【解析版】河北省衡水中学2019届高三下学期一调考试理科数学试卷
河北省衡水中学2019届高三下学期一调考试理科数学试题(解析版)
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得.【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B. 2 C. D. 5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图像大致是()A. B.C. D.【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,从而将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.5.已知图①②③中的多边形均为正多边形,,分别是所在边的中点,双曲线均以图中,为焦点.设图①②③中双曲线的离心率分别为,,,则()A. B.C. D.【答案】D【解析】【分析】分别根据正三角形、正方形、正六边形的性质,将用表示,然后利用双曲线的定义,求得,的等量关系,分别求出图示①②③中的双曲线的离心率,然后再判断的大小关系.【详解】图①中,;图③中,设正六边形的一个在双曲线右支上的顶点为,则,则;图②中,,,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.执行如图所示的程序框图,则输出的结果是()A. 2018B. -1010C. 1009D. -1009【答案】C【解析】【分析】根据程序框图,它的作用是求的值,根据结合律进行求解,可得结果. 【详解】该程序框图的作用是求的值,而,故选C.【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B.C.D. 60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,椎体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A. B. C. D.【答案】C【解析】五个人的编号为由题意,所有事件共有种,没有相邻的两个人站起来的基本事件有,再加上没有人站起来的可能有种,共种情况,所以没有相邻的两个人站起来的概率为故答案选9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.已知抛物线的焦点为,,是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】B【解析】【分析】利用余弦定理,结合基本不等式,即可求出的最大值.【详解】因为,,所以,在中,由余弦定理得:,又,所以,所以,所以的最大值为,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.11.已知当时,,则以下判断正确的是()A. B. C. D.【答案】C【解析】记,为偶函数且在上单调递减,由,得到即∴,即故选:C12.若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数的取值范围为()A. B. C. D.【答案】B【解析】∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣,∴f(x)﹣=﹣f(﹣x)+x2∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣≥f(1﹣x)+x﹣,即F(x)≥F(1﹣x),∴x≤1﹣x,x0≤,∵为函数的一个不动点∴g(x0)=x0,即h(x)= =0在(﹣∞,]有解.∵h′(x)=e x-,∴h(x)在R上单调递减.∴h (x)min=h()=﹣a即可,∴a≥.故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为________.【答案】【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2P=1,∴其准线方程是y=,。
河北省衡水中学2019届高三下学期大联考卷Ⅱ理科数学试卷及答案
18.(12 分 )
如图,四边形 ABCD 为 菱 形,PD ⊥ 平 面 ABCD ,M ,N 分 别 是
PC,PA 的中点,AB=2,PD =a,∠DAB=60°.
(1)求证:MN ⊥平面 PBD .
(2)若 直 线 BM
与 平 面 PAD 所 成 角 的 余 弦 值 为
13,求 4
a
的值. 19.(12 分 )
(1)试 估 计 该 高 中 参 加 2018 年 高 考 的 1000 名 考 生 的 平 均 分 数 与 全 市 平 均 分 数 的 高 低 情 况 ; (2)请 估 计 全 市 分 数 不 低 于 550 分 的 考 生 人 数 ;
(3)若
该高
中
不低
于 650
分的
考生
中
女生
所占
比
例为
2 5
,现
C.-4
D.-5
5.设函数f(x)=ex -e-x +3,则 曲 线y=f(x)在 x=0 处 的 切 线 与 坐 标 轴 围 成 的 三 角 形 的 面
积为
A.9
3 B.2
9 C.2
9 D.4
理科数学试题 第1页(共4页)
6.已知抛物线 C:y2=2px(p>0)的焦点为 F,点 M 是 抛 物 线C 上 一 点,直 线 MF 与 抛 物 线 的 准线l 交于点 N ,且FN→=-2FM→,若|MF|=6,则p=
计
划
从
不
低
于
650
分
的
考
生
中
随
机挑选3人为高二年级的学生作学习经验报告,试求女生被选到的人数 X 的分布列及数
学期望.
附 :425×0.0018+475×0.0034+525×0.008+575×0.0064+625×0.0002+675×0.0002=
河北省衡水中学2019-2020学年度高三年级下学期一调考试数学理科及参考答案
2019-2020学年度高三年级下学期一调考试数学(理科)试卷命题人:审核人:第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U R ,集合22Ay y xx R ,,集合lg 1Bx yx ,则阴影部分所示集合为()A .12,B .12,C .(12], D .[12),2. 复数3a izai(其中a R ,为虚数单位),若复数z 的共轭复数的虚部为12,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若2πa ,ab a ,aaca,则,,a b c 的大小关系为A .c b a B.b c a C.b a cD .a b c4.函数x exf xcos )112(图象的大致形状是A .B .C .D .5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A .15B .815C .35D.3206.已知△ABC 外接圆的圆心为O ,若AB=3,AC=5,则AO BC u u u r u u u r的值是()A .2B .4C .8D .167.给出下列五个命题:①若为真命题,则为真命题;②命题“,有”的否定为“,有”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角三角形中,必有;⑤为等差数列,若,则其中正确命题的个数为()A .0B .1C .2D .38.已知定义在(0,)上的函数()f x ,恒为正数的()f x 符合()()2()f x f x f x ,则(1)(2)f f 的取值范围为()A .(,2)e e B .211(,)2e eC .(3,e e )D .211(,)e e9.已知点(0,2)A ,抛物线C :24yx 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则:FM MN()A .2:5B .1:2C .1:5D .1:310.定义12n np p p L为n 个正数1p 、2p 、…、n p 的“均倒数”,若已知正整数列n a 的前n 项的“均倒数”为121n ,又14n na b ,则12231011111b b b b b b ()A .1011B .112C .111D .111211.对于任意的实数[1,e]x,总存在三个不同的实数[1,5]y,使得21ln 0yy xe ax x 成立,则实数a 的取值范围是( ) A .24251(,]eeeB .4253[,)e eC .425(0,]eD .24253[,)eee12.如图,在正方体1111ABCD A B C D ﹣中,1A H 平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等;②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形;④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A .①③B .②④C .①②④D .①②③第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.有一个底面圆的半径为1,高为2的圆柱,点分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点的距离都大于1的概率为___.14.在数列{a n }中,若函数f (x )=sin 2x +22cos 2x 的最大值是a 1,且a n =(a n+1﹣a n ﹣2)n ﹣2n 2,则a n =_____.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是2222221[()]42ac bSa c ,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边。
精品解析:【全国百强校】河北省衡水中学2019届高三下学期一调考试理科数学试题(解析版)
