【答案】D【解析】金属棒的有效长度为AC,根据几何知识得L=0.2 m,根据安培力公式得F=BIL=2×5×0.2=2 N,根据左手定则可判定安培力水平向左,故A、B、C错误,D正确.2.(2023年北京昌平二模)如图所示为电流天平,可以用来测量匀强磁场的磁感应强度.它的右臂挂有一个矩形线圈,匝数为N,底边长为L,下部悬在匀强磁场中,线圈平面与磁场垂直.当线圈中通有电流I时,调节砝码使两臂达到平衡;然后使电流反向、大小不变,这时需要在左盘中增加质量为m的砝码,才能使两臂达到新的平衡.所测磁场的磁感强度B的大小为()A.mg2NIL B.2mgNILC.NIL2mgD.2NILmg【答案】A【解析】根据平衡条件有mg=2NBIL,解得B=mg2NIL,A正确.3.(2022年华师附中测试)(多选)在匀强磁场中放入一条通电短导线,并将它固定.然后改变导线中通入的电流,画出该导线所受安培力的大小F与通过导线电流I的关系图像,其中图A为曲线.M、N各代表一组F、I的数据.则在下列四幅图中,你认为可能正确的是()A BC D【答案】BD【解析】在匀强磁场中,通电导线受到的安培力为F=BIL sin θ,当电流方向与磁场方向平行时,安培力为0.当电流方向与磁场方向不平行时,在匀强磁场中,安培力与电流大小成正比,F-I图像为过原点的直线.故B、D正确.4.如图所示,水平导轨接有电源,导轨上固定有三根用同种材料制作的导体棒a、b、c,其中b最短,c为直径与b等长的半圆,导体的电阻与其长度成正比,导轨电阻不计.现将装置置于向下的匀强磁场中,接通电源后,三根导体棒中均有电流通过,则它们受到安培力的大小关系为() A.F a>F b=F c B.F a=F b>F cC.F a=F b=F cD.F a>F b>F c【答案】B【解析】导体棒a、b、c的有效长度相等,但c的电阻大于a、b,所以通过c 的电流小于a、b.由F=BIL,可知B正确,A、C、D错误.5.如图所示,在匀强磁场中,有一个正六边形线框.现给线框通电,正六边形线框中依次相邻的四条边受到的安培力的合力大小是F,则正六边形线框的每条边受到的安培力的大小为()F B.F C.√3F D.2FA.√33【答案】A【解析】根据左手定则,依次相邻的四条边中相对的两条边受的安培力等大反向合力为零,中间相邻的两条边受安培力方向夹角为60°,每边受安培力设为F1,则2F1cos F,A正确.30°=F,可得F1=√33综合提升练6.(2023年朝阳模拟)如图甲所示,在匀强磁场中,质量为m、长为L的导体棒用两根等长绝缘细线悬挂于同一水平线上的O、O'两点,两细线均与导体棒垂直.图乙中直角坐标系的x 轴与导体棒及OO'平行,z轴竖直向上.若导体棒中通以沿x轴正方向、大小为I的电流,导体棒静止时细线与竖直方向夹角为θ.则磁感应强度可能()A.沿x轴正方向,大小为mgILB.沿y轴正方向,大小为mgcos θILC.沿z轴正方向,大小为mgtan θILD.沿细线向下,大小为mgsin θIL【答案】D【解析】若磁感应强度沿x轴正方向,与电流方向同向,导体棒不受安培力.导体棒不可能在图示位置保持静止,A错误;若磁感应强度沿y轴正方向,由左手定则,导体棒受安培力竖直向上,导体棒不可能在图示位置保持静止,B错误;沿z轴正方向,由左手定则,导体棒受安培力水平向左,导体棒不可能在图示位置保持静止,C错误;沿细线向下,大小为mgsin θ,安培力大小F安=mg sin θ,方向与细线垂直斜向右上方.安培力与细线的拉力IL的合力恰好与重力平衡.且导体棒静止时细线与竖直方向夹角为θ,D正确.7.(多选)如图所示,两平行导轨ab,cd竖直放置在匀强磁场中,匀强磁场方向竖直向上,将一根金属棒PQ放在导轨上使其水平且始终与导轨保持良好接触.现在金属棒PQ中通以变化的电流I,同时释放金属棒PQ使其运动.已知电流I随时间t变化的关系式为I=kt(k为常数,k>0),金属棒与导轨间存在摩擦.