煤加压气化工艺
国内最全的煤气化技术简介
国内最全的煤气化技术简介(最新整理)本文收集、整理、并汇总了国内当前大多数煤气化工艺(包括水煤浆、干煤粉、碎煤等加压气化工艺;固定床、流化床、气流床气化工艺;激冷流程、废锅流程;水冷壁、耐火砖等冷壁炉和热壁炉型),可作为煤化工、煤气化专业技术人员参考资料,是目前网络上公开交流的较为全面的一篇资料。
1、“神宁炉”粉煤加压气化技术(宁夏神耀科技有限责任公司)以高旋流单喷嘴大通量粉煤加压气化炉为目标载体,以多煤种理化特性数据为基础,构建了气化炉流场、传热分析等模型;基于燃烧器强动量传导机制,揭示了顶置式旋流气化场湍流燃烧的动力学机理;揭示了氧气和煤粉的强化反应规律,独创了高效无相变水冷壁反应室与“沉降-破泡式”激冷室相耦合的气化炉。
“神宁炉”干粉煤气化技术能源转化效率高,有效气成分≥91%,碳转化率≥98.5%。
固体灰渣好处理,灰渣中不含苯、酚、焦油等大分子有机物废物。
气化系统吨煤污水排放量控制在0.4—0.5t,废水处理后可完全回用。
高效、中空、高能点火系统,实现高压、惰性环境下点火成功率98%以上。
采用组合式燃烧器通道结构,控制火焰形成,确保气化炉内壁挂渣均匀。
2、“科林炉”CCG粉煤加压气化技术(德国科林工业技术有限责任公司)技术特点:(1)煤种适应性广:适用于各种烟煤、无烟煤、褐煤及石油焦等,对强度、热稳定性、结渣性、粘结性等没有具体要求。
对高灰分、高灰熔点、高硫含量的“三高”煤等低品质的煤种拥有很好的工业化业绩。
(2)技术指标高:因燃烧器采用多烧嘴顶置下喷的配置方式,原料在气化炉内碰撞混合更加充分,气化炉炉膛及顶部挂渣均匀,可实现较高的气化温度(1400~1700℃),碳转化率高达到99%以上,合成气中不含重烃、焦油等物质,有效合成气成分90~93%,冷煤气效率80~83%。
(3)投资低:根据项目规模不同,可提供日投煤量750吨/天至3000吨/天的不同气化炉炉型设计,主要设备制造已完全实现国产化,整个装置的投资建设成本低,建设周期短。
鲁奇加压气化技术的工艺流程
鲁奇加压气化技术的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!鲁奇加压气化技术的工艺流程一、准备工作阶段。
在采用鲁奇加压气化技术之前,需要做好充分的准备。
煤炭加压气化
谢谢欣赏!
Thanks!
•
•
•
而被冷却至180 ℃的煤气经气液分离器后送至 粗煤气冷却装置,冷却至37 ℃左右送至低温甲 醇洗装置,进行脱硫、脱碳。 经反应后的灰渣以固态形式由炉内旋转炉 篦排至灰锁,从灰锁定期排至炉外,进入水道 经水力排至,水力排灰装置的沉淀池,用桥式 抓斗机装车运出厂外。 从废锅分离下来的煤气水送至煤气水处理 装置。
概述
• 煤气化简介 • 煤是一种固体化石燃料,固体燃料的气化 过程是一个在高温或同时在高压下进行的, 复杂的多项物理化学过程。 • 一、煤气化的定义 • 煤炭气化是一个概括的术语,用来描述煤 炭转化成煤气的过程。即煤炭在高温条件 下,与气化剂进行热化学反应的过程。
• 能使煤炭气化生产煤气的设备称为煤 气发生炉,简称气化炉。煤炭在此称为气
• •
3、还原层 在氧气全部消失后,水蒸汽开始大量分解和碳进行反应,碳与 燃烧层来的CO2进行还原反应,随着反应的进行,在还原层H2和 CO不断地增加,水蒸汽和CO2的量在逐渐减少。由于大量的H2和 CO的生成,创造了甲烷大量生成的条件,在次,发生了加氢和合 成反应,随着反应的进行,CH4量增加,而H2和CO减少。甲烷生 成的反应速度较碳的燃烧反应和CO2的还原还原小的多,因此整 个还原层在炉内占据了大部分,在还原层吸、放热量几乎相等, 因此,整个床层内温度几乎没有变化。 • 4、干馏层 • 在干馏层,脱去水分的煤在次热解产生挥发分和残余碳。残余 碳的状态随温度的不同而成为焦碳或半焦。挥发份则是由可燃气、 焦油蒸汽、轻油馏份、有机化合物以及水蒸汽组成。 • 5、干燥层 是燃料气化的准备层,在次燃料被加热脱去水分。
• 炉内装有搅拌器和煤分布器,转动炉篦采 用多层结构,布气效果好,单炉气化提高 到化能力35000~50000m3粗煤气/hr,同时 第三代的结构材料,制作方法,操作控制 等均采用了现代技术,自动化程度高。 • 目前,国外鲁奇炉正向第四代发展,其方 向是提高能力,进行液态排渣等方面发展。 在南非莎索尔厂新建的Mark-V型气化炉直 径为5000m,单炉生产能力可达100000/ Nm3/hr。同时鲁奇公司在道尔登厂积极 从事“鲁尔10·0MPa”气化的试验研究。近 年来,由于石油和天然气的日益短缺及涨 价,能源将重新回到以煤为主的时代。
煤加压气化工艺
目录引言 (1)1碎煤加压气化装置 (2)1.1装置概况 (2)1.2岗位任务 (2)1.3原料 (2)2工艺原理 (3)2.1加压气化流程简述 (4)2.2产品规格(粗煤气) (8)3影响加压企划的因素 (9)3.1煤质对气化的影响 (9)3.2水分含量对气化的影响 (9)3.3灰分含量对气化的影响 (i10)3.4挥发份对气化的影响 (10)3.5硫分对气化的影响 (11)3.6粒度对气化的影响 (11)3.7煤的灰熔点和结渣性对气化的影响 (12)3.8煤的粘结性对气化的影响 (12)3.9煤的化学反应性的影响 (12)3.10煤的机械强度和热稳定性对气化的影响 (12)3.11灰熔点对气化的影响 (13)3.12灰样对气化操作的指导意义 (13)3.13入炉矸石含量增多,对气化炉的生产会带来有害的影响 (13)4碎煤加压气化技术特点 (14)5碎煤加压气化的优缺点: (14)6煤气化主要反应的反应机理 (15)6. 1、碳的氧化机理 (15)6.2、二氧化碳还原机理 (15)7与气化工艺有关的指标 (15)7.1:气化强度: (15)7.2:气化能力 (16)参考文献 (17)致谢 (18)引言论是从煤的深加工过程还是环保控制等诸多方面都要求对原煤加工过程都要求提高煤的利用率。