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得.【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B. 2 C. D. 5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图像大致是()A. B.C. D.【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.5.已知图①②③中的多边形均为正多边形,,分别是所在边的中点,双曲线均以图中,为焦点.设图①②③中双曲线的离心率分别为,,,则()A. B.C. D.【答案】D【解析】【分析】分别根据正三角形、正方形、正六边形的性质,将用表示,然后利用双曲线的定义,求得,的等量关系,分别求出图示①②③中的双曲线的离心率,然后再判断的大小关系.【详解】图①中,;图③中,设正六边形的一个在双曲线右支上的顶点为,则,则;图②中,,,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.执行如图所示的程序框图,则输出的结果是()A. 2018B. -1010C. 1009D. -1009【答案】C【解析】【分析】根据程序框图,它的作用是求的值,根据结合律进行求解,可得结果. 【详解】该程序框图的作用是求的值,而,故选C.【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B.C.D. 60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,锥体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A. B. C. D.【答案】C【解析】五个人的编号为由题意,所有事件共有种,没有相邻的两个人站起来的基本事件有,再加上没有人站起来的可能有种,共种情况,所以没有相邻的两个人站起来的概率为故答案选9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.已知抛物线的焦点为,,是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】B【解析】【分析】利用余弦定理,结合基本不等式,即可求出的最大值.【详解】因为,,所以,在中,由余弦定理得:,又,所以,所以,所以的最大值为,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.11.已知当时,,则以下判断正确的是()A. B. C. D.【答案】C【解析】记,为偶函数且在上单调递减,由,得到即∴,即故选:C12.若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数的取值范围为()A. B. C. D.【答案】B【解析】∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣,∴f(x)﹣=﹣f(﹣x)+x2∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣≥f(1﹣x)+x﹣,即F(x)≥F(1﹣x),∴x≤1﹣x,x0≤,∵为函数的一个不动点∴g(x0)=x0,即h(x)= =0在(﹣∞,]有解.∵h′(x)=e x-,∴h(x)在R上单调递减.∴h(x)min=h()=﹣a即可,∴a≥.故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为________.【答案】【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2P=1,∴其准线方程是y=,。
河北省衡水中学2019届高三第二学期一模考试理科数学试题(解析版)
2018-2019学年度第二学期高三年级一模考试数学(理科)试卷第I 卷(选择题共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集为R ,集合{1,0,1,5}A =-,{}2|20B x x x =--≥,则R AB =ð( )A. {1,1}-B. {0,1}C. {0,1,5}D. }1,0,1{-【答案】B 【解析】 【分析】先化简集合B,再求R A B ð得解. 【详解】由题得B={x|x ≥2或x ≤1-}, 所以{|12}R C B x x =-<<, 所以{0,1}R A B =ð.故选:B【点睛】本题主要考查集合的交集和补集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.若复数z 满足(1i)|1|z +=,则在复平面内z 的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】先求出复数z 和z ,再求出在复平面内z 的共轭复数对应的点的位置得解. 【详解】由题得22(1)1(1)(1)(1i)i z i i i -===-++-,所以1z i=+,所以在复平面内z的共轭复数对应的点为(1,1),在第一象限.故选:A【点睛】本题主要考查复数的模和复数的除法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3. 某单位共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,则青年组中甲、乙至少有一人被抽到的概率为()A. 25B.35C. 2536D.1136【答案】B【解析】试题分析:按分层抽样应该从青年职工组中抽取人,其中青年组共有人,这六人中抽取两人的基本事件共有种,甲乙至少有一人抽到的对立事件为甲乙均没被抽到,基本事件为种,因此青年组中甲、乙至少有一人被抽到的概率为,故选B.考点:1.分层抽样;2.古典概型.4.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A. 2017年第一季度GDP 增速由高到低排位第5的是浙江省.B. 与去年同期相比,2017年第一季度的GDP 总量实现了增长.C. 去年同期河南省的GDP 总量不超过4000亿元.D. 2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个. 【答案】D 【解析】分析:解决本题需要从统计图获取信息,解题的关键是明确图表中数据的来源及所表示的意义,依据所代表的实际意义获取正确的信息.详解:由折线图可知A 、B 正确;()4067.41 6.6%38154000÷+≈<,故C 正确;2017年第一季度GDP 总量和增速由高到低排位均居同一位的省有江苏均第一;河南均第四,共2个.故D 错误. 故选D.点睛:本题考查条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图得到必要的住处是解决问题的关键.5.P 是双曲线22:12x C y -=右支上一点, 直线l 是双曲线C 的一条渐近线.P 在l 上的射影为Q ,1F 是双曲线C 的左焦点, 则||||1PQ PF +的最小值为( ) A. 1B. 25+C. 45+D. 122+【答案】D 【解析】设双曲线C 的右焦点为2F ,连接2PF,则12PF PQ PF PQ +=+d ≥(d为点2F到渐近线0x =的1=),即1PF PQ +的最小值为122+;故选D.点睛:本题考查双曲线的定义和渐近线方程;在处理涉及椭圆或双曲线的点到两焦点的距离问题时,往往利用椭圆或双曲线的定义,将曲线上的点到一焦点的距离合理转化到另一个焦点间的距离.6.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,1AB AC AA ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为6π,当1B M 最小时,=∠AMB ( )A.512πB.3π C.4π D.6π 【答案】B 【解析】 【分析】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出AMB ∠的大小.【详解】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系, 设1=1AB AC AA ==,设CN b =,BM a =,则(1N ,0,)b ,(0M ,1,)a ,(0A ,0,0),(0B ,1,0), (0AM =,1,)a ,(1AN =,0,)b ,设平面AMN 的法向量(n x =,y ,)z ,·0·0AM n y az AN n x bz ⎧=+=⎨=+=⎩,取1=z ,得(n b =-,a -,1), 平面ABC 的法向量(0m =,0,1), 平面AMN 与平面ABC 所成(锐)二面角为6π, 2||cos6||||m n m n a π∴==+,解得22331a b +=,∴当|1|B M 最小时,0b =,BM a ==,tan AB AMB BM ∴∠== 3AMB π∴∠=.故选:B .【点睛】本题考查角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.已知函数sin()()xx f x a ωϕπ+=(0,0,)a R ωϕπ><<∈,在[]3,3-的大致图象如图所示,则aω可取( )A.2πB. πC. 2πD.4π【答案】B 【解析】分析:从图像可以看出()f x 为偶函数,结合()f x 的形式可判断出()sin y x ωϕ=+为偶函数,故得ϕ的值,最后通过()10f =得到ω的值.详解:()f x 为[]3,3-上的偶函数,而xy a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k Z πϕπ=+∈.