则下面关于棒的速度v、加速度a随时间t变化的关系图像中,可能正确的有()A B C D,F f=μF N=μF安【答案】AD【解析】根据牛顿第二定律,得金属棒的加速度a=mg-F fm=μBIL=μBLkt,联立解得加速度a=g-μBLkt,与时间呈线性关系,且t=0时,a=g,故A正确,mB错误;因为开始加速度方向向下,与速度方向相同,做加速运动,加速度逐渐减小,即做加速度逐渐减小的加速运动,然后加速度方向向上且逐渐增大,做加速度逐渐增大的减速运动,故C错误,D正确.8.(2023年大同模拟)(多选)如图所示,正三角形的三个顶点a、b、c处,各有一条垂直于纸面的长直导线.a、c处导线的电流大小相等,方向垂直纸面向外,b处导线电流是a、c处导线电流的2倍,方向垂直纸面向里.已知长直导线在其周围某点产生磁场的磁感应强度与电流成正比、与该点到导线的距离成反比.关于b、c处导线所受的安培力,下列表述正确的是()A.方向相反B.方向夹角为60°C.大小的比值为√3D.大小的比值为2【答案】AD【解析】如图所示,结合几何关系知b、c处导线所受安培力方向均在平行纸面方向,方向相反,A正确,B错误;设导线长度为L,导线a在b处的磁感应强度大小为B,结合几何关系知b处磁感应强度为B合=√3B,b导线受安培力为F安=B合(2I)L=2√3BIL,c处磁感应强度为B'合=√3B,c导线受安培力为F'安=B'合IL=√3BIL,联立解得F 安F'安=2,C错误,D 正确.9.如图所示,在磁感应强度B=1 T,方向竖直向下的匀强磁场中,有一个与水平面成θ=37°角的导电滑轨,滑轨上放置一个可自由移动的金属杆ab.已知接在滑轨中的电源电动势E=12 V,内阻不计.ab杆长L=0.5 m,质量m=0.2 kg,杆与滑轨间的动摩擦因数μ=0.1,滑轨与ab 杆的电阻忽略不计.要使ab杆在滑轨上保持静止,求滑动变阻器R的阻值的变化范围(g取10 m/s2,sin 37°=0.6,cos 37°=0.8,可认为最大静摩擦力等于滑动摩擦力,结果保留1位有效数字).解:分别画出ab杆在恰好不下滑和恰好不上滑这两种情况下的受力分析图,如图所示.甲乙当ab杆恰好不下滑时,如图甲所示.由平衡条件,得沿滑轨方向mg sin θ=μF N1+F安1cos θ,垂直滑轨方向F N1=mg cos θ+F安1sin θ,L,解得R1≈5 Ω.而F安1=B ER1当ab杆恰好不上滑时,如图乙所示.由平衡条件,得沿斜面方向mg sin θ+μF N2=F安2cos θ,垂直斜面方向F N2=mg cos θ+F安2sin θ,L,解得R2≈3 Ω.而F安2=B ER2要使ab杆保持静止,R的取值范围是3 Ω≤R≤5 Ω.。
高考必考磁场知识点
![高考必考磁场知识点](https://img.taocdn.com/s3/m/08e4616c0622192e453610661ed9ad51f11d546f.png)
高考必考磁场知识点磁场是一个在空间内产生磁力的区域,磁场是磁力的载体。
在高考物理考试中,磁场是必考的知识点之一。
本文将介绍高考物理中与磁场相关的重要概念和公式,以帮助考生更好地复习和应对高考。
一、磁感线和磁感应强度磁感线是用来描述磁场分布的线条,在磁场中,磁感线由南极指向北极,密集表示磁感应强度大,稀疏表示磁感应强度小。
磁感应强度是一个矢量量,用符号B表示,单位是特斯拉(T)。
二、磁场中的磁力在磁场中,物体所受到的磁力可以通过洛伦兹力定律来计算。
洛伦兹力定律表示磁力F等于电荷q在磁场中运动时的速度v与磁感应强度B的乘积,即F=qvB。
利用洛伦兹力定律,我们可以计算磁场中物体所受到的力的大小和方向。
三、电流产生的磁场根据奥伦尼克定律,电流会在周围产生磁场。
电流所产生的磁场可以通过安培环路定理来计算。
安培环路定理表示沿着闭合曲线的磁场强度B乘以环路的长度L等于该曲线围绕的电流I的代数和,即B×L=μ0I。
其中μ0是真空中的磁导率,其值约为4π×10^-7 T·m/A。
四、磁力对流体和电荷运动的影响在磁场中,磁力不仅会作用于物体,也会对电荷和流体运动产生影响。
