等比数列专题(有答案) 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.已知等比数列{}n a 的前5项积为32,112a <<,则35
124
a a a ++的取值范围为( ) A .73,
2⎡⎫
⎪⎢⎣⎭
B .()3,+∞
C .73,
2⎛
⎫ ⎪⎝⎭
D .[
)3,+∞
2.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则2020
2021
ln ln a a =
( ) A .1:3
B .3:1
C .3:5
D .5:3
3.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8 B .8± C .8- D .1 4.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( )
A .6
B .16
C .32
D .64
5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}
2
n a 的前n 项和为n T ,若2
(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )
A .()3,+∞
B .()1,3-
C .93,5⎛⎫ ⎪⎝⎭
D .91,5⎛
⎫- ⎪⎝
⎭
6.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .11021
B .
11022 C .1
1023
D .1
1024
7
.
12
的等比中项是( )
A .-1
B .1
C
D
.±
8.已知等比数列{}n a 的前n 项和为n S ,若2
13a a =,且数列{}13n S a -也为等比数列,则
n a 的表达式为( )
A .12n
n a ⎛⎫= ⎪⎝⎭
B .1
12n n a +⎛⎫= ⎪⎝⎭
C .23n
n a ⎛⎫= ⎪⎝⎭
D .1
23n n a +⎛⎫= ⎪⎝⎭
9.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =
B .723
S =
C .7623
S = D .7127
3
S =
10.设数列{}n a 的前n 项和为n S ,且()*
2n n S a n n N
=+∈,则3
a
=( )
A .7-
B .3-
C .3
D .711.题目文件丢失!
12.已知q 为等比数列{}n a 的公比,且1212a a =-,31
4a =,则q =( ) A .1- B .4
C .12-
D .12
±
13.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()
*
122n n a S n N ++=∈,则
满足
2100111
1000
10
n n
S S 的n 的最大值为( ). A .7
B .8
C .9
D .10
14.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)
A .4
B .5
C .6
D .7
15..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2
B .2或2-
C
.2-
D
16.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .
19
B .
17
C .
13
D .7
17.正项等比数列{}n a 的公比是1
3
,且241a a =,则其前3项的和3S =( ) A .14
B .13
C .12
D .11
18.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092
B .2047
C .2046
D .1023
19.已知等比数列{}n a 的前n 项和为n S ,若123
111
2a a a ++=,22a =,则3S =( ) A .8
B .7
C .6
D .4