气化原理:在本质上是将煤由高煤的分子固态物质转变为低分子气态物质。
煤是一种固体化石燃料,与一般燃料比较,其元素组成中C、H比较高,将煤由固态转变为气态过程,也就是改变燃料C、H比结构的过程。
影响加压气化的因素很多如:水分含量对气化的影响;灰分含量对气化的影响;挥发份对气化的影;响硫分对气化的影响;粒度对气化的影响;煤的灰熔点和结渣性对气化的影响;煤的粘结性对气化的影响煤的化学反应性的影响煤的机械强度和热稳定性对气化的影响;灰熔点对气化的影响等。
控制好各种对加压气化有影响的因素的指标能更好地利用煤的价值更有利于保护环境,降低污染和充分利用资源。
碎煤加压气化(鲁奇)生产过程的控制(2024版)
33、计时器T-11启动,TC阀自动开。
34、若10秒内,TC阀全开,则“循环完成”信号出现。开启炉篦,灰锁开始受灰。
35、若10秒内,TC阀未全开,则“TC阀未全开”报警。
36、人工按“开”按钮,全开TC阀。
F
PV1
PV2
DV
CF
TC
BC
F
F
F
煤
一、煤锁控制程序(半自动) 煤锁加煤过程为间歇性的控制,通过操作阀门,使煤锁充压,泄压来实现加煤过程。一般操作方式分为现场手动与控制室遥控。而控制室又分为自动、半自动、手动。
2、人工按“关”按钮,关BC阀,监听铿锵声,观察限位指示,直至关严。
1、出现低料位或T=50℃、煤锁空”信号发出,灯光明,喇叭响。
37、“循环完成” 信号出现。
灰锁排灰程序(现场手动操作) 将三位开关切至现场手动操作,即可进行现场操作。 操作程序(以灰锁上阀打开,灰锁满为循环开端)
DV1
DV2
PV
F
F
F
F
充水
TC
BC
FV
1、炉篦已转到设定圈数或运行不超过1小时,炉篦自动停,如果不能自动停,则手动停,复位转数累积器。 注意点:a、“灰锁满”报警铃声响。 b、复位转数累积器。 c、如果不能自动停,则手动停。
6、当压力卸至0.0025MPa后,开BC阀,向灰斗排灰。
灰锁排灰程序(现场手动操作) 将三位开关切至现场手动操作,即可进行现场操作。 操作程序(以灰锁上阀打开,灰锁满为循环开端)
一、煤锁控制程序(手动)FPV1源自PV2DVCF
TC
航天炉粉煤加压气化技术分析
航天炉粉煤加压气化技术分析摘要:本文主要介绍了航天炉粉煤加压气化技术的工艺原理、技术特点及控制技术,以供参考。
关键词:航天炉;技术特点;结构一、航天炉煤气化的工艺原理原料煤经过磨煤、干燥后储存在低压粉煤储罐,然后用N2(正常生产后用CO2输送)通过粉煤锁斗加压、粉煤给料罐加压输送,将粉煤输送到气化炉烧嘴。
干煤粉(80℃)、纯氧气(200℃)、过热蒸汽(420℃)一同通过烧嘴进入气化炉气化室,瞬间发生升温、挥发分裂解、燃烧及氧化还原等物理和化学过程(1—10 s)。
该反应系统中的放热和吸热的平衡是自动调节的,既有气相间反应,又有气固相间的反应。
1400—1600℃的合成气出气化室通过激冷环、下降管被激冷水激冷冷却后,进入激冷室水浴洗涤、冷却,出气化炉的温度为210~220℃,然后经过文丘里洗涤器增湿、洗涤,进入洗涤塔进一步降温、洗涤,温度约为204℃、粉尘含量小于10×10-6的粗合成气送到变换、净化工段。
[1]二、航天炉的主要设备1、气化炉HT—L炉的核心设备是气化炉。
HT—L炉分上下两个部分:上部是气化室,由内筒和外筒组成,包括盘管式水冷壁、环行空间和承压外壳。
盘管式水冷壁的内侧向火面焊有许多抓钉,抓钉上涂抹一层耐火涂层,其作用是保护水冷壁盘管、减少气化炉热鼍损失。
盘管式水冷壁的结构简单,材质为碳钢,易制作且造价较低。
水冷壁盘管内的水采用强制密闭循环,在这循环系统内,有一个废热锅炉生产5.4MPa(G)的中压蒸汽,将热量迅速移走,使水冷壁盘管内水温始终保持一恒定的范围。
下部为激冷室,包括激冷环、下降管、破泡条和承压外壳。
激冷室为一承压空壳,外径和气化室一样,上部和水冷壁相连的为激冷环,高温合成气经过激冷环和下降管煤气温度骤降。
向下进入激冷室,激冷室下部为一锥形,内充满水,熔渣遇冷固化成颗粒落入水中,顺锁斗循环水排入灰锁斗。
粗合成气从激冷室上部引出。
2、烧嘴HT—L炉烧嘴是一个组合烧嘴,由一个主烧嘴、一个点火烧嘴和一个开工烧嘴组成。
粉煤加压气化技术
粉煤加压气化技术简介一、背景“九五”期间华东理工大学、兖矿鲁南化肥厂(水煤浆气化及煤化工国家工程研究中心)、中国天辰化学工程公司共同承担了国家“十五”科技攻关计划课题“粉煤加压气化制合成气新技术研究与开发”,建设具有自主知识产权的粉煤加压气化中试装置。
装置处理能力为15~45吨煤/天,操作压力2.0~2.5Mpa,操作温度1300~1400℃。
该课题于2001年年底启动,2002年10月完成研究开发阶段中期评估,中试装置进入设计施工阶段。