当电荷以速度v进入磁场区域,将受到洛伦兹力的作用,其大小为F=qvB,方向垂直于速度和磁感应强度的平面。
当带电粒子在磁场中作圆周运动时,圆周半径可以通过运动方程r=mv/(eB)计算。
五、磁场中的电磁感应磁场变化时,会产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小等于磁通量Φ对时间的变化率的负值,即ε=-dΦ/dt。
磁通量Φ等于磁感应强度B与垂直于磁感应强度的面积A的乘积,即Φ=BA。
根据楞次定律,感应电流的方向使得产生的磁场抵消原磁场变化。
六、匀强磁场中的运动粒子在匀强磁场中,带电粒子将会受到洛伦兹力的作用,其方向垂直于速度和磁感应强度的平面。
这种情况下,带电粒子将作匀速圆周运动。
匀强磁场中的运动粒子可以通过运动方程qBv=mv^2/r计算圆周半径。
高中物理--磁场专题
![高中物理--磁场专题](https://img.taocdn.com/s3/m/f00db3d7bed5b9f3f90f1ceb.png)
磁场一.知识点梳理考试要点基本概念一、磁场和磁感线(三合一)1、磁场的来源:磁铁和电流、变化的电场2、磁场的基本性质:对放入其中的磁铁和电流有力的作用3、磁场的方向(矢量)方向的规定:磁针北极的受力方向,磁针静止时N极指向。
4、磁感线:切线~~磁针北极~~磁场方向5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则))6、磁感线特点: ① 客观不存在、② 外部N 极出发到S ,内部S 极到N 极③ 闭合、不相交、④ 描述磁场的方向和强弱 二.磁通量(Φ 韦伯 Wb 标量)通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通 二.磁通密度(磁感应强度B 特斯拉T 矢量)大小:通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。
SB Φ=1 T = 1 Wb / m2 方向:B 的方向即为磁感线的切线方向 意义:1、描述磁场的方向和强弱 2、由场的本身性质决定 三.匀强磁场1、定义:B 的大小和方向处处相同,磁感线平行、等距、同向2、来源:①距离很近的异名磁极之间 ②通电螺线管或条形磁铁的内部,边缘除外 四.了解一些磁场的强弱永磁铁―10 -3 T ,电机和变压器的铁芯中―0.8~1.4 T超导材料的电流产生的磁场―1000T ,地球表面附近―3×10-5~7×10-5 T 比较两个面的磁通的大小关系。
如果将底面绕轴L 旋转,则磁通量如何变化?地球磁场 通电直导线周围磁场 通电环行导线周围磁场NSLⅡ 磁场对电流的作用——安培力一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。
(向里和向外的表示方法(类比射箭))规律:(1)左手定则(2)F ⊥B ,F ⊥I ,F 垂直于B 和I 所决定的平面。
但B 、I 不一定垂直安培力的大小与磁场的方向和电流的方向有关,两者夹角为900时,力最大,夹角为00时,力=0。
高三物理 第九章 磁场
![高三物理 第九章 磁场](https://img.taocdn.com/s3/m/2cddea85f524ccbff12184ec.png)
高三物理 第九章 磁场一、基本概念1.磁场的产生 ⑴磁极周围有磁场。
⑵电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
⑶变化的电场在周围空间产生磁场(麦克斯韦)。
2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
3.磁感应强度ILFB(条件是L ⊥B ;在匀强磁场中或ΔL 很小。
) 磁感应强度是矢量。
单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2) 4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。
⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
二、安培力 (磁场对电流的作用力)1.安培力方向的判定 ⑴用左手定则。
⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。
可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则分别判定每半根导线所受的安培力。
例1.如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?条形磁铁通电环行导线周围磁场通电长直螺线管内部磁场 通电直导线周围磁场解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90º后平移)。
高三物理磁场知识点知识点总结
![高三物理磁场知识点知识点总结](https://img.taocdn.com/s3/m/0d8312610640be1e650e52ea551810a6f524c8b4.png)
高三物理磁场知识点知识点总结高三物理磁场知识点总结在高三物理的学习中,磁场是一个重要且具有一定难度的部分。
理解和掌握磁场的相关知识,对于解决物理问题、应对高考至关重要。
下面就让我们一起来梳理一下磁场的重要知识点。
一、磁场的基本概念1、磁场的定义:磁场是存在于磁体、电流和运动电荷周围空间的一种特殊物质。
2、磁场的基本性质:磁场对放入其中的磁体、电流和运动电荷有力的作用。
3、磁感应强度:描述磁场强弱和方向的物理量,符号为 B。
定义式为 B = F/IL(F 为通电导线在磁场中受到的安培力,I 为导线中的电流,L 为导线在磁场中的有效长度)。
磁感应强度是矢量,其方向为小磁针静止时 N 极所指的方向。
二、常见的磁场1、条形磁铁的磁场:外部磁场从 N 极出发,回到 S 极,内部从 S 极到 N 极,形成闭合曲线。
2、蹄形磁铁的磁场:与条形磁铁类似,两端为磁极,磁场分布也呈现出从 N 极到 S 极的规律。
3、通电直导线的磁场:右手螺旋定则(安培定则),用右手握住导线,让伸直的大拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
4、通电螺线管的磁场:同样用右手螺旋定则,让右手弯曲的四指与电流的环绕方向一致,大拇指所指的那一端就是通电螺线管的N 极。
三、安培力1、定义:通电导线在磁场中受到的力称为安培力。
2、大小:F =BILsinθ(θ 为电流方向与磁感应强度方向的夹角)。
当电流方向与磁场方向垂直时(θ = 90°),F = BIL;当电流方向与磁场方向平行时(θ = 0°或 180°),F = 0。
3、方向:左手定则判断。
伸开左手,让磁感线垂直穿过手心,四指指向电流方向,大拇指所指的方向就是安培力的方向。
四、洛伦兹力1、定义:运动电荷在磁场中受到的力称为洛伦兹力。
2、大小:F =qvBsinθ(q 为电荷电量,v 为电荷运动速度,θ 为速度方向与磁感应强度方向的夹角)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C DEF U CDB I专题九 磁场1.(2013·天津新华中学高三第三次月考,1题)下图中标出了磁感应强度B 、电流I 和其所受磁场力F 的方向,正确的是( )【答案】A【解析】根据左手定则可判断,A 正确;B 不受磁场力的作用;C 图F 的方向应向上;D 图F 的方向应垂直纸面向外。
2.(2013·天津和平一模,3题)如图所示,一个边长L 、三边电阻相同的正三角形金属框放置在磁感应强度为B 的匀强磁场中。
若通以图示方向的电流(从A 点流入,从C 点流出),电流强度I ,则金属框受到的磁场力为 A .0 B .ILB C .43ILB D .2ILB 【答案】B【解析】本题考查对基本概念的理解。
由通电导线在磁场中所受安培力大小的计算公式F BIL =可知选项B 正确。