因为0ϕπ<<,故2πϕ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a aπ==,所以21=a . 综上()21k aωπ=+,k ∈N ,故选B .点睛:本题为图像题,考察我们从图形中扑捉信息的能力,一般地,我们需要从图形得到函数的奇偶性、单调性、极值点和函数在特殊点的函数值,然后利用所得性质求解参数的大小或取值范围.8.《九章算术》中描述的“羡除”是一个五面体,其中有三个面是梯形,另两个面是三角形.已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的体积为( )A. 20B. 24C. 28D. 32【答案】B 【解析】 【分析】画出五面体的直观图,利用割补法求其体积. 【详解】五面体对应的直观图为:由三视图可得:,4,2,6EF BC AD BC EF AD ===,三个梯形均为等腰梯形且平面FADE ⊥平面ABCDF 到底面ABCD 的距离为4d =,,AD BC 间的距离为3.如下图所示,将五面体分割成三个几何体,其中,F AGHB E IDCJ --为体积相等的四棱锥,且2AG GI ID ===,1,2BH JC HJ ===,则棱柱FGH EIJ -为直棱柱,EIJ ∆为直角三角形.又()114123632F AGHB E IDCJ V V --==⨯⨯⨯+⨯=; 1243122FGH EIJ V -=⨯⨯⨯=,故五面体的体积为121224+=.故选A.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.而不规则几何体的体积的计算,可将其分割成体积容易计算的规则的几何体.9.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,且BC 边上的高为a 63,则c b b c + 的最大值是( ) A. 8 B. 6C.D. 4【答案】D 【解析】22b c b c c b bc ++=,这个形式很容易联想到余弦定理:cos A 2222b c a bc+-=,①而条件中的“高”容易联想到面积,1122a =bc sin A ,即a 2=23bc sin A ,② 将②代入①得:b 2+c 2=2bc (cos A +3sin A ),∴b c c b+=2(cos A +3sin A )=4sin(A +6π),当A =3π时取得最大值4,故选D .点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.已知函数()sin 3f x x π⎛⎫=- ⎪⎝⎭,若12>0x x ,且()()120f x f x +=,则12x x +的最小值为( ) A.6π B. 3π C.2π D.23π 【答案】D 【解析】 【分析】先分析得到12x x +的最小值等于函数f(x)的绝对值最小的零点的2倍,再求函数的绝对值最小的零点即得解.【详解】由题得12+x x 等于函数的零点的2倍,所以12x x +的最小值等于函数f(x)的绝对值最小的零点的2倍, 令()sin =03f x x π⎛⎫=- ⎪⎝⎭, 所以,3x k k Z ππ-=∈,所以=+,3x k k Z ππ∈,所以绝对值最小的零点为3π, 故12x x +的最小值为23π. 故选:D【点睛】本题主要考查正弦型函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.过抛物线24y x =的焦点的一条直线交抛物线于A 、B 两点,正三角形ABC 的顶点C 在直线1x =-上,则ABC ∆的边长是( ) A. 8 B. 10C. 12D. 14【答案】C 【解析】【分析】设AB 的中点为M ,过A 、B 、M 分别作1AA 、1BB 、MN 垂直于直线1x =-于1A 、1B 、N , 设AFx θ∠=,求出31sin =θ,利用弦长公式,可得结论.【详解】抛物线24y x =的焦点为(1,0)F ,设AB 的中点为M ,过A 、B 、M 分别作1AA 、1BB 、MN 垂直于直线1x =-于1A 、1B 、N ,设AFx θ∠=,由抛物线定义知:1111||(||||)||22MN AA BB AB =+=,|||MC AB =,|||MN MC ∴=, 90CMN θ∠=︒-,∴||cos cos(90)||MN CMN MC θ∠=︒-=31sin =θ,所以直线AB 的斜率k=tan θ=所以直线AB 的方程为1)y x -, 联立直线AB 方程和抛物线方程得21010x x -=+,所以1212+=10||10212x x AB x x p ∴=++=+=,. 故选:C .【点睛】本题考查抛物线的方程与性质,考查抛物线的定义,正确运用抛物线的定义是关键.12.设函数()(1x g x e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A. 2⎛⎫+∞ ⎪ ⎪⎝⎭B. )+∞C. )+∞D. ,2⎡⎫+∞⎪⎢⎪⎣⎭【答案】D 【解析】 【分析】先构造函数()()212T x f x x =-,由题意判断出函数()T x 的奇偶性,再对函数()T x 求导,判断其单调性,进而可求出结果.【详解】构造函数()()212T x f x x =-, 因为()()2f x f x x -+=,所以()()()()()()()22211022T x T x f x x f x x f x f x x +-=-+---=+--=, 所以()T x 为奇函数,当0x ≤时,()()''0T x f x x =-<,所以()T x 在(],0-∞上单调递减, 所以()T x R 上单调递减.因为存在()()0112x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭, 所以()()000112f x f x x +≥-+, 所以()()()220000011111222T x x T x x x ++≥-+-+,化简得()()001T x T x ≥-, 所以001x x ≤-,即012x ≤令()()12xh x g x x e a x ⎛⎫=-=-≤⎪⎝⎭,因为0x 为函数()y g x x =-的一个零点, 所以()h x 在12x ≤时有一个零点 因为当12x ≤时,()12'0x h x e e =≤=,所以函数()h x 在12x ≤时单调递减,由选项知0a >,102<<,又因为0h ea e⎛=-=> ⎝,所以要使()h x 在12x ≤时有一个零点,只需使102h a ⎛⎫=≤⎪⎝⎭,解得2a ≥, 所以a的取值范围为⎫+∞⎪⎪⎣⎭,故选D. 【点睛】本题主要考查函数与方程的综合问题,难度较大.第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.若实数x ,y 满足约束条件1330.y x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,,,则3z x y =+的最小值为__________. 【答案】2 【解析】 分析】先画出可行域,利用目标函数的几何意义求z 的最小值.【详解】作出约束条件1330.y x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,,,表示的平面区域(如图示:阴影部分):由10y x x y =⎧⎨+-=⎩得A (12,12),由z =3x +y 得y =﹣3x +z ,平移y =﹣3x , 易知过点A 时直线在y 上截距最小, 所以3z x y =+的最小值为32+122=. 故答案为:2.【点睛】本题考查了简单线性规划问题,关键是画出可行域并理解目标函数的几何意义.14.若110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,则2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭的值为___________. 【答案】0 【解析】试题分析:由110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,解得tan 3α=,又2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭22sin 2cos 2cos 222αααααα=++=+-222cos sin cos 2ααααα+=-+20tan 12αα+=-=+. 考点:三角函数的化简求值.15.函数()f x 图像上不同两点),(11y x A ,),(22y x B 处的切线的斜率分别是A k ,B k ,AB 为A B 、两点间距离,定义(,)A B k k A B ABϕ-=为曲线()f x 在点A 与点B 之间的“曲率”,给出以下命题:①存在这样的函数,该函数图像上任意两点之间的“曲率”为常数;②函数32()1f x x x =-+图像上两点A 与B 的横坐标分别为1,2,则 “曲率”(,)A B ϕ> ③函数2()(0,)f x ax b a b R =+>∈图像上任意两点A B 、之间 的“曲率”(,)2A B a ϕ≤;④设),(11y x A ,),(22y x B 是曲线()xf x e =上不同两点,且121x x -=,若·(,)1t A B ϕ<恒成立,则实数 t 的取值范围是(,1)-∞。
衡水中学2019届高三数学下学期一调考试试题 理(含解析)
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
已知集合,,则()A。
B. C. D。
【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得。
【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则( )A。
B. 2 C. D。
5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案。
