高分子材料学ppt课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
2.1 高分子材料的力学状态
Tg
Tf
Td
玻璃态
T<T
g
(1)分子运动机制:键长、键角的改变或支链、侧基的运动。
(2)力学特征:形变量小(0.01 ~ 1%),模量高(109 ~ 1010 Pa)。 形变与时间无关,呈普弹性。
(3)常温下处于玻璃态的聚合物通常用作塑料。
6
高弹态
Tg ~Tf
(1)分子运动机制:链段“解冻”,可以运动 形变量大,100-1000﹪
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
(2)力学特征:形变量很大(流动)
形变不可逆
模量极小
(3)Tf与摩尔平均质量有关
9
2.1 高分子材料的力学状态
1
2.1 高分子材料的力学状态
物质的物理状态
相态 凝聚态
热力学概念 动力学概念
凝聚态
力学状态
根据物质对外场(外部作用)特别是外力场 的响应特性划分。
按物质力学性能随温度变化的特性划分。
2
2.1 高分子材料的力学状态
气态ቤተ መጻሕፍቲ ባይዱ 物质的力学三态 液态
固态
温度增加
聚合物力学状态具有特殊性。原因:
没有气态; 具有非晶态; 结晶具有不完善性。
玻璃化转变现象及Tg的重要性
自由体积理玻论璃化转变是高聚物的一种普遍现象。
发生玻璃化转变时,许多物理性能发生急剧变化,可完全 改变材料的使用性能: T>Tg 时高聚物处于高弹态(弹性体) T<Tg 时高聚物处于玻璃态(塑料、纤维)
Tg是决定材料使用范围的重要参数: Tg 是橡胶的最低使用温度 Tg 是塑料的最高使用温度
结晶聚合物的力学三态及其转变
结晶聚合物的非晶区具有非晶态聚合物的力学三态 轻度结晶聚合物
温度,非晶区进入高弹态,晶区起交联点作用。 整个材料具有韧性和强度。
10
2.1 高分子材料的力学状态
结晶聚合物中的非晶区处于高弹态,聚合物的硬度随 结晶度的增大而 提高 。
结晶度>40% 晶区互相衔接,贯穿成连续相。观察不到明显的 非晶区玻璃化转变现象。 结晶聚合物能否观察到高弹态,取决于聚合物的摩 尔平均质量。
硫化橡胶 未硫化橡胶
软PVC
齐聚物
软~硬:模量 强~弱:拉伸强度 韧~脆:断裂23能
2.2 高分子材料的力学性能
高弹性
高弹态聚合物最重要的力学
性能
聚合物(在Tg以上)处于高弹态时所表现出的独特
的力学性质,又称橡胶弹性。
高弹性的特点:
弹性模量小;
橡胶: 0.2-8 MPa 钢:20000 MPa;HDPE: 200 MPa;PS:2500 MPa
Point of elastic limit 弹性极限点
Yielding point 屈服点
Breaking point 断裂点
Strain softening 应变软化 B
B Y
Y
N
D
A A
plastic deformation
塑性形变
Strain hardening 应变硬化
E D A D A
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
F
扭转
18
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试
样
实验条件:一定拉伸速率和温度
电子万能材料试验机
19
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
20
2.2 高分子材料的力学性能
形变量很大;
形变量一般~500%,可达1000%。普通金属材料的形
变量<1%
24
2.2 高分子材料的力学性能
温度升高,弹性模量增大 ; 温度,链段运动加剧,回缩力,维持相同形变所需
的作用力 抵抗变形的能力升高。 高弹形变有时间依赖性,具有力学松弛特性
高弹形变时分子运动需要时间
O A
B
y
图2.4 晶态聚合物的应力-应变曲线
21
2.2 高分子材料的力学性能
22
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量
高
高
高
低
低
拉伸强度
中
高
高
中
低