3.(2013·天津宝坻高三模拟,5题)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域。
如图是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,通入图示方向的电流I ,C 、D 两侧面会形成电势差U CD ,下列说法中正确的是 A .电势差U CD 仅与材料有关B .若霍尔元件的载流子是自由电子,则电势差U CD >0C .仅增大磁感应强度时,电势差U CD 变大D .在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平 【答案】C【解析】若霍尔元件的载流子是自由电子,根据左手定则可知,电子向C 侧面偏转,C 表面带负电,D 表面带正电,所以D 表面的电势高,则U CD <0,选项B 错误。
CD 间存在电势差,之间就存在电场,电子在电场力和洛伦兹力作用下处于平衡,设霍尔元件的长宽高分别为a 、b 、c ,有qCD U b=qvB ,I=nqvS=nqvbc ,则U CD =BInqc ,故A 错误C 正确.在测定地球赤道上方的地磁场强弱时,应将元件的工作面保持竖直,让磁场垂直通过,故D 错误.故选C .4.(2013·天津河东二模,11题)(18分)如图所示,一根电阻为R=12 的电阻丝做成一个半径为r=1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B=0.2T ,现有一根质量为m=0.1kg ,电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为2r 时,棒的速度大小为18=/3v m s ,下落到经过圆心时棒的速度大小为210=/3v m s ,(取g=10m/s 2)试求:(1)下落距离为2r时棒的加速度;(2)从开始下落到经过圆心的过程中线框中产生的焦耳热。
【答案】见解析 【解析】5.(2013·天津和平二模,11题)(18分)如图所示,在—个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径24A A 为边界的两个半圆形区域I 、II 中,24A A 与13A A的夹角为60。
—质量为m 、带电量为+q 的粒子以某—速度从I 区的边缘点1A 处沿与13A A 成30角的方向射入磁场,随后该粒子以垂直于24A A 的方向经过圆心O 进入II 区,最后再从4A 处射出磁场。
已知该粒子从射入到射出磁场所用的时间为t ,(忽略粒子重力)。
求:(1)画出粒子在磁场I 和II 中的运动轨迹;.(2)粒子在磁场I 和II 中的轨道半径1r 和2r 比值; (3)I 区和II 区中磁感应强度的大小【答案】见解析 【解析】6.(2013·天津和平一模,12题)(20分)如图所示,方向垂直纸面向里的匀强磁场的边界,是一个半径为r 的圆,圆心O 1在x 轴上,OO 1距离等于圆的半径。
虚线MN 平行于x 轴且与圆相切于P 点,在MN 的上方是正交的匀强电场和匀强磁场,电场强度的大小为E ,方向沿x 轴的负方向,磁感应强度为B ,方向垂直纸面向外。
有—群相同的正粒子,以相同的速率,在纸面内沿不同方向从原点O 射入第I 象限,粒子的速度方向在与x 轴成o=30 角的范围内,其中沿x 轴正方向进入磁场的粒子经过P 点射入MN 后,恰好在正交的电磁场中做直线运动。
粒子的质量为m .电荷量为q(不计粒子的重力)。
求: (1)粒子的初速率;(2)圆形有界磁场的磁感应强度:(3)若只撤去虚线MN 上面的磁场B ,这些粒子经过y 轴的坐标范围。
【答案】见解析 【解析】7.(2013·天津市五区县高三第二次质量调查,12题)(20分)如图为实验室筛选带电粒子的装置示意图,竖直金属板MN 之间加有电压,M 板有一电子源,可不断产生速度可忽略不计的电子,电子电荷量为e ,质量为m ,N 板有一与电子源正对的小孔O 。