【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目。
3。
给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且"的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果。
【详解】①命题“,”的否定是:“,",所以①正确;②命题“若,则且"的否定是“若,则或",所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目. 4.函数的图像大致是( )A。
B。
C. D。
【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除。
河北省衡水中学2019届高三下学期一模考试理科数学试卷 含解析
2018-2019学年度第二学期高三年级一模考试数学(理科)试卷第I 卷(选择题共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集为R ,集合{1,0,1,5}A =-,{}2|20B x x x =--≥,则R A B =I ð( )A. {1,1}-B. {0,1}C. {0,1,5}D. }1,0,1{-【答案】B 【解析】 【分析】先化简集合B,再求R A B I ð得解. 【详解】由题得B={x|x ≥2或x ≤1-}, 所以{|12}R C B x x =-<<, 所以{0,1}R A B =I ð. 故选:B【点睛】本题主要考查集合的交集和补集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.若复数z 满足(1i)|13i |z +=+,则在复平面内z 的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】先求出复数z 和z ,再求出在复平面内z 的共轭复数对应的点的位置得解. 【详解】由题得22(1)1(1)(1)(1i)i z i i i -===-++-, 所以1z i =+,所以在复平面内z 的共轭复数对应的点为(1,1),在第一象限.故选:A【点睛】本题主要考查复数的模和复数的除法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3. 某单位共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,则青年组中甲、乙至少有一人被抽到的概率为()A. 25B.35C. 2536D.1136【答案】B【解析】试题分析:按分层抽样应该从青年职工组中抽取人,其中青年组共有人,这六人中抽取两人的基本事件共有种,甲乙至少有一人抽到的对立事件为甲乙均没被抽到,基本事件为种,因此青年组中甲、乙至少有一人被抽到的概率为,故选B.考点:1.分层抽样;2.古典概型.4.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.B. 与去年同期相比,2017年第一季度的GDP总量实现了增长.C. 去年同期河南省的GDP 总量不超过4000亿元.D. 2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个. 【答案】D 【解析】分析:解决本题需要从统计图获取信息,解题的关键是明确图表中数据的来源及所表示的意义,依据所代表的实际意义获取正确的信息.详解:由折线图可知A 、B 正确;()4067.41 6.6%38154000÷+≈<,故C 正确;2017年第一季度GDP 总量和增速由高到低排位均居同一位的省有江苏均第一;河南均第四,共2个.故D 错误. 故选D.点睛:本题考查条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图得到必要的住处是解决问题的关键.5.P 是双曲线22:12x C y -=右支上一点, 直线l 是双曲线C 的一条渐近线.P 在l 上的射影为Q ,1F 是双曲线C 的左焦点, 则||||1PQ PF +的最小值为( )A. 1B. 152C. 154D. 122+【答案】D 【解析】设双曲线C 的右焦点为2F ,连接2PF ,则1222PF PQ PF PQ +=+22d ≥(d 为点2(3,0)F 到渐近线20x =313=),即1PF PQ +的最小值为122+;故选D.点睛:本题考查双曲线的定义和渐近线方程;在处理涉及椭圆或双曲线的点到两焦点的距离问题时,往往利用椭圆或双曲线的定义,将曲线上的点到一焦点的距离合理转化到另一个焦点间的距离.6.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,1AB AC AA ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为6π,当1B M 最小时,=∠AMB ( )A.512π B.3π C.4π D.6π 【答案】B 【解析】 【分析】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出AMB ∠的大小.【详解】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系, 设1=1AB AC AA ==,设CN b =,BM a =,则(1N ,0,)b ,(0M ,1,)a ,(0A ,0,0),(0B ,1,0), (0AM =u u u u r ,1,)a ,(1AN =u u u r,0,)b ,设平面AMN 的法向量(n x =r,y ,)z ,·0·0AM n y az AN n x bz u u u u v r u u uv r ⎧=+=⎨=+=⎩,取1=z ,得(n b =-r,a -,1), 平面ABC 的法向量(0m =r,0,1),Q 平面AMN 与平面ABC 所成(锐)二面角为6π, 22||cos 6||||1m n m n a b π∴=++r r g r r g ,解得22331a b +=,∴当|1|B M 最小时,0b =,3BM a ==,tan 33AB AMB BM ∴∠=== 3AMB π∴∠=.故选:B .【点睛】本题考查角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.已知函数sin()()xx f x a ωϕπ+=(0,0,)a R ωϕπ><<∈,在[]3,3-的大致图象如图所示,则a ω可取( )A.2πB. πC. 2πD.4π【答案】B 【解析】分析:从图像可以看出()f x 为偶函数,结合()f x 的形式可判断出()sin y x ωϕ=+为偶函数,故得ϕ的值,最后通过()10f =得到ω的值.详解:()f x 为[]3,3-上的偶函数,而xy a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k Z πϕπ=+∈.因为0ϕπ<<,故2πϕ=,()()sincos2x xxxfxa aπωωππ⎛⎫+⎪⎝⎭==.因()10f=,故cos0ω=,所以2kπωπ=+,k∈N.因()02f=,故cos012a aπ==,所以21=a.综上()21kaωπ=+,k∈N,故选B .点睛:本题为图像题,考察我们从图形中扑捉信息的能力,一般地,我们需要从图形得到函数的奇偶性、单调性、极值点和函数在特殊点的函数值,然后利用所得性质求解参数的大小或取值范围.8.《九章算术》中描述的“羡除”是一个五面体,其中有三个面是梯形,另两个面是三角形.已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的体积为()A. 20B. 24C. 28D. 32【答案】B【解析】【分析】画出五面体的直观图,利用割补法求其体积.【详解】五面体对应的直观图为:由三视图可得:,4,2,6EF BC AD BC EF AD===P P,三个梯形均为等腰梯形且平面FADE⊥平面ABCDF 到底面ABCD 的距离为4d =,,AD BC 间的距离为3.如下图所示,将五面体分割成三个几何体,其中,F AGHB E IDCJ --为体积相等的四棱锥,且2AG GI ID ===,1,2BH JC HJ ===,则棱柱FGH EIJ -为直棱柱,EIJ ∆为直角三角形.又()114123632F AGHB E IDCJ V V --==⨯⨯⨯+⨯=; 1243122FGH EIJ V -=⨯⨯⨯=,故五面体的体积为121224+=.故选A.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.而不规则几何体的体积的计算,可将其分割成体积容易计算的规则的几何体.9.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,且BC 边上的高为a 63,则c b b c + 的最大值是( ) A. 8 B. 6C. 32D. 4【答案】D 【解析】22b c b c c b bc ++=,这个形式很容易联想到余弦定理:cos A 2222b c a bc+-=,① 而条件中的“高”容易联想到面积,13122a =bc sin A ,即a 2=23bc sin A ,② 将②代入①得:b 2+c 2=2bc (cos A +3sin A ),∴b c c b+=2(cos A +3sin A )=4sin(A +6π),当A =3π时取得最大值4,故选D .点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.已知函数()sin 3f x x π⎛⎫=- ⎪⎝⎭,若12>0x x ,且()()120f x f x +=,则12x x +的最小值为( ) A.6π B.3π C.2π D.23π 【答案】D 【解析】 【分析】先分析得到12x x +的最小值等于函数f(x)的绝对值最小的零点的2倍,再求函数的绝对值最小的零点即得解.