民用船舶的核动力选择

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

民用船舶的核动力选择

民用船舶的核动力选择

来源:中国船检

随着全球石化能源逐渐减少和远洋航运废气排放对世界范围内环境安全的冲击加剧,以核动力为主动力装置来替换现有普遍应用的常规燃油主动力装置,已成为船舶技术发展的又一尝试。

2007年10月,国际科学院委员会(IAC)发表了《未来之路:向可持续能源迈进》和中国科学院(CAS)发表了《应对挑战––构建可持续能源体系》,这两份报告建议:远期到2050年前后,我国总体能源供给结构上对化石能源的依赖度降低到60%以下,可再生能源和核能成为主导能源。从报告来看,国家对于发展核能是持肯定态度的,而民用核动力船舶的开发作为核能综合利用的一个方面,同样具有发展前景。同时,民用核动力船舶的经济性、技术可行性以及安全性方面的问题备受关注。

核能船舶的发展状况

发展民用核动力船舶,对我国船舶行业而言是一个崭新的课题,但是纵观世界船舶发展史,可以发现已经有若干国家在此方面迈出了第一步,其历程如图所示。

美国“萨娃娜”号于1962年建成,在其商务部海运局的支持下进行商业运营。该船于1964年5月开始进行国际航海,停靠了欧洲14个国家的16个港口。到1965年8月,在达到对核动力民用商船的建造目的后,改为货船投入航行,并得到政府的运营补贴,在欧洲航线航行。1976年6月抵达韩国、台湾、菲律宾等远东地区。1968年9月进行核燃料的换料,又相继投入商业航行,1970年宣布退役。

德国矿石运输船“奥托汉”号于1968年月12月建成。1969年3月到11月在围绕英国一周以及在南太平洋(赤道附近)、北极海、西太平洋(西印度群岛)进行了实验航海。从1970年2月开始投入商业航海,运输摩洛哥的磷矿石、伊朗的铬矿石、阿根廷的谷物货物等。在此期间,在国外访问了22个国家的33个港口,到1979年2月停运,航行了约60万海里(111万公里)。

日本“陆奥”号在1974年8月28日开始的功率提升试验过程中发生了放射性泄漏事

故。其后对反应堆屏蔽进行改造及安全总检查,并改变了用途,作为核动力实验船重新进行了功率提升试验。1991年在北太平洋海面上进行了4次实验航海,1995年完成退役工程。

俄罗斯共建成了9艘核动力破冰船,即列宁号(Lenin)、阿尔库奇卡号(Arctica)、西伯利亚号(Sibir)、俄罗斯号(Rossiya)、塞布摩尔卜奇号(集装箱破冰船)(Sevmorput)、泰米尔号(河流破冰船)(Taimyr)、苏维埃斯克号(Sovetsky·Soyuz)、瓦伊加奇号(河流破冰船)(Vaigachi)以及亚马尔号(Yamal)。其中,列宁号已退役,乌拉尔号(Ural)下水后,基于当时的石油价格造成的经济成本原因,建造中断。目前正在服役的有8艘,计划建造的破冰船有2艘,即超级号破冰船(Super Icebreaker,破冰能力在3.5m以上)和佩贝克(Pevek)号破冰船。

从以上民用核动力船舶的运营状况可以看出:所建成的核动力船舶除了日本“陆奥”号没有进行航运营运外,其余船舶全部投入了实际的商业运营,并且期间并未因核动力装置的技术问题导致重大的海事事故。就其整个运行期的数据而言,美国“萨娃娜”号和德国“奥托汉”号均有到国外港口停靠的记录,而上述被抵达港也对上述核动力商船的停靠采取了接纳态度。事实上,日本“陆奥”号所发生的放射性事故并不是很严重,在技术上完全处于可控范围内,只是因为亲历核灾难的日本国民对核事故极度敏感,才最终导致了该船的夭折。

可以说,早期核动力商船在技术上已经是成熟的,运营上也是成功的。至于“奥托汉”号后来换为常规柴油机动力装置,主要是由于当时的油价偏低,从当时的运营成本上比较,核动力不具有压倒性的优势。如国际原油市场震荡,再次出现上世纪70年代席卷全球的石油危机事件,而相对的国际铀价又在相当长的时期里趋于稳定,则核动力商船的经济优势无疑将凸显出来。

经济性及技术可行性

核能在利用时,其所表现出的能量优势十分显著。据计算,1公斤可裂变物质铀完全分裂所产生的能量,相当于2100吨燃油充分燃烧后所得到的能量。这也就是说,核燃料所包含的能量,大体相当于本身重量210万倍的燃油的能量。在研究发展民用核动力船舶过程中,可参考国内外发展核动力装备时所积累的大量经验和数据,以期在继承已有技术基础并提高切入点的前提下,进而有效控制总体工程项目的实际成本投入。

一艘技术状况良好的5100TEU集装箱船,其主要数据如表1所示。以21节速度航行,每天约消耗125吨燃油,该船每年航行以7500小时、燃油单价以300USD/吨计,则全年燃油成本约为28125万美元。若采用压水型核动力推进装置,仅需消耗60克重的U235核燃料,所携带的核燃料二氧化铀,最多也只需510千克左右,全年核原料成本约为4万美元。仅从燃油成本一项,全年约节省28120万美元。此外,除去核动力装置及相关配套系统所占空间和重量等因素的影响,仅在利用原船用燃油存储空间所带来的船体复杂程度降低和载运量增加这两方面,其总体能源有效利用的比率较之常规动力船舶也有着一定优

势。

故此,如果暂不考虑总体的初始投资,仅通过以上粗略统计数据的对比就可以发现,实际上在寻求核动力民用船舶潜在商业上的应用前景还是值得考虑的。

在技术方面,不管核动力船是民用商船,还是军用舰船,从热工水力和放射性管理方面来讲,基本都采用压水堆,且工作原理是一致的。其工作系统主要由一回路系统、二回路系统以及为保证装置正常运行、人员健康和可靠性冗余系统等组成:一回路系统位于反应堆舱。载热剂载走反应堆中核燃料裂变产生的热量,加热蒸汽发生器中二回路的水产生蒸汽。二回路系统位于机舱中的二回路中蒸汽发生器产生的蒸汽去驱动蒸汽轮机,经减速齿轮或推进电机带动螺旋桨驱动舰船前进。如图2所示为船用压水堆的三种布置方式,即分散型(也称作回路型,其反应堆压力容器、蒸汽发生器、一次系统主泵之类的一次系统设备是由较长的大直径一次系统回路管道连接。这种反应堆系统为现有发电用反应堆中普遍采用的压水堆堆型布置。采用该堆型布置的好处是便于对各种设备进行维修检查,且已具有丰富的建造和运行经验。其不足之处是占用空间大,建造过程中的安装和焊接点多,在设计上还必须考虑因大直径一回路管道破损可能引发的假想反应堆冷却剂失水事故的安全措施。)、紧凑型(也称作半一体化型,是一种将一次系统回路设备用短管直接连接挂在反应堆容器上的堆型。由于其热功率增大会受到限制,故而不适于在大型堆中采用,但与分散型堆相比,其占用空间小,建造过程中的安装和焊点少。)和一体化型(是将蒸汽发生器、一次系统主泵等带放射性的一次系统设备安装在反应堆容器内,是一种比紧凑型布置堆更小的中小型堆。反应堆容器增大了,但整个反应堆系统变得紧凑,占用的整体空间小。堆芯的自然循环冷却能力强,没有一次系统管道,防止失水事故的安全性得以提高)。

相关文档
最新文档