微波混频器技术指标与特性分析

微波混频器技术指标与特性分析
微波混频器技术指标与特性分析

微波混频器技术指标与特性分析

一、噪声系数和等效噪声温度比

噪声系数的基本定义已在第四章低噪声放大器中有过介绍。但是混频器中存在多个频率,是多频率多端口网络。为适应多频多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单频线性网络,也可适用于多频响应的外差电路系统,即

(9-1)

式中 Pno ——-当系统输入端噪声温度在所有频率上都是标准温度T0 = 290K 时,系统传输到输出端的总噪声资用功率;

Pns ——仅由有用信号输入所产生的那一部分输出的噪声资用功率。

根据混频器具体用途不同,噪声系数有两种。

一、噪声系数和等效噪声温度比

1、单边带噪声系数

在混频器输出端的中频噪声功率主要包括三部分:

(1)信号频率f s 端口的信源热噪声是kT 0?f ,它

经过混频器变换成中频噪声由中频端口输出。这部分

输出噪声功率是 m f

kT α?0

式中 ?f ——中频放大器频带宽度;αm ——混频器变频损耗;T 0——环境温度,T 0 = 293K 。

(2)由于热噪声是均匀白色频谱,因此在镜频f i 附近?f 内的热噪声与本振频率f p 之差为中频,也将变换成中频噪声输出,如图9-1所示。这部分噪声功率也是kT 0?f /αm 。

(3)混频器内部损耗电阻热噪声以及混频器电流的散弹噪声,还有本机振荡器所携带相位噪声都将变换成输出噪声。这部分噪声可用P nd 表示。

这三部分噪声功率在混频器输出端相互叠加构成混频器输出端总噪声功率P no

nd m m no P f kT f kT P +?+?=αα//00 把P no 等效为混频器输出电阻在温度为T m 时产生的热噪声功率,即P no = kT m ?f ,T m 称混频器等效噪声温度。kT m ?f 和理想电阻热噪声功率之比定义为混频器噪声温度比,即 0

0T T f kT P t m no m =?= 按照定义公式(9-1)规定,可得混频器单边带工作时的噪声系数为 ns m ns no SSB P f kT P P F ?==

在混频器技术手册中常用F SSB 表示单边带噪声系数,其中SSB 是Singal Side Band 的缩写。P ns 是信号边带热噪声(随信号一起进入混频器)传到输出端的噪声功率,它等于kT 0?f /αm 。因此可得单边带噪声系数是 m m m

m SSB t L f

kT f kT F α=??=0 2、双边带噪声系数

在遥感探测、射电天文等领域,接收信号是均匀谱辐射信号,存在于两个边带,这种应

用时的噪声系数称为双边带噪声系数。

此时上下两个边带都有噪声输入,因此P ns = kT 0?f /αm 。按定义可写出双边带噪声系数 m m m no DSB t a f T k P F 21/'20=?=α (9-5)

式中DSB 是Double Side Band 的缩写。

将公式(9-4)和(9-5)相比较可知,由于镜像噪声的影响,混频器单边带噪声系数比双边带噪声系数大一倍,即高出3dB 。

为了减小镜像噪声,有些混频器带有镜频回收滤波器或镜像抑制滤波器。因此在使用商品混频器时应注意:

(1)给出的噪声系数是单边带噪声还是双边带噪声,在不特别说明时,往往是指单边带噪声系数。

(2)镜频回收或镜频抑制混频器不宜用于双边带信号接收,否则将增大3dB 噪声。(此类混频器将在第二节镜频抑制混频器中详述)

(3)测量混频器噪声系数时,通常采用宽频带热噪声源,此时测得的噪声系数是双边带噪声系数。

在商品混频器技术指标中常给出整机噪声系数,这是指包括中频放大器噪声在内的总噪声系数。由于各类用户的中频放大器噪声系数并不相同,因此通常还注明该指标是在中频放大器噪声系数多大时所测得的。

混频器和中频放大器的总噪声系数是

()

10-+=if m m F t F α 式中 F if ——中频放大器噪声系数;αm ——混频器变频损耗;t m ——混频器等效噪声温度比。

t m 值主要由混频器性能决定,也和电路端接负载有关。t m 的范围大约是

厘米波段 t m = 1.1~1.2

毫米波段 t m = 1.2~1.5

在厘米波段,由于t m ≈ 1,所以可粗估整机噪声是

if m F F α=0 二、变频损耗

混频器的变频损耗定义是:混频器输入端的微波信号功率与输出端中频功率之比,以分贝为单位时,表示式是

()()()()dB dB dB dB g r m ααααβ++==中频输入信号功率微波输入信号功率

lg 10

(9-8)

混频器的变频损耗由三部分组成:包括电路失配损耗αβ,混频二极管芯的结损耗αr 和非线性电导净变频损耗αg 。

1、失配损耗

失配损耗αρ取决于混频器微波输入和中频输出两个端口的匹配程度。如果微波输入端口的电压驻波比为ρs ,中频输出端口的电压驻波比为ρi ,则电路失配损耗是

()()()i i s s dB ρρρραρ41lg 1041lg 1022

+++= (9-9)

混频器微波输入口驻波比ρs 一般为2以下。αρ的典型值约为0.5~1dB 。

管芯的结损耗主要由电阻R s 和电容C j 引起,参见图9-2。在混频

过程中,只有加在非线性结电阻R j 上的信号功率才参与频率变换,

而R s 和C j 对R j 的分压和旁路作用将使信号功率被消耗一部分。结损

耗可表示为

()???