【详解】由题得12+x x 等于函数的零点的2倍,所以12x x +的最小值等于函数f(x)的绝对值最小的零点的2倍, 令()sin =03f x x π⎛⎫=- ⎪⎝⎭, 所以,3x k k Z ππ-=∈,所以=+,3x k k Z ππ∈,所以绝对值最小的零点为3π, 故12x x +的最小值为23π. 故选:D【点睛】本题主要考查正弦型函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.过抛物线24y x =的焦点的一条直线交抛物线于A 、B 两点,正三角形ABC 的顶点C 在直线1x =-上,则ABC ∆的边长是( )A. 8B. 10C. 12D. 14【答案】C 【解析】 【分析】设AB 的中点为M ,过A 、B 、M 分别作1AA 、1BB 、MN 垂直于直线1x =-于1A 、1B 、N , 设AFx θ∠=,求出31sin =θ,利用弦长公式,可得结论.【详解】抛物线24y x =的焦点为(1,0)F ,设AB 的中点为M ,过A 、B 、M 分别作1AA 、1BB 、MN垂直于直线1x =-于1A 、1B 、N ,设AFx θ∠=,由抛物线定义知:1111||(||||)||22MN AA BB AB =+=,3||||MC AB =Q ,||||3MN MC ∴=, 90CMN θ∠=︒-Q ,∴||cos cos(90)||3MN CMN MC θ∠=︒-==,即31sin =θ, 所以直线AB 的斜率k=2tan 2θ=, 所以直线AB 的方程为2(1)y x =-, 联立直线AB 方程和抛物线方程得21010x x -=+,所以1212+=10||10212x x AB x x p ∴=++=+=,. 故选:C .【点睛】本题考查抛物线的方程与性质,考查抛物线的定义,正确运用抛物线的定义是关键.12.设函数()(1)x g x e e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A. e⎛⎫+∞ ⎪ ⎪⎝⎭B. ,)e +∞C. ,)e +∞D. e⎡⎫+∞⎪⎢⎪⎣⎭【答案】D 【解析】 【分析】先构造函数()()212T x f x x =-,由题意判断出函数()T x 的奇偶性,再对函数()T x 求导,判断其单调性,进而可求出结果. 【详解】构造函数()()212T x f x x =-, 因为()()2f x f x x -+=,所以()()()()()()()22211022T x T x f x x f x x f x f x x +-=-+---=+--=, 所以()T x 为奇函数,当0x ≤时,()()''0T x f x x =-<,所以()T x 在(],0-∞上单调递减, 所以()T x R 上单调递减.因为存在()()0112x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭, 所以()()000112f x f x x +≥-+, 所以()()()220000011111222T x x T x x x ++≥-+-+,化简得()()001T x T x ≥-, 所以001x x ≤-,即012x ≤令()()12xh x g x x e ex a x ⎛⎫=-=-≤⎪⎝⎭, 因为0x 为函数()y g x x =-的一个零点, 所以()h x 在12x ≤时有一个零点 因为当12x ≤时,()12'0x h x e e e e =≤=,所以函数()h x 在12x ≤时单调递减,由选项知0a >,102e<<,又因为0eeh ee a ee e -⎛=-=> ⎝,所以要使()h x 在12x ≤时有一个零点, 只需使11022h e e a ⎛⎫=≤⎪⎝⎭,解得2e a ≥, 所以a 的取值范围为e ⎫+∞⎪⎪⎣⎭,故选D. 【点睛】本题主要考查函数与方程的综合问题,难度较大.第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.若实数x ,y 满足约束条件1330.y x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,,,则3z x y =+的最小值为__________.【答案】2 【解析】 分析】先画出可行域,利用目标函数的几何意义求z 的最小值.【详解】作出约束条件1330.y x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,,,表示的平面区域(如图示:阴影部分):由10y x x y =⎧⎨+-=⎩得A (12,1 2),由z =3x +y 得y =﹣3x +z ,平移y =﹣3x , 易知过点A 时直线在y 上截距最小, 所以3z x y =+的最小值为32+122=. 故答案为:2.【点睛】本题考查了简单线性规划问题,关键是画出可行域并理解目标函数的几何意义.14.若110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,则2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭的值为___________. 【答案】0 【解析】试题分析:由110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,解得tan 3α=,又2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭ 222222222cos 22αααααα=+=+ 2222cos 222sin cos 2ααααα+=-+222220tan 12αα+=-=+. 考点:三角函数的化简求值.15.函数()f x 图像上不同两点),(11y x A ,),(22y x B 处的切线的斜率分别是A k ,B k ,AB 为A B 、 两点间距离,定义(,)A B k k A B ABϕ-=为曲线()f x 在点A 与点B 之间的“曲率”,给出以下命题:①存在这样的函数,该函数图像上任意两点之间的“曲率”为常数;②函数32()1f x x x =-+图像上两点A 与B 的横坐标分别为1,2,则 “曲率”(,)3A B ϕ>; ③函数2()(0,)f x ax b a b R =+>∈图像上任意两点A B 、之间 的“曲率”(,)2A B a ϕ≤;④设),(11y x A ,),(22y x B 是曲线()x f x e =上不同两点,且121x x -=,若·(,)1t A B ϕ<恒成立,则实数t 的取值范围是(,1)-∞。
河北衡水中学2019届高三下学期一调考试理科数学
河北省衡水中学2019届高三下学期一调考试数学(理科)本试卷满分150分,考试时间120分钟.选撵题:器題箕12小题,毎小题5分,共60分.在每小题给出的四个选项申,RW-项是符 舍题目篓求的.1. 已知集合 A={x|ic 2-^--2<0},B=(^|l<2i<8,^eZ},则 A0B = A. [~1,3]B. {0,1)C. L.0,2JD. {0,1,2}2. 已知 a,i>6R>i 是虚数单位,若(1+i) (1…6i)=a,则 |a+3i| = A.72 B. 2 C.75D, 5 3.给出下列四个结论:一…① 命题W3^GN…^> 2君”的否定是“ VxeN,x 2<2a,\② 命题“若«z+62=0,则a = 0且b=。
"的否定是"若『十#=0,则展销0”; ③ 命题"若aZ>=0,则a = 0或5=0”的否命题是“若展尹0,则a 尹0或时0”; ④ 若“p A <1是假命题,?V Q 是真命题”,则命题ptq 真~~假. 其中正确结论的个数为5.已知段①②③中的多边形均为正多边形,M,N 分别是所在边的中点,双曲线均以图中F 1>F 2 为焦点,设图①②③中双胞线的离心率分别为红心,3则 ()•6. 执行如图所示的程序框图,则输出的结果是A. 1B. 2C. 3 4.函数fS)=ln3+2) — e""的图像大致是D.4( ))A.2 0187a 已知某几何体的三视图如图所示,图中小方檳的边长为L 则.该几.何体的表面积为 &五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自已的硬币,若 硬币正面朝上,则这个人站起来亨若硬希正面朝下,则这个人继续坐着•那么没有相邻的两个 人站起来的概率为 ()A 丄B i-C --D — 232* 32169.夜△ABC 中,角A,B,C 所对的边分别为a,们“若a 』决=2 017/测囂彳十詈*= <)10. 已知抛物线寸=匾的焦点为F ,A6以是抛物线上的两个动・点溝马+及十 4=^|AB) , »ZAFB 的最大值为B •亨1L 已知当 "@(一学,勁时,cos a …cos ^tanlal-tanl^l ,则以下判断正确的是 ()A.aVRB. a>/?C/>俨• D.扌<肾12. 若存在一个实数I,使得F 〈f) = t 成立,.则称Z 为函数F(G 的…个不动.点一设函数g(.z) =寸+ (1—梔处一 a(M<R,e 为自然对数的底数),定义在K 上的连续函数/(x)W 足y(~Jt) +f{x')=x l,且当 时,/' (z)O,若存在 x 0 6 I z J /(x) +• —■ >/( 1JC ) +"x I,且..r 0 为函数g(r)的--个不动点、则实数a 的取值范围为 ()A. (-,8,专)B .修,+8) C. (y,7e]D.停,卜8)二,爐室题:恭题共4小题,毎小題5分,共20分. 13. 抛物线y = x 2的准■线方裡为~... __ _ —. 14.在四面体 ABCD 中 >AB= CD=-/3.' ,AC= B-D= 2 r AD== ,则四面体 ABCD 的外接球 的表面积为—.…. 15.已知。
河北衡水中学2019届高三下学期大联考卷Ⅱ 理科数学试题含答案
题 考 生 都 必 须 作 答 .第 22,23 题 为 选 考 题 ,考 生 根 据 要 求 作 答 .