2004年7月装置正式投运,首次在国内展示了粉煤加压气化技术的运行结果,填补了国内空白,技术指标达到国际先进水平。
中试装置于2004年12月6日至9日顺利通过科技部组织的现场72 小时运行专家考核,2004年12月21日于北京通过科技部主持的课题专家验收。
同年,该成果入选2004年度煤炭工业十大科学技术成果。
二、装置流程与技术优势1、整个工艺流程如图1,具体流程为:原煤除杂后送入磨煤机破碎,同时由经过加热的低压氮气将其干燥,制备出合格煤粉存于料仓中。
加热用低压氮气大部分可循环使用。
料仓中的煤粉先后在低压氮气和高压氮气的输送下,通过气化喷嘴进入气化炉。
气化剂氧气、蒸汽也通过气化喷嘴进入气化炉,并在高温高压下与煤粉进行气化反应。
出气化炉的高温合成气经激冷、洗涤后并入造气车间合成气管线。
熔融灰渣在气化炉激冷室中被激冷固化,经锁斗收集,定期排放。
洗涤塔出来的黑水经过二级闪蒸,水蒸汽及一部分溶解在黑水中的酸性气CO2、H2S 等被迅速闪蒸出来,闪蒸气经冷凝、分离后与气化分厂生产系统的酸性气一并处理,闪蒸黑水经换热器冷却后排入地沟,送气化分厂生产装置的污水处理系统。
图1 粉煤加压气化中试装置单元流程图2、整个工艺流程与其他技术的指标差异如下表1。
将该粉煤气化技术与其它几种气流床水煤浆气化技术以及荷兰的Shell粉煤加压气化技术相比较,可以看出粉煤加压气化技术消耗低,碳转化率高,在气化炉条件或煤种相同情况下,比水煤浆气化技术节氧16~21%,节煤2~4%,有效气成份高6~10个百分点。
13种煤气化工艺的优缺点及比较解析
13种煤气化工艺的优缺点及比较有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。
现就适合于大型煤化工的比较成熟的几种煤气化技术作评述,供大家参考。
1、常压固定层间歇式无烟煤(或焦炭)气化技术这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。
从发展看,属于将逐步淘汰的工艺。
2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。
3、鲁奇固定层煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。
4、灰熔聚流化床粉煤气化技术中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。
床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。
缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%),环境污染及飞灰综合利用问题有待进一步解决。
此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。
5、恩德粉煤气化技术恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%,灰熔点高(ST大于1250℃)、低温化学活性好的煤。
浅谈碎煤加压气化工艺煤气水预分离
浅谈碎煤加压气化工艺煤气水预分离内蒙古赤峰市 025350摘要:近年来,国家对环境保护越来越重视,特别是煤化工生产过程中的“三废”治理是国家环境保护的一个严格控制环节。
碎煤加压气化工艺中煤气化废水(以下简称气水)的处理工艺也是其成熟技术的重要组成部分。
预分离是煤气水处理的首要环节,分离效果不仅影响气化过程的正常进行,也影响后续处理环节能否达到国家排放标准的要求。
因此,气水预分离对整个碎煤加压气化工艺系统的正常运行至关重要。
关键词:煤气水;煤焦油;闪蒸;沉降分离;1.1 煤气水主要来源煤气水主要来自碎煤加压气化及下游单元。
碎煤加压气化炉内底部输入的气化剂(蒸汽+氧气)自下而上与燃料煤在气化炉里逆流接触,在操作压力2.95Mpa~3.05 Mpa下经一系列化学反应生成CH4、CO2、H2、CO及H2S等成分复杂的合成粗煤气,同时将热量传递给逐渐下降的煤层,以500℃~600℃离开气化炉。
离开气化炉的粗煤气经洗涤冷却器喷淋冷却,降至204℃左右,再经废热锅炉冷却,气液混合物被冷却至180℃左右,粗煤气经气液分离后,送出气化界区进入到变换冷却装置。
粗煤气携带的大部分未分解的有机物被冷凝洗涤下来,洗涤冷凝混合液作为大部分煤气水送往煤气水分离装置。
另一部分煤气水来自变换冷却单元粗煤气的冷却和洗涤所产生的冷凝洗涤液。
粗煤气经来自煤气水分离装置高压煤气水洗涤,分离出的煤气水与经过冷却装置的粗煤气洗涤降温产生的煤气水混合返回到煤气水分离装置的油分离器。
另外,进入低温甲醇洗的粗煤气经冷却及石脑油处理的煤气水也输入到煤气水分离装置。
1.2 煤气水的预分离过程(1)气-液两相的分离溶解性气体与煤气水分离是利用减压闪蒸过程来完成的,分离效率由过程中的闪蒸压力和闪蒸温度决定的。
对闪蒸压力的分析可知,闪蒸过程是利用降低液体压力使溶解气体析出,实现气液分离。
在煤气水闪蒸过程中随着煤气水压力降低,一方面溶解性气体的溶解度降低;另一方面煤气水沸点也降低,随着沸腾进行溶解气从液相中析出。
粉煤加压气化工艺对煤质的要求