? ??++=j s j s j s r R R C R R dB 221lg 10ωα (dB ) 混频器工作时,C j 和R j 值都随本振激励功率P p 大小而变化。P p 很小

时,R j 很大,C j 的分流损耗大;随着P p 加强,R j 减小,C j 的分流减

小,但R s 的分压损耗要增长。因此将存在一个最佳激励功率。当调

整本振功率,使R j = l /ωs C j 时,可以获得最低结损耗,即

()()

s j s r R C dB ωα21lg 10min += (dB ) 可以看出,管芯结损耗随工作频率而增加,也随R s 和C j 而增加。

表示二极管损耗的另一个参数是截止频率f c 为

j

s c C R f π21= 图9-2 混频管芯等效电路 通常,混频管的截止频率f c 要足够高,希望达到()s c f f 20~10≈。比如f c = 20f s 时,将有αrmin = 0.4dB 。

根据实际经验,硅混频二极管的结损耗最低点相应的本振功率大约为1~2mW ,砷化镓混频二极管最小结损耗相应的本振功率约为3~5mW 。

3、混频器的非线性电导净变频损耗

净变频损耗αg 取决于非线性器件中各谐波能量的分配关系,严格的计算要用计算机按多频多端口网络进行数值分析;但从宏观来看,净变频损耗将受混频二极管非线性特性、混频管电路对各谐波端接情况,以及本振功率强度等影响。当混频管参数及电路结构固定时,净变频损耗将随本振功率增加而降低,如图9-3所示。本振功率过大时,由于混频管电流散弹噪声加大,从而引起混频管噪声系数变坏。对于一般的肖特基势垒二极管,正向电流为l~3mA 时,噪声性能较好,变频损耗也不大。

图9-3 变频损耗、噪声系数对本振功率的关系

三、动态范围

动态范围是混频器正常工作时的微波输入功率范围。

(1)动态范围的下限通常指信号与基噪声电平相比拟时的功率。可用下式表示

()

if if m f F MkT P ?=α0min 式中 αm ——混频器变频损耗;F if ——中频放大器噪声系数;

?f if ——中放带宽;M ——信号识别系数。

例如混频器有αm = 6dB ,中放噪声系数为F if = 1dB ,中频带宽?f if = 5MHz ,要求信号功率比热噪声电平高10倍,即M = 10,此时混频器动态范围下限是

()()()

dBm W

P 901003.1105258.143001038.110126

23min -≈?=???????=-- 在不同应用环境中,动态范围下限是不一样的。比如在辐射计中由于采用了调制技术,能接收远低于热噪声电平的弱信号。雷达脉冲信号则要高于热噪声约8dB ,而调频系统中接收信号载噪比约需要8~12dB 。数字微波通信信号取决于要求的误码率,一般情况下比特信噪比也要在10~15dB 以上。

(2)动态范围的上限受输出中频功率饱和所限。通常是指1dB 压缩点的微波输入信号功率Pmax ,也有的产品给出的是1dB 压缩点输出中频功率。二者差值是变频损耗。本振功率增加时,1dB 压缩点值也随之增加。平衡混频器由2支混频管组成,原则上1dB 压缩点功率比单管混频器时大3dB 。对于同样结构的混频器,1dB 压缩点取决于本振功率大小和二极管特性。一般平衡混频器动态范围的上限为2~10dBm 。

混频器动态范围曲线如图9-4所示。

图9-4 混频器动态范围

四、双频三阶交调与线性度

如果有两个频率相近的微波信号ωs1、ωs2和本振ωp 一起输入列混频器,这时将有很多组合谐波频率,其中()21s s p m n ωωω±±称双频交调分量。定义m + n = k 为交调失真的阶数,例如k = 2(当m = 1,n = 1)是二阶交调,二阶交调产物有

()212s s p m ωωωω±±= 当k = 2 + 1 = 3时是三阶交调,其中有两项

()2132s s p m ωωωω--= 和 ()1232s s p m ωωωω--= 三阶交调分量出现在输出中频附近的地方。当ωs1和ωs2相距很近时,ωm3将落入中频放大器工作额带内,造成很大干扰。这种情况在微波多路通信系统中是一个严重问题,如果各话路副载波之间有交叉调制,将造成串话和干扰。上述频谱关系如图9-5所示。图中?ωif 是中频带宽。

图9-5 混频器频谱分布

四、双频三阶交调与线性度

1、混频器三阶交调系数

三阶交调系数M i 的定义为

()if i P P dB M m 3lg 10lg 10ω=??