断裂伸长率 小
中
大
很大
中
断裂能
小
中
大
大
小
实例
PS
硬PVC
PMMA 酚醛树脂
增韧EP
PC ABS HDPE
3
2.1 高分子材料的力学状态
线型无定形聚合物的力学三态及其转变
热机械曲线(形变-温度曲线)实验示意 等速升温
4
2.1 高分子材料的力学状态
图2.1 线型无定形高聚物热机械曲线
线形无定形聚合物的力学三态:玻璃态、高弹态、粘流态 玻璃态向高弹态转变的温度:玻璃化转变温(Tg );
高弹态和粘流态之间的转变温度: 粘流温度(Tf)
14
2.2 高分子材料的力学性能
表征材料力学性能的基本指标
应力-应变 弹性模量 - 拉伸(杨氏)模量
剪切(刚性)模量 硬度 体积(本体)模量
机械强度 - 拉伸(抗张)强度 弯曲强度 冲击强度
15
2.2 高分子材料的力学性能
应力-应变
应变(形变):外力作用而不产生惯性移动时其 几何形状和尺寸所发生的变化。
(2)力学特征: 模量小,105-107Pa 形变可逆,一个松弛过程
(3)常温下处于高弹态的高聚物用作橡胶材料。 7
分子运动特点之一:时间依赖性
物质从一种平衡状态
外场作用下 通过分子运动
与外界条件相适 应的另一种平衡状态
低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
11
2.1 高分子材料的力学状态
图2.2 高结晶聚合物的热机械曲线
考虑:① 聚合物的摩尔平均质量与粘流温度的关系; ② 粘流温度与熔点的关系。
12
2.1 高分子材料的力学状态
问题:交联、网状聚合物是否有粘流态?
Cross-linked 交联
Network(3D) 网状
答案:不出现粘流态。
13
2.1 高分子材料的力学状态
材料
外力作
用 发生形变
材料欲保持原
状
产生附加内力
外力卸载
内力使形变回复并自行逐步消除
应力:单位面积上的内力。
16
2.2 高分子材料的力学性能
材料受力方式的基本类型
F
A0
A
A0
l0
l
F
F Dl
F
简单拉伸示意图
产生的形变-拉伸形变/相对伸长率
简单剪切示意图
剪切应力、剪切应变
17
2.2 高分子材料的力学性能
2.1 高分子材料的力学状态
Tg
Tf
Td
玻璃态
T<T
g
(1)分子运动机制:键长、键角的改变或支链、侧基的运动。
(2)力学特征:形变量小(0.01 ~ 1%),模量高(109 ~ 1010 Pa)。 形变与时间无关,呈普弹性。
(3)常温下处于玻璃态的聚合物通常用作塑料。
6
高弹态
Tg ~Tf
(1)分子运动机制:链段“解冻”,可以运动 形变量大,100-1000﹪
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
(2)力学特征:形变量很大(流动)
形变不可逆
模量极小
(3)Tf与摩尔平均质量有关
9
2.1 高分子材料的力学状态
1
2.1 高分子材料的力学状态
物质的物理状态
相态 凝聚态
热力学概念 动力学概念
凝聚态
力学状态
根据物质对外场(外部作用)特别是外力场 的响应特性划分。
按物质力学性能随温度变化的特性划分。
2
2.1 高分子材料的力学状态
气态ቤተ መጻሕፍቲ ባይዱ 物质的力学三态 液态
固态
温度增加
聚合物力学状态具有特殊性。原因:
没有气态; 具有非晶态; 结晶具有不完善性。
玻璃化转变现象及Tg的重要性
自由体积理玻论璃化转变是高聚物的一种普遍现象。
发生玻璃化转变时,许多物理性能发生急剧变化,可完全 改变材料的使用性能: T>Tg 时高聚物处于高弹态(弹性体) T<Tg 时高聚物处于玻璃态(塑料、纤维)
Tg是决定材料使用范围的重要参数: Tg 是橡胶的最低使用温度 Tg 是塑料的最高使用温度
结晶聚合物的力学三态及其转变
结晶聚合物的非晶区具有非晶态聚合物的力学三态 轻度结晶聚合物
温度,非晶区进入高弹态,晶区起交联点作用。 整个材料具有韧性和强度。
10
2.1 高分子材料的力学状态
结晶聚合物中的非晶区处于高弹态,聚合物的硬度随 结晶度的增大而 提高 。
结晶度>40% 晶区互相衔接,贯穿成连续相。观察不到明显的 非晶区玻璃化转变现象。 结晶聚合物能否观察到高弹态,取决于聚合物的摩 尔平均质量。