粉煤加压气化工艺对煤质的要求摘要:我国粉煤浆气化工艺技术的运行,应用粉煤浆气化炉,使粉煤浆加压气化,得到合成气,对其进行加工处理,可以制备甲醇等产物,满足煤化工生产的技术要求,文章对粉煤加压气化工艺对煤质的要求进行了研究分析,以供参考。
关键词:粉煤加压;气化工艺;煤质1 前言煤气化技术在煤化工产品的工业化发展过程中起着非常重要的作用,其作为内化工业的发展基础,受到化工行业业内的普遍重视,其技术也受到国内外的关注与研究开发。
近年来我国也推出了多种煤气化技术,这些技术在工业中也得到了很好的应用。
煤化工气的主要原理就是把煤转换成合成气,这样有利于化工生产。
煤化工气化工艺的工艺主要是准备煤料、气化、炭黑水和粗煤气处理三种工序,最终得到的是有一定含量的水蒸气合成气。
2 粉煤浆加压气化工艺技术的特点粉煤浆加压气化工艺,具有许多的优点,对煤质的要求不高,能够适应的原煤产品比较多,有利于寻找化工生产的粉煤浆原料,更好地使其气化,满足煤化工生产的需求。
粉煤浆气化装置能够满足合成氨,甲醇合成等工艺技术的要求,能够保值连续稳定的运行状态。
气化系统的热利用,可以采用废热锅炉和水激冷器的方式,进行热能的变换,必须要额外的装置和设备。
粉煤浆加压气化工艺技术措施属于清洁的技术措施,能够降低尾气的排放,避免造成环境污染。
缺点和不足是气化率需要的煤必须是低灰的燃煤,否则需要加助熔剂。
碳的转化率比较低,有效成分低,有效气体的消耗量大。
气化炉的耐火砖使用寿命短,工艺喷嘴需要及时进行维修或者更换,给粉煤浆气化工艺技术措施的实施,带来严重的危害。
在粉煤浆加压气化工艺技术实施过程中,优选合适的耐火材料作为气化炉的耐火砖,延长气化炉的使用寿命,优选合适的低灰的煤作为粉煤浆的原材料,保证达到预期的气化效果。
3 煤质影响气化的主要因素3.1 水分煤中的水分包括外水和内水。
附着在煤颗粒外表面和较大毛细孔内的水是外水,比较容易除去,吸附在煤颗粒中较小的毛细孔内的水分是内水,在室温条件下比较难以除去。
《煤加压气化》课件
欢迎大家来到本次《煤加压气化》的课件!今天,我们将深入探讨压力煤气 化技术及其应用领域,带你领略煤炭工业中的奇妙世界。
压力煤气化技术介绍
压力煤气化是将煤炭在高温高压条件下转化为合成气的一种先进技术。它使 得煤炭能够更高效地转化为清洁的能源。
压力煤气化的原理
压力煤气化基于热力学原理,通过高温高压下的化学反应,将煤炭中的有机物质转化为合成气,包括氢气和一 氧化碳。
2. 能源领域
合成气可以作为清洁能源替 代煤炭和石油,用于发电和 供热。
3. 炼化工业
合成气可用于炼钢和炼铁过 程中,提高炉内温度和反应 效率。
压力煤气化的优势和挑战
优势
• 高效利用煤炭资源 • 减少环境污染 • 多种应用领域
挑战
• 高温高压条件要求严格 • 技术成本较高 • 气体净化和废弃物处理
压力煤气化的工艺流程
1
1. 煤料加热
煤炭经过预处理和干燥,使其达到适宜的反应温度。
2
2. 煤气化反应
煤炭在高温高压下进行气化反应,生成合成气。
3
3. 气体净化
合成气被净化和处理,去除污染物和固体颗粒。
压力煤气化的应用领域
1. 化学工业
合成气可以用作原料生产合 成烃类化学品,例如合成油、 合成润滑油等。
压力煤气化的发展前景
随着环保意识的提高和清洁能源需求的增加,压力煤气化技术在未来将有更 广阔的应用前景。新的技术和设备的发展也将进一步提程,我们了解了压力煤气化技术的基本原理、工艺流程、应用领域、优势和挑战。相信随着技术的 不断发展,煤气化将在能源转型和环境保护方面发挥越来越重要的作用。
鲁奇碎煤加压气化技术探索
鲁奇碎煤加压气化技术探索摘要:本文从鲁奇加压气化特点入手,阐述了鲁奇加压气化原理,分析了鲁奇加压气化操作工艺条件。
关键词:鲁奇加压气化技术;原理;工艺常压固定(移动)床气化炉生产的煤气热值低,煤气中二氧化碳含量高,气化强度低,生产能力小,不能满足合成气的质量要求。
为解决上述问题,人们研究发展加压固定(移动)床气化技术。
在加压固定(移动)床气化技术中,最著名的为鲁奇加压气化技术。
一、鲁奇加压气化概述鲁奇加压气化采用的原料粒度为5~50mm,气化剂采用水蒸汽与纯氧,加压连续气化。
随着气化压力的提高,气化强度大幅提高,单炉制气能力可达75000~100000m2/h以上,而且煤气的热值增加。
鲁奇加压气化在制取合成气和城市煤气生产方面受到广泛重视。
1、鲁奇加压气化特点鲁奇加压气化有以下优点。
(1)原料适应性①原料适应范围广。
除粘结性较强的烟煤外,从褐煤到无烟煤均可气化。
②由于气化压力较高。
气流速度低,可气化较小粒度的碎煤。
③可气化水分、灰分较高的劣质煤。
(2)生产过程①单炉生产能力大,最高可达100000m2/h(干基)。
②气化过程是连续进行的,有利于实现自动控制。
③气化压力高,可缩小设备和管道尺寸,大幅度提高气化炉的生产能力,并能改善煤气的质量;利用气化后的余压可以节省合成气加压能耗和进行长距离输送。
④气化较年轻的煤时,可以得到各种有价值的焦油、轻质油及粗酚等多种副产品;⑤通过改变压力和后续工艺流程,可以制得H2/CO各种不同比例的化工合成原料气,拓宽了加压气化的应用范围。
2、鲁奇加压气化的缺点如下。
①蒸汽分解率低。
对于固态排渣气化炉,一般蒸汽分解率约为40%,蒸汽消耗较大,未分解的蒸汽在后序工段冷却,造成气化废水较多,废水处理工序流程长,投资高。
②需要配套相应的制氧装置,一次性投资较大。
