群体智慧--复杂网络上的最佳共识形成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Xiaofan Wang
xfwang@
SOCIAL LEARNING IN COMPLEX NETWORKS
What is social learning?
(Consensus on the true state)
Our recent researches
(Pinning, Similarity ‐based, Chaos)
Social learning algorithms
(Bayesian +
Consensus)
我的在线历程20002005200620102011
汪小帆老师
90
关注4761粉丝
¾极度不均匀:
¾并非很社会:¾高度同质化:¾两步信息流:
¾不同生命期:
人肉搜索为何百发百中?
教育医疗等却为何如此难以形成最佳共识?
围脖上的意见领袖对粉丝的影响力有多大?
热门话题、名人堂。。。
群体智慧:大众比精英更聪明!Galton, Nature, 1907
¾Private signals
¾Network structure
¾Update rules Observing
Communicating
Updating Beliefs
Social Learning Process
1
2
3
一致性:能否形成共识?
最优性:是否最佳共识?
可控性:能否引导共识?
Case study: Who is singing?
State space True state Private signal
Likelihood function
Network structure ,,0()1,()1
i t k i t k k
μθμθ≤≤=∑,(*)1
i t μθ→Belief
{}
12,,,n θθθΘ=L *θ∈Θ
i t
s
(|)1
i s
l s θ=∑(,)
G V E =
Bayesian Learning :A Single Agent Case
()
t →∞*
()1P
t μθ→
11
111(
|)()
()(|)()
t t t t t t l s s m s θμθμθμθ+++++=
Observationally equivalent states
Agent i is called an indiscriminative agent
*:,(|)(|)for all i i i
i i i
l s l s s S θθθθθ∗∃∈Θ≠=∈
¾Each agent should know the global structure of the network ¾Each agent tries to deduce the information of every other agent
Bayesian Social Learning: Network Case
Computation burden + high complexity (|)()
(|)()
l s s m s θμθμθ=
人肉搜索有效克服了这两个困难!
Consensus
,1,,()()i
i t ii i t ij j t j N a a μθμθμθ+∈=+∑(),,()i t j t μθμθ−→()
0,()i t μθ→0,(*)1
i t μθ→θ∀∈Θ
θ∀∈Θ*
θθ∀≠Social Learning = Best Consensus
Consensus Algorithm
Consensus
,,01
()i t j j
N μθμθ→∑()
Consensus
,1,,()()i
i t ii i t ij j t j N a a μθμθμθ+∈=+∑(),,()i t j t μθμθ−→()
0,()i t μθ→0,(*)1
i t μθ→θ∀∈Θ
θ∀∈Θ*
θθ∀≠Social Learning = Best Consensus
Consensus Algorithm
Consensus
,,01
()i t j j
N μθμθ→∑()
Consensus
,1,,()()i
i t ii i t ij j t j N a a μθμθμθ+∈=+∑(),,()i t j t μθμθ−→()
0,()i t μθ→0,(*)1
i t μθ→θ∀∈Θ
θ∀∈Θ*
θθ∀≠Social Learning = Best Consensus
Consensus Algorithm
Consensus
,,01
()i t j j
N μθμθ→∑()
Consensus
,1,,()()i
i t ii i t ij j t j N a a μθμθμθ+∈=+∑(),,()i t j t μθμθ−→()
0,()i t μθ→0,(*)1
i t μθ→θ∀∈Θ
θ∀∈Θ*
θθ∀≠Social Learning = Best Consensus
Consensus Algorithm
Consensus
,,01
()i t j j
N μθμθ→∑()θ∀∈Θ