? ??=有用信号功率三阶交调分量功率 其值为负分贝数,单位常用dBc ,其物理含义是三

阶交调功率比有用中频信号功率小的分贝数。三阶

交调功率3m P ω随输入微波信号功率P s 的变化斜率

较大,而中频功率P if 随P s 的变化呈正比关系,基

本规律是P s 每减小1dB ,M i 就改善2dB ,如图7、

6所示。

图9-6 混频器基波和三阶交调成分随信号功率的变化

2、三阶交调截止点

Mi 值与微波输入信号强度有关,是个不固定的值。所以有时采用三阶交调截止点Ma 对应的输入功率PM 作为衡量交调特性的指标。

三阶交调截止点Ma 是Pi 直线和直线段延长的交点,此值和输入信号强度无关。1dB 压缩点P1dB 和三阶交调截止值PM 都常作为混频器线性度的标志参数。有关三阶交调变化特性的改进可参见第六章,区别仅在于混额器的输出饱和是指中频功率。通常三阶交调截止值比1dB 压缩点值高10~15dB ,微波低频端约高出15dB ,微波高频段高10dB 。

在混频器应用中,只要知道了三阶交调截止值就能计算出任何输入电平时的三阶交调系数。由于三阶交调截止值处,Mi 为0dB ,输入信号每减弱1dB ,Mi 就改善2dB ,例如信号功率比PM 小15dB 时,Mi 将为–30dBc 。

三阶交调特性及饱和点,都和使用时的本振功率及偏压有关。混频管加正偏压时,动态范围上限下降,三阶交调特性变坏,但可节省本振功率或改善变频损耗;加负偏压时,上述情况刚好相反。另外。混领管反向饱和电流越小,接触电位越大时,要求的本振功率大,此时1dB 压缩点提高,三阶交调特性也较好。

五、工作频率

混频器是多频率器件,除了应指明信号工作频带以外,还应该注明本振频率可用范围及中频频率。分支电桥式的集成混频器工作频带主要受电桥频带限制,相对频带约为10%~30%,加补偿措施的平衡电桥混频器可做到相对频带为30%~40%。双平衡混频器是宽频带型,工作频带可达多个倍频程。

六、隔离度

混濒器隔离度是指各频率端口之间的隔离度,该指标包括三项,信号与本振之间的隔离度,信号与中频之间的隔离度,本振与中频之间的隔离度。隔离度定义是本振或信号泄漏到其他端口的功率与原有功率之比,单位为dB 。例如信号至本振的隔离度定义是

信号至本振隔离度是个重要指标,尤其是在共用本振的多通道接收系统中,当一个通道的信号泄漏到另一通道时,就会产生交叉干扰。例如,单脉冲雷达接收机中的合信号漏入差信号支路时将使跟踪精度变坏。在单通道系统中信号泄漏就要损失信号能量,对接收灵敏度也是不利的。

本振至微波信号的隔离度不好时,本振功率可能从接收机信号端反向辐射或从天线反发射,造成对其他电设备干扰,使电磁兼容指标达不到要求,而电磁兼容是当今工业产品的一项重要指标。此外,在发送设备中,变频电路是上变频器,它把中频信号混频成微波信号,这时本振至微波信号的隔离度有时要求高达80~100dB 。这是因为,上变频器中通常本振功率要比中频功率高10dB 以上才能得到较好的线性变频。变频损耗可认为10dB ,如果隔离度不到20dB ,泄漏的本振将和有用微波信号相等甚至淹没了有用信号。所以还得外加一个滤波器来提高隔离度。

信号至中额隔离度指标在低中频系统中影响不大,但是在宽频带系统中就是个重要因素了。有时微波信号和中频信号都是很宽的频带,两个频带可能边沿靠近,甚至频带交叠,这时,如果隔离度不好,就造成直接泄漏干扰。

单管混频器隔离度依靠定向耦合器,很难保证高指标,一般只有10dB 量级。

平衡混频器则是依靠平衡电桥。微带式的集成电桥本身隔离度在窄频带内不难做到30dB 量级,但由于混频管寄生参数、特性不对称、或匹配不良,不可能做到理想平衡。所以实际混频器总隔离度一般在15~20dB 左右,较好者可达到30dB 。

七、镜频抑制度

在本节噪声系数论述中已提到过单边带混频器镜频噪声的影响,它将使噪声系数变坏3dB 。在混频器之前如果有低噪声放大器,就更必须采取措施改善对镜频的抑制度。现在优良的低噪声放大器在C 波段已能做到Nf = 0.5dB ,若采用无镜频抑制功能的常规混频器,整机噪声将恶化到3.5dB 。此外,如果在镜频处有干扰,甚至可能破坏整机正常工作。