二、鲁奇加压气化原理1、化学反应在气化炉内,在高温、高压下,煤受氧、水蒸汽、二氧化碳的作用,发生如下各种反应。
2、加压气化的实际过程(1)气化过程热工特性在实际的加压气化过程中,原料煤从气化炉的上部加入,在炉内从上至下依次经过干燥、干馏、半焦气化、残焦燃烧、灰渣排出等物理化学过程。
鲁奇工艺加压气化基础刘凯.pptx
第10页/共107页
在煤的工业分析中所测定的水分,分为原煤全水分(若来样符合应用煤状况,则称为应用煤水分)和分析煤样的水分。水分用定量法测定,全水分测定结果按下式计算:WQ=W1+ G1/G(100-W1)式中:WQ试样全水,%;W1试样在运输中损失的水分,%;G1试样干燥后的 失重,克;G试样的重量,克。
第11页/共107页
2、灰分(A)(1)煤中灰分的来源: 煤的灰分是指煤中所有可燃物质完全燃烧以及煤中矿物质在一定温度下产生一系列分解,化合等复杂反应后剩下来的残渣。煤的灰分全部来自煤中的矿物质,但它的组成和重量与煤中矿物质不完全相同,因而确切地说,煤的灰分应称为灰分产率。煤中矿物质有不同的来源,一般可以分为以下三种:a、原生矿物质:它是由成煤植物本身所含有矿物质形 成,原生矿物质在煤中含量很少。b、次生矿物质:它是在成煤过程中由外界混到煤层中 的矿物质形成。
第16页/共107页
固定床气化对煤的质量要求
2:挥发份:当工业煤气完全用作燃气时要求甲烷含量高、热值大,则可选用挥发分较高的煤做原料,所得煤气中甲烷含量较大。当煤气用作工业生产的合成气时,一般要求使用低挥发分、低硫的无烟煤、半焦或焦炭。变质程度轻的煤种,生产的煤气焦油产率高,含酚废水的处理量相应增加。对合成气来讲,甲烷可能成为一种不利的气体。要求煤种挥发分小于 10%。煤中挥发分变高,能造成副产品焦油和中油产率增大,粗煤气中二氧化碳增加,粗煤气产率下降,粗煤气耗块煤单耗随之增加。煤中挥发分低,煤气产率增加,气化炉运行更为经济。
煤的生成与分类
第4页/共107页
(2)变质作用阶段:当地壳继续下沉和顶板加厚时,由于地热和顶板压力的提高,使得煤的变化逐渐脱离了成岩作用范畴,进入变质作用阶段。变质作用阶段是指在褐煤形成以后,沉降到地壳内很深的地方,受高温高压的影响改变了原来的性质和结构的过程。在变质因素的作用下,煤发生了物理、化学变化。变质作用的结果,煤中宫能团含量、挥发分产生率逐渐减小,碳含量逐渐增高,氢和氧含量逐渐减小,热稳定性有所提高。在自然中,从植物转变成煤的过程是一个由低级的发展过程,也由量变到质变的过程。如下表所示:
关于鲁奇加压气化工艺的几点介绍可修改全文
气化炉内外壳体生产期间 由于温度不同,热膨胀量不同, 为降低温度差应力,在内套下 部设计制造成波形膨胀节,用 48mm 于吸收热膨胀量。
正常生产期间,波形膨胀 节不但可吸收大约25~35mm 的内壳热膨胀量,而且在此还 可以起到支撑灰渣的作用,这 样可使灰渣在刮刀的作用下均 匀地排到灰锁中去。
夹套上部空间
剂在煤层中形成沟流。
炉篦分为五层,从下至 上逐层叠合固定在底座上, 顶盖呈锥形,炉篦材质选用 耐热耐磨的絡锰合金钢铸造。 最底层炉篦的下面设有三个 灰刮刀安装口,灰刮刀的数 量由气化原料煤的灰分含量 来决定。灰分含量较少时安 装1-2把刮刀,灰分高的安 装3把刮刀。支承炉篦的止 推轴承上开有注油孔,由外 部高压注油泵通过油管注入 止推轴承面进行润滑,该润 滑油为耐高温的过热汽缸油。 炉篦的传动采用变频电机传 动。由于气化炉直径较大, 为使炉篦受力均匀由两台电 动机对称布置。
1、气化炉排出灰渣的状态:颜色、粒度、含碳量。
灰渣粒度较大,量多,火层温度过高,说明汽氧比偏低。
灰渣中残炭量高,细灰量多且无熔渣,说明火层反应温度低,汽氧比偏 低。
2、原料煤的灰熔点:在灰熔点允许的情况下,应尽量降低汽氧比,以 提高反应层的温度,若灰熔点发生变化,要及时调整汽氧比。
3、煤气中CO2含量:CO2含量的变化对汽氧比的变化反应最敏感,在煤 种相对稳定的情况下,CO2超出设定范围要及时调整汽氧比,以适应气 化炉运行的需要。
➢ 增大炉篦转速,观察下灰量; ➢ 观察压差、压力、温度、流量的变化; ➢ 对出口气体进行分析。 ➢ 气化炉夹套耗水量正常
在气化炉工况稳定的情况下,增加负荷100Nm3/10min逐次递 增至所需负荷,原则上限定每小时增加负荷不能超过 1000Nm3;减负荷500Nm3/5min逐次递减至所需负荷,在加 减负荷过程中,要求保证气化炉工况和系统压力的稳定。
鲁奇加压煤气化工艺技术
工艺技术知识煤炭气化是用于描述把煤炭转化成煤气的一个广义的术语,可定义为:煤炭在高温条件下,与气化剂进行热化学制得反应煤气的过程。
进行煤炭气化的设备叫气化炉(煤气发生炉)。
煤气化生产工艺包括煤的气化、粗煤气的净化、煤气组成的调整。
气化炉制得的粗煤气成分很复杂,主要有CO2、CO、H2、CH4、H2S等,无论煤气作何用途,均需净化处理可使得:(1)清除煤气中的有害杂质;(2)回收粗煤气中一些有价值的副产品;(3)回收粗煤气的显热。
根据煤气的用途不同,其组成要相应地进行调整处理如煤气若作城市煤气,则粗煤气中CO就需调整在符合安全规定范围内;煤气若作合成氨或合成甲醇的原料气,其组成中的CH4又需转化成H2;.可见煤气用途不同,煤气组成的调整工艺也不同。
煤气化系统包括备煤、气化、变换、煤气冷却所组成的气化系统和有煤气水分离、脱酚氨回收所组成的副产品回收系统以及用于废水处理的生化处理。