( 一 ) 必 考 题 :共 60 分 .
17.(12 分 )
在△ABC 中,角 A,B,C 所对的边分别为a,b,c,已知3ab+c=cosc(oAs+BB).
(1)求cosB 的值;
(2)若b=4,求△ABC 面积的最大值.
10.2002年8月在北京召 开 的 第 24 届 国 际 数 学 家 大 会 会 标 图 案 如 图 所 示,
其中四边 形 ABCD 和EFGH 都 是 正 方 形,设 ∠DCE =θ.若 随 机 往 正 方
形 ABCD 区域内投点,则这些点落在正方形 EFGH 区域内的概率为
A.sin2θ
B.sin2θ
A.[1,2]
B.[1,5]
C.[2,3]
D.[3,5]
二 、填 空 题 :本 题 共 4 小 题 ,每 小 题 5 分 ,共 20 分 .
ìïïx+y≤5,
13.已知实数x,y 满足约束条件 í3x-2y≥0, 则z=3x+y 的最小值为
.
îïïx-2y+1≤0,
理科数学试题 第2页(共4页)
14.已知数列{an}的前n 项和为Sn ,且2Sn =3an +1,则an =
C.-4
D.-5
5.设函数f(x)=ex -e-x +3,则 曲 线y=f(x)在 x=0 ห้องสมุดไป่ตู้ 的 切 线 与 坐 标 轴 围 成 的 三 角 形 的 面
积为
A.9
3 B.2
9 C.2
9 D.4
理科数学试题 第1页(共4页)
(完整word)河北衡水中学2019高三第一次调研考试--数学(理)
河北衡水中学2019高三第一次调研考试--数学(理)高三年级数学试卷 〔理科〕本试卷分第一卷〔选择题〕和第二卷 (非选择题)两部分。
第一卷共2页,第二卷共2页。
共150分。
考试时间120分钟。
第一卷〔选择题共60分〕5分,共60分。
每题所给选项只有一项符合题意,请将正确答案的选 项填涂在答题卡上〕1.集合 M{x|x 1 22x 3 0},N {x |x a},假设 M 范围是〔〕件 5. _2(1 cosx) dx ()2[3,) B 、(3,) C 、(1] D 、(2.f(x)在R 上是奇函数,且N ,那么实数a 的取值1)【一】选择题〔每题f (xf (Q) 4) f (xx)当x (0,2)时,f (x) 2x 2,则f (7)()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条A. ( ,4]B.[4, )C.[ 4,4]D.( 4,4] 8.有下面四个判断:其中正确的个数是()A.-2B.23、函数f (x)C.-98log 2 x (x 1 x 2(xD.98 °),那么不等式 0)f (x ) 0的解集为〔〕A. {x | 0 x1} B {x|1 x 0} C. {x | 1 x1} D. {x | x 1}4.“a 0”是“方程ax 22x 10至少有一个负根”的〔〕A.B. 2C.2 D.A 、[0 , 1〕B 、( pC [1 ,+◎D (,1]7、函数2f(x) log °.5(xax 3a)在[2,)单调递减,那么a 的取值范围()⑤abc 4 ; ® abc 4其中正确结论的序号是() A.①③⑤B.①④⑥C.②③⑤D.②④⑥设0 a 1,函数f(x) log a (a 2x 2a x 2),那么使f (x) 0的取值范围是〔〕A. (, log a 3) B. (log a 3, ) C. (0, )D. ( ,0)12.函数sin x (0 x 1),假设a,b,c 互不相等,且f(a) f(b) f(c),那么 f (x)log 2010 x (x 1)a b c 的取值范围是()函数为f/(x),f/(x)的导函数为f 〃(x),那么有f 〃(Xo)0。
河北省衡水中学2019届高三下学期大联考(理数)
河北省衡水中学2019届高三下学期大联考数 学(理科)本试卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,甩2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸莉答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}1|{≥=x x M ,})2(|{212x x y x N -==,则集合=N M I A .φB .),2(+∞C .),2[+∞D .]2,1[2.已知i 为虚数单位,且复数z 满足:i 32)i 1(-=-z ,则z 的虚部为A .21-B .2i -C .21D .253.已知抛物线)0(22>=p py x C :的焦点F 在直线4=+y x l :上,则点F 到C 的准线的距离为A .2B .4C .8D .164.下图是我国2018年1月至12月石油进口量统计图(其中同比是今年第n 个月与去年第n 个月之比),则下列说法错误的是A .2018年下半年我国原油进口总量高于2018年上半年B .2018年12个月中我国原油月最高进口量比月最低进口量高 1152万吨C .2018年我国原油进口总量高于2017年我国原油进口总量D .2018年1月-5月各月与2017年同期相比较,我国原油进口量有增有减5.已知)2,1(A ,)3,2(B ,),1(m C -,若||||BC BA BC BA -=+,则=ACA .6B .52C .16D .206.已知函数2)1(2)(3-+'-=a f x x x f ,若)(x f 为奇函数,则曲线)(x f y =在点))(,(a f a 处的切线方程为 A .02=-y x B .0=y C .01610=--y x D .02=+-y x 7.函数)(x f 的图象可看作是将函数x y cos 2=的图象向右平移6π个单位长度后,荐把图象上所有点的横坐标变为原来的21倍(纵坐标不变)而得到的,则函数)(x f 的解析式为 A .)62cos(2)(π+=x x fB .)32cos(2)(π+=x x fC .)621cos(2)(π-=x x fD .)32sin(2)(π+=x x f 8.设函数2tan )(x x f =,若)2o 1(3g f a =,)2lo (5g f b =,)2(2.0f c =,则A .c b a <<B .a c b <<C .b c <<αD .c a b <<9.十三届全国人大二次会议于2019年3月5日至15日在北京召开.会议期间,工作人员将其中的5个代表团人员(含A 、B 两市代表团)安排至a ,b ,c 三家宾馆住宿,规定同一个代表团的人员住同一家宾馆,且每家宾馆至少有一个代表团入住,若A 、B 两市代表团必须安排在a 宾馆入住,则不同的安排方法种数为 A .6 B .12 C .16 D .18 10.某几何体的三视图如图所示,则该几何体的外接球的表面积为A .π3B .23πC .π6D .π1211.已知坐标平面xOy 中,点F 1,F 2分别为双曲线)0(1222>=-a y ax C :的左、右焦点,点M 在双曲线C 的左支上,MF 2与双曲线C 的一条渐近线交于点D ,且D 为MF 2的中点,点I 为△OMF 2的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为 A .2B .3C .5D .512.当x 为实数时,trunc(x )表示不超过x 的最大整数,如trunc(3,1)=3.已知函数)(trunc )(x x f = (其中R x ∈),函数)(x g 满足)6()(x g x g -=,)1()1(x g x g -=+,且]3,0[∈x 时|2|)(2x x x g -=,则方程)()(x g x f =的实根的个数为A .4B .5C .6D .7第Ⅱ卷本卷包括必考题和选考题两部分。
河北省衡水中学2019届高三下学期一调考试理科数学试卷附答案解析