抑制镜频的方式大都是在混频器前加滤波器,可采用对镜频带阻式或对信频带通式。对于捷变频雷达则必须用自动抑制镜频的混频器,将在下节详述。

镜频抑制度一般是10~20dB ,对于抑制镜频噪声来说已经够用,详见第四章第二节。有些特殊场合,为抑制较强镜频干扰,则需25dB 或更高。

八、本振功率与工作点

混频器的本振功率是指最佳工作状态时所需的本振功率。

商品混频器通常要指定所用本振功率的数值范围,比如指定Pp = 10~12dBm 。这是因为,本振功率变化时将影响到混频器的许多项指标。本振功率不同时,混频二极管工作电流不同,阻抗也不同,这就会使本振、信号、中频三个端口的匹配状态变坏;此外也将改变动态范围和交调系数。

不同混频器工作状态所需本振功率不同。原则上本振功率愈大,则混频器动态范围增大,线性度改善,1dB 压缩点上升,三阶交调系数改善。本振功率过大时,混频管电流加大,噪声性能要变坏。此外混频管性能不同时所需本振功率也不一样。截止频率高的混频管(即Q 值高)所需功率小,砷化镓混频管比硅混频管需要较大功率激励。

本振功率在厘米波低端大约需2~5mW ,在厘米波高端为5~10mW ,毫米波段则需10~20mW ;双平衡混频器和镜频抑制混频器用4只混频管,所用功率自然要比单平衡混频管大一倍。在某些线性度要求很高、动态范围很大的混频器中,本振功率要求高达近百毫瓦。 10lg sp L 信号输入到混频器的功率在本振端口测得的信号功率

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

混频器特性分析

微波混频器技术指标与特性分析 一、噪声系数和等效噪声温度比 噪声系数的基本定义已在第四章低噪声放大器中有过介绍。但是混频器中存在多个频率,是多频率多端口网络。为适应多频多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单频线性网络,也可适用于多频响应的外差电路系统,即 (9-1) 式中 Pno ——-当系统输入端噪声温度在所有频率上都是标准温度T0 = 290K 时,系统传输到输出端的总噪声资用功率; Pns ——仅由有用信号输入所产生的那一部分输出的噪声资用功率。 根据混频器具体用途不同,噪声系数有两种。 一、噪声系数和等效噪声温度比 1、单边带噪声系数 在混频器输出端的中频噪声功率主要包括三部分: (1)信号频率f s 端口的信源热噪声是kT 0f ,它 经过混频器变换成中频噪声由中频端口输出。这部分 输出噪声功率是 m f kT α?0 式中 f ——中频放大器频带宽度;m ——混频器变频损耗;T 0——环境温度,T 0 = 293K 。 (2)由于热噪声是均匀白色频谱,因此在镜频f i 附近f 内的热噪声与本振频率f p 之 差为中频,也将变换成中频噪声输出,如图9-1所示。这部分噪声功率也是kT 0f /m 。 (3)混频器内部损耗电阻热噪声以及混频器电流的散弹噪声,还有本机振荡器所携带 相位噪声都将变换成输出噪声。这部分噪声可用P nd 表示。 这三部分噪声功率在混频器输出端相互叠加构成混频器输出端总噪声功率P no nd m m no P f kT f kT P +?+?=αα//00 把P no 等效为混频器输出电阻在温度为T m 时产生的热噪声功率,即P no = kT m f ,T m 称混 频器等效噪声温度。kT m f 和理想电阻热噪声功率之比定义为混频器噪声温度比,即 0T T f kT P t m no m =?=

光敏传感器光电特性测量实验

光敏传感器光电特性测量实验 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的APD雪崩式光电二极管,半导体色敏传感器、光电闸流晶体管、光导摄像管、CCD图像传感器等,为光电传感器进一步的应用开创了新的一页。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性。光敏传感器的基本特性包括:伏安特性、光照特性、时间响应、频率特性等。掌握光敏传感器基本特性的测量方法,为合理应用光敏传感器打好基础。 【实验目的】 了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。 仪器简介 仪器由全封闭光通路、实验电路、待测光敏传感器(光敏电阻、光敏二极管、光敏三极管、硅光电池)、实验连接线等组成。 仪器安装在360×220×80(mm)实验箱内,仪器面板如下图