就上述工艺予以分别介绍。
气化炉总布置图序号设备名称及代号①气化炉B606AOI②煤锁V606A01③煤锁溜槽V606A02④煤仓V606A03⑤灰锁V606A04⑥洗涤冷却器V606A06⑦膨胀冷却器V606A07⑧煤锁气洗涤器V606A08⑨煤锁气气柜V606A09⑩开车煤锁气洗涤器V606A10 ⑾火炬气汽液分离器V606A11 ⑿火炬导燃器和火炬筒V606A12 ⒀夹套蒸汽分离器F606A01 ⒁粗煤气分离器F606A02⒂煤尘气分离器F606A03⒃煤锁气分离器F606A04⒄开车煤气分离器F606A05 ⒅煤锁气引射器J606A01⒆洗涤冷却循环水泵J606A02 ⒇煤锁气洗涤水泵J606A04 (21 开车煤气洗涤水泵J606A05(22 火炬冷凝液泵J606A06(23 气化剂混合管L606A01(24 洗涤冷却器刮刀L606A02(25 废热锅炉C606A01煤的气化一:工艺概述粒度为5~50㎜的原料煤由储煤仓经煤锁间断地加入到气化炉内,在3.1MPa压力下,煤自上经下经干燥层、干馏层、气化层逐层下移,与底部进入的气化剂(蒸汽+氧气)逆流接触发生气化反应,生成的煤气将热量传递给下降的煤层,以约600~700℃的温度离开气化炉。
鲁奇碎煤加压气化工艺分析
鲁奇碎煤加压气化工艺分析一、鲁奇加压气化发展史鲁奇炉是德国鲁奇煤气化公司研究生产的一种煤气化反应器。
该炉型的发展经历了漫长的过程,其发展过程可分为三个阶段。
1、第一阶段:任务是证明煤炭气化理论在工业上实现移动床加压气化。
1936年至1954年,鲁奇公司进行了34次试验。
在这基础上设计了MARK—Ⅰ型气化炉。
该炉型的特点是炉内设有耐火砖,灰锁置于炉侧,气化剂通过炉篦主轴通入炉内。
炉身较短,炉径较小。
这种炉气化强度低,产气量仅为4500~8000Nm3/h,而且仅适用于褐煤气化。
2、第二阶段:任务是扩大煤种,提高气化强度。
为此设计出了第二代气化炉,其特点是(1)改进了炉篦的布气方式。
(2)增加了破粘装置,灰锁置于中央,炉篦侧向传动,(3)去掉了炉膛耐火砖。
炉型有MARK—Ⅱ型与MARK—Ⅲ型。
单台炉产气量为14000~17000Nm3/h。
3、第三阶段:任务是继续提高气化强度和扩大煤种适用范围。
设计了MARK—Ⅳ型炉,内径3.8米,产气量35000~50000Nm3/h,其主要特点是:(1)增加了煤分布器,改进了破粘装置,从而可气化炼焦煤以外的所有煤。
(2)设置多层炉篦,布气均匀,气化强度高,灰渣残炭量少。
(3)采用了先进的制造技术与控制系统,从而增加了加煤排灰频率,运转率提高到80%以上。
4、第四代加压气化炉:第四代加压气化炉是在第三代的基础上加大了气化炉的直径(达Ф5m),使单炉生产能力大为提高,其单炉产粗煤气量可达75000m3(标)/h(干气)以上。
目前该炉型仅在南非sasol公司投入运行。
今后鲁奇炉的发展方向:(1)降低汽氧比,提高气化层温度,扩大煤种适用范围,灰以液态形式排出,从而提高蒸汽分解率,增加热效率,大幅度提高气化强度,气化强度可由2.4t/m2h提高到3-5t/m2h.煤气中的甲烷可下降到7%以下。
(2)提高气化压力,根据鲁尔—100型炉实验,当压力由2.5Mpa提高到10.0Mpa,煤的转化率及气化强度可成倍增加,氧与蒸汽的消耗减少,煤的粒度也可以减少。
干煤粉加压气化技术
干煤粉加压气化技术作为一种重要的煤气化技术,干煤粉加压气化技术的应用对于保证系统运行的稳定性与经济性具有重要作用。
本文首先介绍了干煤粉加压气化技术特点,然后具体探讨了干煤粉加压气化工艺流程,以期为相关技术与研究人员提供参考。
标签:干煤粉;加压气化技术;研究煤碳资源的清洁使用是当前国内经济与社会发展的必然选择。
为满足当前可持续发展的需求,煤炭的洁净使用应以科学发展观为主旨,采用现代科学技术,以开拓煤炭资源发展的新型化工业道路。
作为清洁煤发电与煤化工行业的关键技术,干煤粉加压气化技术具有比氧耗小、冷煤气效率高、自耗功小、净化系统与煤气冷却器成本低等特点。
因此,加强有关干煤粉加压气化技术的研究,对于改善煤气化技术应用质量具有重要的理论和现实意义。
1 干煤粉加压气化技术特点干煤粉加压气化炉通常选用冷壁结构。
气化炉内的某段反应区安设4个对称的烧嘴,煤粉与气化剂利用烧嘴流通进入气化炉,在炉内产生撞击流,以在呢刚强传质与传热进程,保证气化反应顺利完成。
另一段反应区安设2个对称烧嘴,将水蒸气与煤粉通入进去,采用高温煤气显热段实施煤热解和焦炭的气化反应。
渣口一般安设在底部高温段,选用液态排渣技术。
气化炉二段反应是指在采用高温煤气显热段开展气化与热解的同时,减小高温煤气温度,以降低激冷煤气量与激冷压缩机载荷。
干煤粉加压气化技术的特点有:(1)气化炉选用水冷壁结构,以渣抗渣,不存在耐火砖衬里,具有较长的使用寿命;(2)两段反应区实行焦炭的气化反应、煤的挥发分与热解,采用一段高温煤气进行显热,且同时能减小煤气温度,进而降低激冷气压缩机系统规模;(3)选用多个烧嘴方式,改善了气化工作的稳定性与负荷调节性能;(4)反应区温度多控制在1400~1600℃之间,气化压力可达到3MPa,碳转化率可达到99%,煤气中的CO与H2含量等气成分能够高达90%。
相比国外发达技术,冷煤气效率可提升2%,比氧耗可降低15%~20%。