河北省衡水中学2019届高三下学期一调考试数学(理科)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得.【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B. 2 C. D. 5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图像大致是()A. B.C. D.【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.5.已知图①②③中的多边形均为正多边形,,分别是所在边的中点,双曲线均以图中,为焦点.设图①②③中双曲线的离心率分别为,,,则()A. B.C. D.【答案】D【解析】【分析】分别根据正三角形、正方形、正六边形的性质,将用表示,然后利用双曲线的定义,求得,的等量关系,分别求出图示①②③中的双曲线的离心率,然后再判断的大小关系.【详解】图①中,;图③中,设正六边形的一个在双曲线右支上的顶点为,则,则;图②中,,,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.执行如图所示的程序框图,则输出的结果是()A. 2018B. -1010C. 1009D. -1009【答案】C【解析】【分析】根据程序框图,它的作用是求的值,根据结合律进行求解,可得结果. 【详解】该程序框图的作用是求的值,而,故选C.【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B.C.D. 60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,锥体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A. B. C. D.【答案】C【解析】五个人的编号为由题意,所有事件共有种,没有相邻的两个人站起来的基本事件有,再加上没有人站起来的可能有种,共种情况,所以没有相邻的两个人站起来的概率为故答案选9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.已知抛物线的焦点为,,是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】B【解析】【分析】利用余弦定理,结合基本不等式,即可求出的最大值.【详解】因为,,所以,在中,由余弦定理得:,又,所以,所以,所以的最大值为,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.11.已知当时,,则以下判断正确的是()A. B. C. D.【答案】C【解析】记,为偶函数且在上单调递减,由,得到即∴,即故选:C12.若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数的取值范围为()A. B. C. D.【答案】B【解析】∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣,∴f(x)﹣=﹣f(﹣x)+x2∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣≥f(1﹣x)+x﹣,即F(x)≥F(1﹣x),∴x≤1﹣x,x0≤,∵为函数的一个不动点∴g(x0)=x0,即h(x)= =0在(﹣∞,]有解.∵h′(x)=e x-,∴h(x)在R上单调递减.∴h (x)min=h()=﹣a即可,∴a≥.故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为________.【答案】【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2P=1,∴其准线方程是y=,。
河北省衡水中学2019届高三下学期大联考卷Ⅱ理科数学试卷及答案
姓名
准考证号
2019年全国高三统一联合考试
理科数学
本 试 卷 4 页 ,23 小 题 ,满 分 150 分 。 考 试 时 间 120 分 钟 。 注意事项:
1.答 题 前 ,考 生 务 必 将 自 己 的 姓 名 、准 考 证 号 填 写 在 答 题 卡 上 相 应 的 位 置 。 2.全 部 答 案 在 答 题 卡 上 完 成 ,答 在 本 试 题 上 无 效 。 3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案用0.5 mm 黑色笔迹 签字笔写在答题卡上。 4.考 试 结 束 后 ,将 本 试 卷 和 答 题 卡 一 并 交 回 。
[ ) A.(-∞,-3]∪ 1 2,+∞
( ) B.(-∞,-3)∪ 1 2,+∞
[ ] C.-3,12
( ) D.-3,1 2
3.函
数
f(x)=2x
x3 +2-x
的
图
像
大
致
为
A
B
C
D
4.已知等差数列{an}的首项a1=31,公差为d(d 为整数),若数列{an}的前8项和最大,则d=
A.-2
B.-3
.
15.已 知 甲 、乙 、丙 、丁 4 人 同 时 到 5 个 不 同 的 地 区 参 加 扶 贫 活 动 ,若 每 个 地 区 最 多 有 2 人 参 加 (2
人 到 同 一 个 地 区 ,不 区 分 2 人 在 其 中 的 角 色 ),则 甲 、乙 、丙 、丁 4 人 参 加 扶 贫 活 动 的 不 同 安 排
C.-4
2019年河北省衡水市高三下学期一调考试数学(理)试题及答案
高考数学精品复习资料2019.520xx ~20xx 学年度下学期一调考试 高三年级数学(理科)试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1、集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为( )A .7B .12C .32D .642、已知20<<a ,复数z 的实部为a ,虚部为1,则||z 的取值范围是( ) A .(1,5) B .(1,3) C .)5,1( D .)3,1(3、在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2548名男性中有1560名持反对意见,2452名女性中有1200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率4、若函数,,cos 3sin )(R x x x x f ∈+=ωω又0)(,2)(=-=βαf f ,且βα-的最小值为43π的正数ω为( ) A.31 B.32 C.34 D.23 5、定义在R 上的连续函数f (x )满足f (-x )=-f (x +4),当x >2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值 ( )A .恒小于0B .恒大于0C .可能为0D .可正可负 6、如图给出的是计算11112462014+++⋅⋅⋅的值的程序框图,其中判断框内应填入的是( ) A.2014i ≤ B.2014i > C.1007i ≤D.1007i >7、一个几何体的三视图如右图所示,则该几何体的体积为( )A. B.C.6 D8、 设向量a,b,c 满足060,,21,1=---=⋅==c b c a b a b a ,则c 的最大值等于( ) A .2 B .3 C .2 D .19、过x 轴正半轴上一点0(,0)M x ,作圆22:(1C x y +-=的两条切线,切点分别为,A B ,若||AB ≥则0x 的最小值为( )A .1BC .2D .310、过双曲线22221(0,0)x y a b a b-=>>左焦点1F ,倾斜角为30︒的直线交双曲线右支于点P ,若线段1PF 的中点在y 轴上,则此双曲线的离心率为( )C.311、点(,)P x y 是曲线1:(0)C y x x=>上的一个动点,曲线C 在点P 处的切线与x 轴、y 轴分别交于,A B 两点,点O 是坐标原点. 给出三个命题:①PA PB =;②OAB ∆的周长有最小值4+③曲线C 上存在两点,M N ,使得OMN ∆为等腰直角三角形.其中真命题的个数是( )A.1B.2C.3D.012、设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,若在其右准线上存在点P ,使12PF F ∆为等腰三角形,则椭圆的离心率的取值范围是( )A. B.(0,2C. D .⎪⎪⎭⎫⎝⎛122,20xx ~20xx 学年度下学期一调考试 高三年级数学(理科)试卷第Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13、在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,三边a 、b 、c 成等差数列,且B=4π,则cosA -cosC 的值为 .14、如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为 .15、在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】
D. 4[来*@&#源^:中教网]
①写出命题“
,
”的否定,可判断①的正误;②写出命题“若
,
则 且 ”的否定,可判断②的正误;写出命题“若
,则 或 ”的否命
题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.