金属板的右侧是一个半径为R 的圆筒,可以围绕竖直中心轴逆时针转动,圆筒直径两端的筒壁上有两个正对的小孔O1、O2两孔所需要的时间是t=0.2s 。
现圆筒内部有竖直向下的磁场1033me圆筒匀速转动以后,凡是能进入圆筒的电子都能从圆筒中射出来。
试求: (1)金属板MN 上所加电压U 的大小 (2)圆筒转动的最小角速度(3)若要求电子从一个孔进入圆筒后必须从另一个孔射出来,圆筒转动的角速度多大?【答案】见解析【解析】(1)电子通过圆筒时速度为v ,则2R=vt …① 电子通过电场时,根据动能定理得eU =12mv 2…② 由①②式得U =250mRe…③(2)电子通过磁场时半径为r ,则qvB =2v m r…④俯视图如图,电子在通过圆筒时转过的圆心角α,由几何关系知tan2α= Rr…………………………………………………⑤ 由⑤式得α=3π……………………………………………………⑥2m T qB π=…………………………………………………⑦ 电子在圆筒中运动的时间:t =2T απ=πα22Bm q π ………………………⑧ 则圆筒转过的最小角速度:θ=ωt=π-α ………………………………………⑨由⑤⑥⑦⑧⑨式得:ω203rad/s ……………………………………⑩ (3)由前面几何关系知,粒子从另一孔飞出时,圆筒转过的角度:θ=2n π+53π ……………… …………………………………………○11 由⑧○11式得ω1=tθ103(65)n +rad/s n =0、1、2… …………………………○12 评分标准:本题共20分,其中①⑥⑦⑧每式1分 ,其余各式每式2分。
8.(2013·天津河西一模,11题)(1 8分)如图所示,在纸面内建立直角坐标系xoy,以第Ⅲ象限内的直线OM(与负x轴成角45)和正y轴为界,在x<0的区域建立匀强电场,方向水平向左,场强大小E=0.32V/m:以直线OM和正x轴为界,在y>0的区域建立垂直纸面向里的匀强强磁场,磁感应强度B=0.lT.一不计重力的带负电粒子,10m/s’的初速度射入磁场。
己知粒子的比荷为q/m=5×从坐标原点O沿y轴负方向以=2×3610C/kg,求:(1)粒子第一次经过磁场边界时的位置坐标:(2)粒子在磁场区域运动的总时间:(3)粒子最终离开电磁场区域时的位置坐标。
【答案】见解析【解析】9.(2013·天津红桥一模,11题)(18分)如图所示,相距为d的L1和L2两条平行虚线是上下两个匀强磁场的边界,L1上方和L2下方都是垂直纸面向里的磁感应强度为B 的匀强磁场,M、N两点都在L2上,M点有一放射源其放射性元素衰变前原子核的质量为m,它释放出一个质量为m1,带电量为-q的粒子后,产生的新原子核质量为m2,释放出的粒子以初速度v与L2成30o角斜向上射入,经过一段时间恰好斜向上通过N点(不计重力),求:(1)该原子核发生衰变的过程中释放的核能;(2)说明粒子过N点时的速度大小和方向,并求从M 到N的时间及路程。
【答案】见解析【解析】10.(2013·天津南开二模,12题)(20分)如图所示:轻弹簧一端连于固定点O ,可在竖直平面内自由转动;另一端连接一带电小球P ,其质量2210m -=⨯kg ,电荷量q=0.2C 。
将弹簧保持原长拉至水平后,以初速度020/v m s =竖直向下射出小球P ,小球P 到达O 点的正下方1O 点时速度恰好水平,其大小v=15m/s 。
若O 、1O 相距R=1.5m ,小球P 在点1O 与另一由细绳悬挂的、不带电的、质量11.610M -=⨯kg 的静止绝缘小球N 相碰。
碰后瞬间,小球P 脱离弹簧,小球N 脱离细绳,同时在空间加上竖直向上的匀强电场E 和垂直于纸面的磁感应强度B=lT 的匀强磁场。
此后,小球P 在竖直平面内做半径r=0.5m 的匀速圆周运动。
小球P 、N 均可视为质点,小球P 的电荷量保持不变,不计空气阻力,取210/g m s =。
则。
(1)判断小球P 所带电性,并说明理由。
(2)弹簧从水平摆至竖直位置的过程中,其弹性势能变化了多少? (3)请通过计算并比较相关物理量,判断小球P 、N 碰撞后能否在 某一时刻具有相同的速度。