传感器与检测技术第3章 传感器基本特性参考答案

第3章传感器基本特性 一、单项选择题 1、衡量传感器静态特性的指标不包括()。 A. 线性度 B. 灵敏度 C. 频域响应 D. 重复性 2、下列指标属于衡量传感器动态特性的评价指标的是()。 A. 时域响应 B. 线性度 C. 零点漂移 D. 灵敏度 3、一阶传感器输出达到稳态值的50%所需的时间是()。 A. 延迟时间 B. 上升时间 C. 峰值时间 D. 响应时间 4、一阶传感器输出达到稳态值的90%所需的时间是()。 A. 延迟时间 B. 上升时间 C. 峰值时间 D. 响应时间 5、传感器的下列指标全部属于静态特性的是() A.线性度、灵敏度、阻尼系数 B.幅频特性、相频特性、稳态误差 C.迟滞、重复性、漂移 D.精度、时间常数、重复性 6、传感器的下列指标全部属于动态特性的是() A.迟滞、灵敏度、阻尼系数 B.幅频特性、相频特性 C.重复性、漂移 D.精度、时间常数、重复性 7、不属于传感器静态特性指标的是() A.重复性 B.固有频率 C.灵敏度 D.漂移 8、对于传感器的动态特性,下面哪种说法不正确() A.变面积式的电容传感器可看作零阶系统 B.一阶传感器的截止频率是时间常数的倒数 C.时间常数越大,一阶传感器的频率响应越好 D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是() A.重复性 B.固有频率 C.灵敏度 D.漂移

10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为() A. 0° B.90° C.180° D. 在0°和90°之间反复变化的值 11、传感器的精度表征了给出值与( )相符合的程度。 A.估计值 B.被测值 C.相对值 D.理论值 12、传感器的静态特性,是指当传感器输入、输出不随( )变化时,其输出-输入的特性。 A.时间 B.被测量 C.环境 D.地理位置 13、非线性度是测量装置的输出和输入是否保持( )关系的一种度量。 A.相等 B.相似 C.理想比例 D.近似比例 14、回程误差表明的是在( )期间输出-输入特性曲线不重合的程度。 A.多次测量 B.同次测量 C.正反行程 D.不同测量 =秒的一阶系统,当受到突变温度作用后,传感器输15、已知某温度传感器为时间常数τ3 出指示温差的三分之一所需的时间为()秒 A.3 B.1 C. 1.2 D.1/3 二、多项选择题 1.阶跃输入时表征传感器动态特性的指标有哪些?() A.上升时间 B.响应时间 C.超调量 D.重复性 2.动态响应可以采取多种方法来描述,以下属于用来描述动态响应的方法是:() A.精度测试法 B.频率响应函数 C.传递函数 D.脉冲响应函数 3. 传感器静态特性包括许多因素,以下属于静态特性因素的有()。 A.迟滞 B.重复性 C.线性度 D.灵敏度 4. 传感器静态特性指标表征的重要指标有:() A.灵敏度 B.非线性度 C.回程误差 D.重复性 5.一般而言,传感器的线性度并不是很理想,这就要求使用一定的线性化方法,以下属于线性化方法的有:() A.端点线性 B.独立线性 C.自然样条插值 D.最小二乘线性 三、填空题 1、灵敏度是传感器在稳态下对的比值。 2、系统灵敏度越,就越容易受到外界干扰的影响,系统的稳定性就越。 3、是指传感器在输入量不变的情况下,输出量随时间变化的现象。 4、要实现不失真测量,检测系统的幅频特性应为,相频特性应为。

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

光电传感器特性分析

光电传感器特性分析 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过 程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、 理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率 限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体 w hv -=2mv 2 1 w hc K = λ

微波电路设计基础知识

微波电路及设计的基础知识
1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith 圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的 CAD 软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/a19746280.html,

第1章
概述
所谓微波电路,通常是指工作频段的波长在 10m~1cm(即 30MHz~30GHz)之 间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz) 等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频 (RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以 及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多 独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工 艺、元器件、以及设计 技术等方面,都已经发展得非常成熟,并且应用领域越来 越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过 了 1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路 的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电 路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
第2章
微波电路的基本常识
2.1 电路分类
2.1.1 按照传输线分类
微波电路可以按照传输线的性质分类,如:
图 1 微带线
图 2 带状线
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/a19746280.html,

光电传感器特性分析

光电传感器特性分析 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v为光波频率,h为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正

离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大, 都不会产生光电子发射,此频率限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体材料的导电性远不 如导体。但如果通过某种方式给价带中的电子提供能量,就可以将其 激发到导带中,形成载流子,增加导电性。光照就是一种激励方式。当入射光的能量hν≥Eg( Eg 为带隙间隔)时,价带中的电子就会吸收 光子的能量,跃迁到导带,而在价带中留下一个空穴,形成一对可以导电的电子——空穴对。这里的电子并未逸出形成光电子,但显然存在着由于光照而产生的电效应。因此,这种光电效应就是一种内光电效应。从理论和实验结果分析,要使价带中的电子跃迁到导带,也存在一 w hv -=2mv 21 w hc K = λ

[整理]ADS设计混频器

应用ADS 设计混频器 1. 概述 图1为一微带平衡混频器,其功率混合电路采用3dB 分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。 图1 设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。通过定向耦合器,加到D1,D2上的信号和本振电压分别为: D1上电压 )2 cos(1π ω- =t V v s s s 1-1 )cos(1πω-=t V v L L L 1-2 D2上电压 )cos(2t V v s s s ω= 1-3 )2 cos(2π ω+ =t V v L L L 1-4 可见,信号和本振都分别以 2π相位差分配到两只二极管上,故这类混频器称为2 π 型平衡混频器。由一般混频电流的计算公式,并考虑到射频电压和本振电压的相位差,可以得到D1中混频电流为:

∑ ∑∞ -∞ =∞ -+- = m n L s m n t jn t jm I t i ,,1)]()2 (exp[)(πωπ ω 同样,D2式中的混频器的电流为: ∑∑∞ -∞ =∞ + += m n L s m n t jn t jm I t i ,,2)]2 ()(exp[)(π ωω 当1,1±=±=n m 时,利用1,11,1-++-=I I 的关系,可以求出中频电流为: ]2 )cos[(41,1π ωω+ -=+-t I i L s IF 主要的技术指标有: 1、噪音系数和等效相位噪音(单边带噪音系数、双边带噪音系数); 2、变频增益,中频输出和射频输入的比较; 3、动态范围,这是指混频器正常工作时的微波输入功率范围; 4、双频三阶交调与线性度; 5、工作频率; 6、隔离度; 7、本振功率与工作点。 设计目标:射频:3.6 GHz ,本振:3.8 GHz ,噪音:<15。 2.具体设计过程 2.1创建一个新项目 ◇ 启动ADS ◇ 选择Main windows ◇ 菜单-File -New Project ,然后按照提示选择项目保存的路径和输入文件名 ◇ 点击“ok ”这样就创建了一个新项目。 ◇ 点击 ,新建一个电路原理图窗口,开始设计混频器。

光电传感器性能参数分析

课程小论文 题目:光电传感器性能参数分析 院 (部) 专业 学生姓名 学生学号 指导教师 课程名称 课程代码 课程学分 起始日期

光电传感器性能参数分析 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应、光电元件、光电特性、传感器分类、传感器应用

目录 目录 (3) 1、引言 (4) 2、光电传感器 (4) 3、光电效应 (6) 4、光电传感器的前景 (6) 5、总结 (7) 参考文献 (8)

一、引言 随着工业生产技术的发展,对生产过程中的过程控制要求越来越高,而作为控制系统的核心之一,传感器越来越受工业技术人员的重视。人们对高性能检测技术的发展需求与日俱增。其中非电量测量的受欢迎程度最为广泛,可将距离、位移、振动等信号转换为电信号,并通过这些方法获得被测物体的状态。非电量检测技术分为接触式与非接触式检测。在工业生产环境中,有些场合不适用接触式检测,因为传感器与被测物体的接触,在工业现场环境中会造成被测体损伤、传感器磨损等问题。因此,需要性能良好的非接触式传感器以满足工业需求,相关技术的研究也成为传感器检测技术的发展方向。 光电检测技术作为目前检测技术之一,目前国内对于光电检测的研究已有一些成果,但目前产品还存在着一些问题,例如线性测量范围过短、对现场装配条件要求较高等,距离满足工业现场的要求还存在一定距离。所以,为了解决这些问题,光电效应对传感器性能的影响是很重要的研究方向之一,可以使光电传感器应用在更多的领域,推动光电检测技术的发展。 二、光电传感器 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如下图,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。 图1光电传感器原理图 光电传感器一般由三部分构成,它们分为:发送器、接收器和检测电路,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。 光电传感器是一种依靠被测物与光电元件和光源之间的关系,来达到测量目的

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

微波电路及设计的基础知识

微波电路及设计的基础知识 1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的CAD软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例

微波电路及其设计 1.概述 所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。 2.微波电路的基本常识 2.1 电路分类 2.1.1 按照传输线分类 微波电路可以按照传输线的性质分类,如:

图1 微带线 图2 带状线 图3 同轴线 图4 波导

图5 共面波导 2.1.2 按照工艺分类 微波混合集成电路:采用分离元件及分布参数电路混合集成。 微波集成电路(MIC):采用管芯及陶瓷基片。 微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。 图6微波混合集成电路示例 图7 微波集成电路(MIC)示例

光电传感器实验报告

实验报告2 ――光电传感器测距功能测试 1.实验目的: 了解光电传感器测距的特性曲线; 掌握LEGO基本模型的搭建; 熟练掌握ROBOLAB软件; 2.实验要求: 能够用LEGO积木搭建小车模式,并在车头安置光电传感器。能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。 3.程序设计: 编写程序流程图并写出程序,如下所示:

ROBOLAB程序设计: 4.实验步骤: 1)搭建小车模型,参考附录步骤或自行设计(创新可加分)。 2)用ROBOLAB编写上述程序。 3)将小车与电脑用USB数据线连接,并打开NXT的电源。点击ROBOLAB 的RUN按钮,传送程序。 4)取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直 方向放置直尺,用于记录小车行走的位移。 5)将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小 车,进行光强信号的采样。从直尺上读取小车的位移。 6)待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集, 将数据放入红色容器。共进行四次数据采集。 7)点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平 均线及拟和线处理。 8)利用数据处理结果及图表,得出时间同光强的对应关系。再利用小车位 移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关 系表达式。 5.调试与分析 a)采样次数设为24,采样间隔为0.05s,共运行1.2s。采得数据如下所示。

b)在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示: c)对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:

混频器杂散分析

确定总体半中频杂散指标和为LTE接收机选择RF混频器 发布时间: 2012-8-7 10:20 发布者: eechina 作者:Maxim公司Dan Terlep 本文介绍如何满足高性能基站(BTS)接收机对半中频杂散指标的要求。为达到这一目标,工程师必须理解混频器的IP2与二阶响应之间的关系,然后选择满足系统级联要求的RF混频器。混频器数据手册以二阶交调点(IP2)或2x2杂散抑制指标的形式表示二阶响应性能。本文通过介绍这两个参数之间的关系,说明接收机设计以及如何确定总体半中频杂散指标。以MAX19997A的IP2与2x2关系为例,这是一款用于E-UTRA LTE接收机的有源混频器。 混频器谐波 在超外差接收机电路中,混频器将高频RF信号转换到较低中频(IF),该过程称为下变频。混频器中,如果输出频率为射频输入频率减去本振(LO)输入频率,称为低边注入(LO频率低于RF频率);如果输出频率为LO频率减去RF频率,则称为高边注入。下变频过程可由下式表示: fIF= fRF - fLO= - fRF+ fLO 式中,fIF为混频器输出端口的中频;fRF为加至混频器RF端口的RF信号;fLO为加至混频器LO端口的LO信号。 理想情况下,混频器的输出信号幅值和相位与其输入信号的幅值和相位成比例,与LO信号无关。在这一假设前提下,混频器幅值响应与RF输入信号成线性关系,也与LO信号幅值无关。 然而,由于混频器的非线性特性,将产生所不希望的混频产物,称为杂散响应。杂散响应是由混频器RF端口输入的干扰或噪声信号引起的,在IF频率产生响应。到达RF输入端口的干扰信号可能没有在所规定的RF带宽内,但也会造成麻烦。这类信号通常具有足够高的功率,混频之前的RF滤波器不能对其实施足够衰减,使其引起额外的杂散响应,直接影响到所要求的IF信号,混频原理可表示为: fIF= m fRF -n fLO= - m fRF + n fLO 注意,m和n为RF和LO频率的整数次谐波,通过混频产生格中杂散产物组合。通常情况下,这些杂散分量的幅值随m或n的增大而减小。 已知相应的RF输入频率范围,谨慎规划频率,选择适当的IF及相应的LO频率。仔细规划频率非常重要,因为它有助于减少混频后落入有效信号频带的干扰,这些干扰源会直接影响接收器性能。对于宽带系统,频率规划时避免杂散混频产物更加困难,需要利用滤波器抑制那些可能落入IF频带的带外(OOB) RF信号。混频器之后的IF滤波器的选择性限定在只允许通过有效信号频率,由此,在信号进入最终检测器之前(混频器之后)对杂散响应进行衰减。IF滤波器不会衰减IF带内的杂散响应。 许多类型的平衡混频器将抑制m或n为偶数的杂散成分。理想的双平衡混频器抑制m或n(或两者)为偶数的所有谐波分量。双平衡混频器中的IF、RF和LO端口彼此隔离,使LO泄漏降至最小,并提供固有的RF至IF隔离。双平衡混频器设计能够提供最佳的线性特性,降低每个端口的滤波器衰减要求。 半中频杂散频率分布

光电传感器实验心得

竭诚为您提供优质文档/双击可除 光电传感器实验心得 篇一:光电传感器实验 Dh-sJ3光电传感器物理设计性实验装置 (实验指导书) 实 验 讲 义 请勿带走 杭州大华科教仪器研究所 杭州大华仪器制造有限公司 Dh-sJ3光电传感器物理设计性实验装置 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光

敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都是内光电效应类传感器。当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的ApD雪崩式光电二极管,半导体光敏传感器、光电闸流晶体管、光导摄像管、ccD图像传感器等,为光电传感器的应用开创了新的一页。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理。 一、实验目的 1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。 2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线。 3、了解硅光电池的基本特性,测出它的伏安特性曲线

混频器仿真实验报告

混频器实验(虚拟实验) 姓名:郭佩学号:04008307 (一)二极管环形混频电路 傅里叶分析 得到的频谱图为 分析:可以看出信号在900Hz和1100Hz有分量,与理论相符 (二)三极管单平衡混频电路 直流分析

傅里叶分析 一个节点的傅里叶分析的频谱图为 两个节点输出电压的差值的傅里叶分析的频谱图为:

分析:同样在1K的两侧有两个频率分量,900Hz和1100Hz 有源滤波器加入电路后 U IF的傅里叶分析的频谱图为: U out节点的傅里叶分析的频谱图为:

分析:加入滤波器后,会增加有2k和3k附近的频率分量 (三)吉尔伯特单元混频电路 直流分析 傅里叶分析 一个节点的输出电压的傅里叶分析的参数结果与相应变量的频谱图如下: 两个节点输出电压的差值的傅里叶分析的参数结果与相应变量的频谱图为:

分析:1k和3k两侧都有频率分量,有IP3失真 将有源滤波器加入电路 U IF的傅里叶分析的参数结果与相应变量的频谱图为: U out节点的傅里叶分析的参数结果与相应变量的频谱图为:

分析:有源滤波器Uout节点的傅里叶分析的频谱相对于Uif的傅里叶分析的频谱来说,其他频率分量的影响更小,而且Uout节点的输出下混频的频谱明显减小了。输出的电压幅度有一定程度的下降。 思考题: (1)比较在输入相同的本振信号与射频信号的情况下,三极管单平衡混频电路与吉尔伯特混频器两种混频器的仿真结果尤其是傅里叶分析结果的差异,分析其中的原因。若将本振信号都设为1MHz,射频频率设为200kHz,结果有何变化,分析原因。 答:没有改变信号频率时 三极管 吉尔伯特 吉尔伯特混频器没有1k、2k、3k处的频率分量,即没有本振信号的频率分量,只有混频后的频率分量。因为吉尔伯特混频器是双平衡对称电路结果,有差分平衡。 将本振信号频率和射频频率改变后:

光电传感器的原理、功能特点等应用

光电传感器的原理、功能特点等应用 光电传感器是将光信号转换为电信号的一种器件。光电传感器一般由处理通路和处理元件两部分组成。其基本原理是以光电效应为基础,把被测量的变化转换成光信号的变化,然后借助光电元件进一步将非电信号转换成电信号。 其工作原理基于光电效应。光电效应是指光照射在某些物质上时,物质的电子吸收光子的能量而发生了相应的电效应现象。光电效应是指用光照射某一物体,可以看作是一连串带有一定能量为的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应。光电传感器因为采用光学原理,因此其采集结果更精准、快速。 特点: 光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(可见及紫外镭射光)转变成为电信号的器件。光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电物理量,如光强、光照度、辐射测温、

气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此应用广泛。 工作原理: 由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。模拟式光电传感器是将被测量转换 光电式传感器分类: ⑴反光板型光电开关 把发光器和收光器装入同一个装置内,在前方装一块反光板,利用反射原理完成光电控制作用,称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光源被反光板反射回来再被收光器收到;一旦被检测物挡住光路,收光器收不到光时,光电开关就动作,输出一个开关控制信号。 ⑵对射型光电传感器,若把发光器和收光器分离开,就可使检测距离加大,一个发光器和一个收光器组成对射分离式光电开关,简称对射

微波半导体集成电路 混频器-编制说明

国家标准《微波半导体集成电路混频器》(征求意见稿)编制说明 1工作简况 1.1任务来源 本项目是国家质量基础(NQI)项目中的一项。本国家标准的制定任务已列入2018年国家标准制修订项目,项目名称为《微波半导体集成电路混频器》,项目编号为:20192060-T-339。本标准由中国电子技术标准化研究院负责组织制定,标准归口单位为全国半导体器件标准化技术委员会集成电路分技术委员会(TC78/SC2)。 1.2起草单位简介 中国电子技术标准化研究院是工业和信息化部直属事业单位,专业从事工业和电子信息技术领域标准化科研工作。中国电子技术标准化研究院紧紧围绕部中心工作,立足标准化工作核心,研究工业和电子信息技术领域标准化发展战略,提出相关规划和政策建议;组织建立和完善电子信息、软件服务等领域技术标准体系,开展共性、基础性标准的研究制定和应用推广;承担电子产品的试验检测、质量控制和技术评价、质量监督检查和质量争议鉴定等工作;负责电子工业最高计量标准的建立、维护和量值传递工作;开展管理体系认证、产品认证、评估服务等相关活动;建立和维护标准信息资源,开展标准信息服务、技术咨询评估和培训活动。 1.3主要工作过程 接到编制任务,项目牵头单位中国电子技术标准化研究院成立了标准编制组,中国电子科技集团公司第十三研究所、成都亚光电子股份有限公司、中国电子科技集团公司第五十五研究所、中国电子科技集团公司第三十八研究所、中国航天科工集团第三十五研究所等相关单位参与标准编制工作。编制组落实了各单位职责,并制定编制计划。 编制组查找了国际、国内集成电路相关标准,认真研究了现行集成电路标准体系和相关标准技术内容,在此基础上形成了标准草案。 2标准编制原则和确定主要内容的论据及解决的主要问题 2.1本标准制定原则 本标准遵循“科学性、实用性、统一性、规范性”的原则进行编制,依据GB/T 1.1-2009规则起草,确立了标准范围、规范性引用文件、术语和定义、分类、技术要求、电特性测试方法、检验规则、标志、包装、运输、贮存等一系列混频器的技术指标。 2.2标准的主要内容与依据 2.2.1本标准的定位

相关文档
最新文档