【详解】①命题“
,
”的否定是:“
,
”,所以①正确;
②命题“若
,则 且 ”的否定是“若
【分析】
解一元二次不等式求得 A,解指数不等式求得 B,再根据两个集合的交集的定义求得 .
【详解】因为集合
,[w@ww.zzste p.#%co m*&]
,
所以
,
故选 D.
【点睛】该题考查的是有关集合的运算,属于简单题目.
2.已知
,是虚数单位,若
,则
()
A.
B. 2
C.
D. 5
【答案】C
【解析】
【分析】
K12 高考数学模拟
河北省衡水中学 2019 届高三下学期一调考试
数学(理科)
一、选择题:本题共 12 小题.在每小题给出的四个选项中,只有一项是符合题
目要求的.[来源:&中%国教育#出版*~网]
1.已知集合
,
,则
()
A.
B.
C.
D.
[w& ww.z*z ste %^p.c om ~]
【答案】D
【解析】
行求解,可得结果. 【详解】该程序框图的作用是求
的值,
而
,
故选 C.
【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.[来@源:中国教育*出#%版&网]
7.已知某几何体的三视图如图所示,图中小方格的边长为 1,则该几何体的表面积为( )
K12 高考数学模拟
K12 高考数学模拟
A. 65
结合求解.
二、填空题:本题共 4 小题.
13.抛物线
的准线方程为________.
【答案】
【解析】
由抛物线的标准方程为 x2=y,得抛物线是焦点在 y 轴正半轴的抛物线,2P=1,
∴其准线方程是 y= ,
。
故答案为:
。
14.在四面体
中,
,
,
,则四面体 的外接
球的表面积为_____. 【答案】
【解析】[www%.^z#zstep.co&m*]
11.已知当
时,
,则以下判断正确的是( )
A.
B.
C.
D.
【答案】C
【解析】
记
, 为偶函数且在 上单调递减,
由
即
∴
,即
[来源:z z^@ ste p.& c om *%]
故选:C
12.若存在一个实数,使得 (
,且当
,得到
成立,则称为函数 的一个不动点.设函数
, 为自然对数的底数),定义在 上的连续函数 满足
B.
C.
D. 60
【答案】D
【解析】[来%源:中教*~&网@]
【分析】[中%国教育^@*出版网#]
由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.
【详解】由三视图可知,该几何体为如下图所示的多面体
,
它是由直三棱柱 所以其表面积为
截去三棱锥
所剩的几何体,其中
,
,
故选 D.
【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何
D.
【答案】C[来源:中国#教育^@出版网*%] 【解析】 在
中
,
,由正弦定理得
,
,由余弦定理得
,
,
,
,
,故选 C.[来源~:中%&国教育^出*版网]
10.已知抛物线
的焦点为 ,
,
是抛物线上的两个动点,若
,则 的最大值为( )
A.
B.
C.
D.
【答案】B 【解析】 【分析】 利用余弦定理,结合基本不等式,即可求出
当 时,
, 单调递增;
当
时,
, 单调递减.
令
,可得:
当 时,
满足方程;[来源~#:中国教育出版网*&%]
即在
单调递增,
因为
,所以 在
上单调递增,[来#源%:^中~教网&]
所以当
时,由
可得:
,
,
等号成立,
所以 ,
即 的最小值为 ,
K12 高考数学模拟
K12 高考数学模拟
故答案是: .
【点睛】该题考查的是有关利用恒成立问题求参数的最值的问题,涉及到的知识点有利用导
A.
B.
C.
D.
【答案】C
【解析】
五个人的编号为
由题意,所有事件共有
种,没有相邻的两个人站起来的基本事件有[来~*@源:中国教育出^版#网]
,再加上
没有人站起来的可能有 种,共 种情况,
所以没有相邻的两个人站起来的概率为
故答案选 9.在 中,角 , , 所对的边分别为 , ,,若
,则
()
A.
B.
C.
的最大值.
K12 高考数学模拟
K12 高考数学模拟
【详解】因为
,
,
所以
,
在 中,由余弦定理得:
又 所以 所以
,
,
,[中国教^育@出~ &版网% ] ,
所以 的最大值为 ,
故选 B.
【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在
解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.
体,锥体的表面积,属于简单题目.
8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.
若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的
两个人站起来的概率为(
)[来~源&:中*国 教育%^ 出版网]
K12 高考数学模拟
K12 高考数学模拟
的齐次式,求出 ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统 一定义求解. 6.执行如图所示的程序框图,则输出的结果是( )
A. 2018
B. -1010
C. 1009
D.
-1009[www.zzs&t@#%ep.c^om]
【答案】C
【解析】
【分析】
根据程序框图,它的作用是求
的值,根据结合律进
命题,复合命题真值表,属于简单题目.
4.函数
的图像大致是( )
A.
B.
K12 高考数学模拟
K12 高考数学模拟
C.
D.
[来源: zz s%te p#@ & .c om ^]
【答案】A[来~源:^中教*&网@]
【解析】
【分析】
观察函数解析式,通过函数的定义域,特殊点以及当
满足条件的选项排除,从而得到正确的结果.
∴F(x)=﹣F(﹣x),即 F(x)为奇函数, ∵F′(x)=f′(x)﹣x, 且当 x 0 时,f′(x)<x, ∴F′(x)<0 对 x<0 恒成立,[www.zz&^st#ep.co*m~] ∵F(x)为奇函数, ∴F(x)在 R 上单调递减,[中国教育%出版*@~#网] ∵f(x)+ ≥f(1﹣x)+x,
K12 高考数学模拟
K12 高考数学模拟
共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,
球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱
两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.
15.已知 在 内,且
,
,则
____.
【答案】
意对不正确的选项进行排除.
5.已知图①②③中的多边形均为正多边形, , 分别是所在边的中点,双曲线均以图中 ,
为焦点.设图①②③中双曲线的离心率分别为 , , ,则( )
A. C. 【答案】D 【解析】 【分析】
K12 高考数学模拟
B. D.
[中国^@%教育&出~版 网]
K12 高考数学模拟
分别根据正三角形、正方形、正六边形的性质,将
时,
.若存在
,且 为
函数 的一个不动点,则实数 的取值范围为( )
K12 高考数学模拟
K12 高考数学模拟
A.
B.
C.
D.
[w@ w*w.z z^& ste p.c ~om ]
【答案】B 【解析】 ∵f(﹣x)+f(x)=x2
[来源:中~国 教育^出* 版网&@]
∴令 F(x)=f(x)﹣ ,
∴f(x)﹣ =﹣f(﹣x)+ x2
K12 高考数学模拟
K12 高考数学模拟
3.给出下列四个结论:
①命题“
,
”的否定是“
,
”;
②命题“若
,则 且 ”的否定是“若
,则
③命题“若
,则 或 ”的否命题是“若
,则 或
④若“ 是假命题, 是真命题”,则命题 , 一真一假.
”; ”;
其中正确结论的个数为( )
A. 1
B. 2
C. 3
【答案】B
【解析】
【详解】因为函数的定义域为 R,故排除 B,
因为
,所以排除 C,
时,函数值的变化趋势,将不
当
时,因为指数函数比对数函数增长速度要快,[来源@:zzst*ep.c~om%^]