【答案】见解析 【解析】11.(2013·天津市五区县高三第一次质量调查,12题)(20分)如图所示,真空中直角坐标系XOY,在第一象限内有垂直纸面向外的匀强磁场,在第四象限内有垂直纸面向里的匀强磁场,磁感应强度的大小均为B,在第二象限内有沿x轴正向的匀强电场,第三象限内有一对平行金属板M 、N ,两板间距为d 。
所加电压为U ,两板间有垂直纸面向里、磁感应强度为B 0的匀强磁场。
一个正离子沿平行于金属板的轴线射入两板间并做直线运动,从A 点(﹣L ,0)垂直于x 轴进入第二象限,从P (0,2L )进入第一象限,然后离子垂直于x 轴离开第一象限,不计离子的重力,求:(1)离子在金属板间运动速度V 0的大小 (2)离子的比荷q/m(3)从离子进入第一象限开始计时,离子穿越x 轴的时刻【答案】见解析【解析】(1)离子在板间做直线运动,电场力与洛伦兹力平衡 qE=qv 0B 0 ----------2分dUE =------------1分 dB U v 00=------------1分(2)离子在第二象限内做类平抛运动,离子在P点时沿y 轴方向的分速度为v 0,设沿x 方向的分速度为v x2L=v 0t ------------1分 L=12v x t ------------2分 v x =v 0 ------------1分离子在P 点时的速度与y 轴正方向成450角------------1分 此时v=2v 0 ------------1分由几何关系可以确定离子在第一象限的轨道半径为 r=22L ------------2分 根据qvB=m v2r------------1分可得qm =dL BB U Br v 02= ------------2分(3)离子在第一、第二象限内的轨迹如图所示 离子的周期T=2πUdLB v r 04π= ------------1分x离子第一次在第一象限内运动的时间t ′UdL B T 23830π==------------2分 离子穿过x 轴的时刻为t=n T 2+t ′=U dLB n 04832π)(+ n ∈(0,1,2,……) ------------2分12.(2013·天津第三次六校联考,12题)如图所示,在xoy 坐标系坐标原点O 处有一点状的放射源,它向xoy 平面内的x 轴上方各个方向发射α粒子,α粒子的速度大小均为0v ,在d y <<0的区域内分布有指向y 轴正方向的匀强电场,场强大小为qdmv E 232=,其中q 与m 分别为α粒子的电量和质量;在d y d 2<<的区域内分布有垂直于xoy 平面向里的匀强磁场,m n 为电场和磁场的边界.ab 为一块很大的平面感光板垂直于xoy 平面且平行于x 轴,放置于d y 2=处,如图所示.观察发现此时恰好..无粒子打到ab 板上.(不考虑α粒子的重力及粒子间的相互作用),求:(1)α粒子通过电场和磁场边界m n 时的速度大小及距y 轴的最大距离;(2)磁感应强度B 的大小;(3)将ab 板至少向下平移多大距离才能使所有的粒子均能打到板上?此时ab 板上被α粒子打中的区域的长度. 【答案】见解析【解析】(1)根据动能定理:2022121mv mv Eqd -=(2分) 可得: 02v v = (1分)初速度方向与x 轴平行的粒子通过边界mn 时距y 轴最远,由类平抛知识:221at d =ma Eq = t v x 0= 解得:d x 332=(3分)(2)根据上题结果可知:,xO× × × × × ×× × × × × × yd2dbEB m n对于沿x 轴正方向射出的粒子进入磁场时与x 轴正方 向夹角:3πθ=(1分)易知若此粒子不能打到ab 板上,则所有粒子均不能打到ab 板,因此此粒子轨迹必与ab 板相切,可得其圆周运动的半径:d r 32=(2分) 又根据洛伦兹力提供向心力:rmv Bqv 2= (2分)可得: qdmv B 03=(1分) (3)由分析可知沿x 轴负方向射出的粒子若能打到ab 板上,则所有粒子均能打到板上。