硫化橡胶 未硫化橡胶
软PVC
齐聚物
软~硬:模量 强~弱:拉伸强度 韧~脆:断裂23能
2.2 高分子材料的力学性能
高弹性
高弹态聚合物最重要的力学
性能
聚合物(在Tg以上)处于高弹态时所表现出的独特
的力学性质,又称橡胶弹性。
高弹性的特点:
弹性模量小;
橡胶: 0.2-8 MPa 钢:20000 MPa;HDPE: 200 MPa;PS:2500 MPa
Point of elastic limit 弹性极限点
Yielding point 屈服点
Breaking point 断裂点
Strain softening 应变软化 B
B Y
Y
N
D
A A
plastic deformation
塑性形变
Strain hardening 应变硬化
E D A D A
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
F
扭转
18
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试
样
实验条件:一定拉伸速率和温度
电子万能材料试验机
19
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
20
2.2 高分子材料的力学性能
形变量很大;
形变量一般~500%,可达1000%。普通金属材料的形
变量<1%
24
2.2 高分子材料的力学性能
温度升高,弹性模量增大 ; 温度,链段运动加剧,回缩力,维持相同形变所需
的作用力 抵抗变形的能力升高。 高弹形变有时间依赖性,具有力学松弛特性
高弹形变时分子运动需要时间
O A
B
y
图2.4 晶态聚合物的应力-应变曲线
21
2.2 高分子材料的力学性能
22
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量
高
高
高
低
低
拉伸强度
中
高
高
中
低
断裂伸长率 小
中
大
很大
中
断裂能
小
中
大
大
小
实例
PS
硬PVC
PMMA 酚醛树脂
增韧EP
PC ABS HDPE
3
2.1 高分子材料的力学状态
线型无定形聚合物的力学三态及其转变
热机械曲线(形变-温度曲线)实验示意 等速升温
4
2.1 高分子材料的力学状态
图2.1 线型无定形高聚物热机械曲线
线形无定形聚合物的力学三态:玻璃态、高弹态、粘流态 玻璃态向高弹态转变的温度:玻璃化转变温(Tg );
高弹态和粘流态之间的转变温度: 粘流温度(Tf)
14
2.2 高分子材料的力学性能
表征材料力学性能的基本指标
应力-应变 弹性模量 - 拉伸(杨氏)模量
剪切(刚性)模量 硬度 体积(本体)模量
机械强度 - 拉伸(抗张)强度 弯曲强度 冲击强度
15
2.2 高分子材料的力学性能
应力-应变
应变(形变):外力作用而不产生惯性移动时其 几何形状和尺寸所发生的变化。
(2)力学特征: 模量小,105-107Pa 形变可逆,一个松弛过程
(3)常温下处于高弹态的高聚物用作橡胶材料。 7
分子运动特点之一:时间依赖性
物质从一种平衡状态
外场作用下 通过分子运动
与外界条件相适 应的另一种平衡状态
低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
11
2.1 高分子材料的力学状态
图2.2 高结晶聚合物的热机械曲线
考虑:① 聚合物的摩尔平均质量与粘流温度的关系; ② 粘流温度与熔点的关系。
12
2.1 高分子材料的力学状态
问题:交联、网状聚合物是否有粘流态?
Cross-linked 交联
Network(3D) 网状
答案:不出现粘流态。
13
2.1 高分子材料的力学状态
材料
外力作
用 发生形变
材料欲保持原
状
产生附加内力
外力卸载
内力使形变回复并自行逐步消除
应力:单位面积上的内力。
16
2.2 高分子材料的力学性能
材料受力方式的基本类型
F
A0
A
A0
l0
l
F
F Dl
F
简单拉伸示意图
产生的形变-拉伸形变/相对伸长率
简单剪切示意图
剪切应力、剪切应变
17
2.2 高分子材料的力学性能