煤气品质较高,不存在酚及焦油等杂质;(5)后续工艺可配合采用激冷流程或废锅流程,以适用于不同工艺方案[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录引言 (1)1碎煤加压气化装置 (2)1.1装置概况 (2)1.2岗位任务 (2)1.3原料 (2)2工艺原理 (3)2.1加压气化流程简述 (4)2.2产品规格(粗煤气) (8)3影响加压企划的因素 (9)3.1煤质对气化的影响 (9)3.2水分含量对气化的影响 (9)3.3灰分含量对气化的影响 (i10)3.4挥发份对气化的影响 (10)3.5硫分对气化的影响 (11)3.6粒度对气化的影响 (11)3.7煤的灰熔点和结渣性对气化的影响 (12)3.8煤的粘结性对气化的影响 (12)3.9煤的化学反应性的影响 (12)3.10煤的机械强度和热稳定性对气化的影响 (12)3.11灰熔点对气化的影响 (13)3.12灰样对气化操作的指导意义 (13)3.13入炉矸石含量增多,对气化炉的生产会带来有害的影响 (13)4碎煤加压气化技术特点 (14)5碎煤加压气化的优缺点: (14)6煤气化主要反应的反应机理 (15)6. 1、碳的氧化机理 (15)6.2、二氧化碳还原机理 (15)7与气化工艺有关的指标 (15)7.1:气化强度: (15)7.2:气化能力 (16)参考文献 (17)致 (18)引言论是从煤的深加工过程还是环保控制等诸多方面都要求对原煤加工过程都要求提高煤的利用率。
气化原理:在本质上是将煤由高煤的分子固态物质转变为低分子气态物质。
煤是一种固体化石燃料,与一般燃料比较,其元素组成中C、H比较高,将煤由固态转变为气态过程,也就是改变燃料C、H比结构的过程。
影响加压气化的因素很多如:水分含量对气化的影响;灰分含量对气化的影响;挥发份对气化的影;响硫分对气化的影响;粒度对气化的影响;煤的灰熔点和结渣性对气化的影响;煤的粘结性对气化的影响煤的化学反应性的影响煤的机械强度和热稳定性对气化的影响;灰熔点对气化的影响等。
控制好各种对加压气化有影响的因素的指标能更好地利用煤的价值更有利于保护环境,降低污染和充分利用资源。
这篇文章就是针对影响碎煤加压气化的因素的进行控制使其更高效的生产。
1碎煤加压气化装置1.1装置概况天公司年产20亿立方米煤制天然气项目,加压气化装置是赛鼎工程有限责任公司负责设计。
本装置由22台碎煤加压气化炉(包括煤溜槽、煤锁、气化炉、洗涤冷却器、灰锁、膨胀冷凝器、废热锅炉及粗煤气分离器等配套设备)组成,按三个框架布置,其中A、C框架各为7台气化炉,B框架为8台气化炉。
总产气量946524Nm3/h(干基),单台炉生产能力43024Nm3/h,总耗煤量582t/h,总耗氧量126280Nm3/h,过热蒸汽总耗量733.7t/h。
每个框架同时配置了辅助的润滑系统、液压系统、煤锁气回收系统、火炬系统、水力排渣系统等。
气化A框架的7台气化炉与B框架的1#~4#气化炉,共11台气化炉对应变换冷却装置的A系列;C框架的7台气化炉与B框架的5#~8#气化炉,共11台气化炉对应变换冷却装置的B系列。
为实现A、B系列粗煤气总管气量平衡,将B框架1#~4#炉与5#~8#炉粗煤气总管进行了连通。
气化装置所用主要设备气化炉,分别由锅炉厂有限责任公司、重工股份、金州重型机器制造,气化炉唯一的传动设备旋转炉篦由机械研究所承制。
1.2岗位任务加压气化装置的主要任务是以粒度为8~50mm的长焰煤为原料,蒸汽和氧气为气化剂,通过加压气化反应生产合格的粗煤气,经洗涤冷却后送入变换冷却装置。
1.3原料从煤矿来的经除铁除杂质等,处理合格的煤按需要的输送量通过带式输送机将煤送至筛分楼进行筛分,弛筛筛上物(8~50mm)的煤计量后送至气化炉贮煤仓,供气化使用。
2工艺原理煤的气化是一个复杂多相物理化学反应过程。
主要是煤中的碳与气化剂、气化剂与生成物、生成物与生成物及碳与生成物之间的反应。
煤气的成分决定于原料种类,气化剂种类及制气过程的条件。
制气过程的条件主要取决于气化炉的构造和原料煤的物理化学性质,其中煤的灰熔点和粘结性是气化用煤的重要指标。
本装置采用碎煤加压气化是一种自热式、移动床、逆流接触、连续气化、固态排渣工艺过程。
气化炉外壁按4.6MPa(g)的压力设计,壁仅能承受0.15MPa 的压差,操作压力为4.0MPa(g)。
煤在气化炉中的气化过程可分为五个层:灰层、燃烧层、气化层、干馏层、干燥和预热层,其各层反应简图与反应过程介绍如下:鲁奇加压气化炉生产工况如图所示,在实际的加压气化过程中,原料煤从气化炉的上部加入,在炉从上至下依次经过干燥、干馏、气化、燃烧、灰层等物理化学过程加压气化原理:力下煤的气化在高温下受氧、水蒸汽、二氧化碳的作用,各种反应如下:碳与氧的反应:⑴C+O2=CO2+408.8MJ⑵2C+O2=2CO +246.4MJ⑶CO2+C=2CO -162.4MJ⑷2CO+O2=2CO2 +570.24MJ碳与水蒸汽的反应:⑸C+H2O=CO+H2 -118.8MJ⑹C+2H2O=CO2+2H2 -75.2MJ⑺CO+H2O=CO2+H2 +42.9MJ甲烷生成反应:⑻C+2H2=CH4 +87.38MJ⑼CO+3H2=CH4+HOO +206.2MJ2.1加压气化流程简述在碎煤加压气化炉中,煤与气化剂在4.06MPa压力下,逆流接触进行气化反应。
