同步硝化反硝化综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步硝化反硝化研究进展
摘要:同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,减少设备运行费用等优点,具有很大的研究应用前途。本文结合国内外研究,介绍其主要机理,分析同步硝化反硝化实现条件和影响因素,并且提出了研究展望。
关键词:同步硝化反硝化;微环境;生物脱氮;好氧反硝化Study Progress on Simultaneous Nitrification
and Denitrification
Abstract:Simultaneous nitrification and denitrification (SND) has some obvious merits in comparison with traditional method for nitrogen removal. This method could reduce energy consumption and construction cost. The paer made a summary on current domesticand foreign study status of simultaneous nitrification and denitrification (SND) in waste water treatment, and made a theoretical explanation for the phenomenom of nitrification and denitrification.The author alsosummarized the practice and influencing facts of SND process and put forward some suggestions for futher study of SND. Key words: Simultaneous nitrification and denitrification;Microbiology;Biological nitrogen removal; Aerobic denitrification
前言:
根据传统生物脱氮理论,脱氮途径一般包括硝化和反硝化2个过程,硝化过程是氨通过亚硝酸盐向硝酸盐的自养型转换,主要是由化能无机营养菌—硝化细菌完成的,反硝化过呈程则被认为是在严格的厌氧条件下完成的。硝化和反硝化2个过程需要在2个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中进行。然而,最近几年国外有不少实验和报道证明存在同步硝化反硝化(Simultaneous Nitrification and Denitrification, 简称SND),尤其是有氧条件下的反硝化现象确实存在于不同的生物处理系统中, 如生物转盘、SBR、氧化沟、CAST、MBR、SMBR等工艺。在SND工艺中,硝化反应的产物可直接成为反硝化反应的底物,因此,整个反应过程加快,水力停留时间可缩短,反应器容积也可相应减小。在废水脱氮工艺中,有机物氧化、硝化和反硝化在反应器中同时实现,既提高脱氮效果,又节约了曝气和混合液回流所需的能源。另外在SND工艺中,反硝化反应中所释放出的碱度可部分补偿硝化反应所需要的碱,使系统的pH值相对稳定,在反应过程中,碳源对硝化反应有促进作用,同时也为反硝化提供了碳源,减少或使系统无需添加外碳源。目前国内外学者也越来越多的关注SND技术的发展,并且进行了一些实验性的研究和应用。
1 同步硝化反硝化的机理研究
1.1 微环境理论
微环境理论是从物理学角度对同步硝化反硝化现象进行解释,该理论考虑活性污泥和生物膜的微环境中各种生态因子(如溶解氧、有机物、NO2-或NO3-等物质)的传递与变化,各类微生物的代谢活动及其相互关系,以及微环境的物理、化学和生物条件或状态的变化。微环境理论认为:由于微生物个体形态非常微小,一般属微米级,影响生物的生存环境也是微小的,而宏观环境的变化往往会导致微观环境的变化或不均匀分布,从而影响微生物群体或类型的活动状态,并在某种程度上出现宏观环境与不一致的现象。同步硝化反硝化微
环境理论是建立在好氧硝化和缺氧反硝化相互独立的理论之上,主要强调DO浓度和污泥絮凝体尺寸或生物膜厚度的作用。许多研究表明,溶解氧控制在0.5mg/L~1.0mg/L时,可以在活性污泥或生物膜体系中获得较高程度的同步硝化反硝化作用,而在相同溶解氧浓度下,同步硝化反硝化程度受污泥絮凝体尺寸和生物膜厚度影响。
1.2 微生物学理论
在用生物转盘处理垃圾渗滤液时,用机械方法使生物膜均质,以破坏可能存在的厌氧区,结果发现在氧的浓度为1mg/L且未加碳源的条件下,有近90%的氨氮去除,但只有少量的硝酸盐产生,也未发现亚硝酸盐的积累。他们推测在生物膜上生长着一群自氧型微生物可以进行好氧反硝化,但也不排除存在异养型硝化菌的可能性。20 世纪80 年代以来,生物科
cens)、粪产碱(Alcaligenes 学家研究发现微生物如荧光假单胞菌( Pseudomonas flures
2
facealis)、铜绿假单胞菌(Pseudomonas aeruginos)、致金色假单胞菌(Pseudomonasaureofaciena)等都可以对有机或无机氮化合物进行异养硝化。与自养型硝化菌相比较,异养型硝化菌的生长速率快、细胞产量高,要求的溶解氧浓度低,能忍受更酸性的生长环境。
反硝化一般是反硝化细菌在缺氧或低溶解氧条件下利用有机物的氧作为能量来源,以我NO2-和NO3-作为无氧呼吸时的电子受体而实现。国内外文献报道在实验室里进行硝化细菌纯培养和混合培养以及处理垃圾渗透液的研究中均发现了好氧反硝化现象的存在。好氧反硝化细菌和异养硝化细菌的发现,打破了传统理论认为的硝化反应只能由自养型细菌完成和反硝化只能在厌氧条件下进行的观点。而且Robertson认为好氧反硝化菌也能进行异养硝化,这样反硝化菌就可以在有微量氧存在的条件下直接把氨氮转化为气态产物去除,就此提出了好氧反硝化和异养硝化的工作模型,如图2所示。Thiosphaera pantotropha 以及其他好氧反硝化菌利用硝酸盐/亚硝酸盐的呼吸作用(好氧反硝化)、氨氧化(异氧硝化)以及最后一步中聚β羟丁酸(PHB)的形成作为过量还原能量的转换。同时, Robertso指出好氧反硝化和异养硝化的反应速率随溶解氧浓度的增加而减小。
2 影响同步硝化反硝化的因素
2.1 溶解氧(DO)
控制系统的溶解氧在一定范围内,对获得高效的同步硝化反硝化具有极其重要的意义。系统中的DO首先应足以满足有机物的氧化及硝化反应的需要,使硝化反应充分,其次DO浓度又不能太高,以便能在微生物絮体内产生DO浓度梯度,促进缺氧微环境的形成,同时