碎煤加压气化装置包括带件(波斯曼套筒、炉篦)的加压气化炉和供煤的煤锁、排灰的灰锁,它们直接附置在炉体上。
经筛分后5~50mm的合格碎煤由输煤皮带供到气化炉煤仓中,煤仓的储用量约为正常负荷时的4小时的使用量。
煤通过煤溜槽经安装在气化炉顶部的煤锁定期加入气化炉,煤在炉下降过程中与气化剂接触反应。
含碳量约为7%的灰由炉篦转动排入灰锁,定时排入输灰系统。
用作气化剂的水蒸汽不可能完全分解,仍有一定量蒸汽离开干馏层,离开气化炉粗煤气中含有煤中水份和气化剂中未分解的水蒸气。
粗煤气在洗涤冷却器中被蒸汽饱和,油、焦油和其它一些物质在洗涤过程中冷凝,并离开洗涤冷却器,包括部分从气化炉来的煤灰,与煤气水、粗煤气一起进入废热锅炉集水槽中。
在废锅管程,粗煤气进一步被冷却到181℃,液滴将进一步分离。
残留在粗煤气中的冷凝液,在粗煤气气液分离器中进行汽液分离,分离出的煤气水进入废热锅炉底部集水槽。
离开气化工段的粗煤气在压力3.99MPa(a),181℃送往粗煤气变换冷却工号。
碎煤加压气化属于自热式工艺,所需热量由煤的部分燃烧提供。
各设备的主要作用:煤仓筛分过的煤,由煤仓经给料溜槽进到煤锁,煤仓容积200 m3。
其储量可满足气化炉在正常负荷下操作约4小时。
煤锁煤锁是一个容积约18.7 m3的压力容器,可以定期将煤加入气化炉。
煤锁上下阀及充泄压阀门均为液压控制。
煤锁的操作可由就地、遥控、半自动、全自动四种操作方式来实现。
煤锁要从常压增至与气化炉压力相等,以使煤能周期性地加至气化炉中。
正常情况下的全自动操作包括以下步骤:1)煤锁显示空,依煤锁下部的温度计上升而显示,初时下阀附近温度大约为50℃;2)关闭煤锁下阀,煤锁开始泄压,煤锁气将收集到煤锁气柜中。
(在入气柜之前经过洗涤器和分离器);3)当煤锁泄完压之后,打开上阀;4)打开供煤溜槽圆筒阀煤靠自重流入煤锁。
通过煤锁引射器抽取煤锁尾气,经煤尘旋风分离器排出;5)煤锁满后,先关闭供煤溜槽圆筒阀,再关闭煤锁上阀;6)煤锁首先用来自煤气变换冷却工段的粗煤气,充压到大约3600KPa,然后用来自气化炉顶部的粗煤气充压以达到与炉压平衡;7)煤锁充压到与气化炉的压力平衡时,打开煤锁下阀,煤加到气化炉。
每个加煤循环大约需要10分钟。
按设计,正常负荷时气化炉每小时加煤3.5锁。
当气化炉顶部法兰温度超过240℃时,气化炉将联锁停车,这种情况一般发生在加煤故障时。
此时,气化炉应在煤锁法兰温度达到停车温度之前手动停车。
气化炉气化炉是一个双层夹套容器,外壁按4.6MPa压力设计,壁最大仅能承受0.15MPa外压。
夹套中压锅炉给水保持一定液位,以冷却气化炉炉壁。
气化炉运行期间,部分热量由燃料层传至夹套,产生一定量的夹套蒸汽,经夹套蒸汽分离器分离后蒸汽进入气化剂系统,与外供蒸汽混合进入气化炉。
炉的波斯曼套筒的作用是:储存煤锁加入炉的冷煤;限定炉的煤层移动方向;外部是煤气的聚集空间,防止粉煤被直接带出,将煤气引至出口。
气化剂(界区来的氧气经预热器加热至110℃)经由旋转炉篦进入气化炉灰层及燃烧层。
炉篦由两个同步的变频电机驱动。
炉篦有下列作用:1)使汽化剂均匀分布到气化炉的横断面;2)排灰并维持一定的灰层高度;3)破碎灰渣块,使灰渣粒度减小,防止灰锁阀门堵塞;4)保持煤层、灰层在移动中达到均衡。
作为均匀灰层条件,目的是防止汽化剂在煤层中形成沟流。
炉篦的排灰能力取决于装在其下面的刮刀数和炉篦转速。
炉篦连续运行,仅在灰锁循环开始时才短暂停止。
进入气化炉的气化剂依次通过灰层、燃烧层、气化层、干馏层、干燥和预热层。
反应生成物煤气出气化炉温度约225℃左右,其主要组分CO、H2、CO2、CH4和未分解的水蒸汽,并含有少量的CnHm、N2、硫化物(大部分为H2S)、焦油、石脑油、酚、脂肪酸和氨奈等杂物。
灰锁灰锁是一个全容积约13.2 m3的压力容器(有效容积60~70%),用液压控制上、下阀及充泄压阀和充水阀。
灰锁与膨胀冷凝器相连为灰锁系统的一个整体。
灰锁连续不断接收气化炉旋转炉篦排出的灰,正常工况下与气化炉相通,压力相等,排灰时灰锁泄压至常压。
其操作可以现场手动、遥控手动、半自动、全自动操作。
灰锁的循环包括下列步骤:1)灰锁、膨胀冷凝器,充压至与气化炉的压力相等时,打开灰锁上阀,接受炉篦排出的灰;2)灰锁的料位检测,通过射线料位计,或炉篦圈数的方法控制,当灰量达设定时,灰锁上阀关闭;3)灰锁上阀关闭后重新启动炉篦;灰渣暂时存入炉篦下面的下灰室;4)打开灰锁膨胀冷凝器泄压一阀,灰锁开始泄压。
灰蒸汽进入充满水的膨胀冷凝器并冷凝,灰锁压力降低;5)灰锁泄至稍高于常压时,打开冷凝器底部泄压二阀,排空冷凝器;6)打开灰锁下阀,灰经由灰溜槽排入水力排渣沟;7)在灰锁排灰期间,关闭膨胀器泄压二阀,膨胀冷凝器重新注水;8)关闭灰锁下阀,用过热中压蒸汽给灰锁充压,直到与气化炉压力平衡;9)打开灰锁上阀,气化炉向灰锁排灰。
灰锁的循环次数,取决于气化炉的负荷和煤中灰含量。
洗涤冷却器粗煤气在约225℃左右离开气化炉进入洗涤冷却器,粗煤气用高压喷射煤气水和循环煤气水洗涤冷却。
循环泵(121P-001,循环量200 m3/h),在废热锅炉集水槽和洗涤冷却器间循环。
高压喷射煤气水不断地补入洗涤冷却器中,以保持废热锅炉集水槽的液位。
废热锅炉在废热锅炉中煤气由气化炉出口温度冷至181℃,粗煤气在废热锅炉集水槽上部进入并通过一束垂直列管。
由此回收煤气中显热以生产0.6 MPa(a)的低压蒸汽。