异种金属材料焊接接头常识
铝钛异种材料磁脉冲焊接工艺及接头界面结构研究
铝钛异种材料磁脉冲焊接工艺及接头界面结构研究一、磁脉冲焊接的神奇之处大家都知道,铝和钛这俩金属是非常“各自为政”的——一个轻盈一个强韧,想让它们在一起合作可不容易。
随着科学技术的进步,磁脉冲焊接技术的出现让这一难题迎刃而解。
磁脉冲焊接不是简单地靠高温来“硬碰硬”地焊接,而是利用强大的电磁脉冲在瞬间产生强力冲击,精准地把铝和钛“粘合”在一起。
这就像是用一个巨大的“力场”来抓住两个各自独立的物体,让它们在短短的时间内就变得亲密无间,完全不同于传统焊接那种“热到你哭”的方式。
磁脉冲焊接的魅力就在于它不像传统焊接那么依赖热量,更加注重电磁力的瞬间作用。
这种方法不仅省时省力,还能避免传统焊接中经常会出现的金属变形、烧损等问题。
二、铝钛异种材料的接头界面要想把铝和钛完美融合,这中间有个关键问题,就是焊接后的接头界面。
别小看了这个接头界面,决定了整个材料的性能,焊接过程中的每一秒,接头区域的变化都可能影响到最终的效果。
铝和钛这两种金属的物理化学性质差异很大,它们各自的热膨胀系数、导热性等方面都不相同。
所以,在磁脉冲焊接的时候,这些差异就像是两个不太能沟通的“老顽固”,很容易就产生“裂缝”或是“不合群”的区域。
要让它们形成稳定的连接,关键在于控制界面处的温度和力学应力,不能让这些差异引起裂纹和内应力的积累。
不仅仅是焊接本身,焊接后的微观结构也特别重要。
要在铝钛接头区域形成一种理想的“过渡层”,这种过渡层就像是铝和钛之间的“和事佬”,能够有效避免两者的不兼容性。
这样,不管是在使用过程中还是承受外部压力时,铝钛异种接头才不会因为结构问题导致性能下降。
三、焊接工艺的优化与挑战咱们说了这么多,磁脉冲焊接到底怎么优化呢?焊接过程中要精准掌控脉冲电流的大小、频率以及持续时间。
控制这些参数,就能让电磁力发挥到极致,焊接的效果也会更稳定。
这个过程其实挺考验技术的,稍微一不小心,可能就会因为参数不对导致接头变得脆弱,或者形成不规则的金属相。
2024年浅谈异种金属的焊接
2024年浅谈异种金属的焊接一、异种金属定义异种金属,顾名思义,指的是在化学成分、物理性能以及机械性能等方面存在显著差异的两种或多种金属。
在实际应用中,由于不同金属具有各自独特的优点,异种金属的连接需求应运而生。
这种连接不仅要求保持原有的金属特性,还需要确保连接处的强度和密封性,因此,异种金属的焊接成为一项重要技术。
二、焊接性评估在进行异种金属焊接之前,首先需要对两种金属的焊接性进行评估。
这包括对金属的化学成分、物理性能、机械性能以及热处理性能的全面分析。
通过对比两种金属在这些方面的差异,可以预测焊接过程中可能遇到的问题,并据此选择合适的焊接方法和材料。
三、焊接方法选择异种金属焊接的方法选择需要考虑多种因素,如金属的种类、厚度、结构形式以及焊接要求等。
常见的焊接方法包括电弧焊、激光焊、等离子焊等。
在选择焊接方法时,需要确保焊接过程中的热量输入、熔池形成和冷却速度等参数能够满足异种金属焊接的要求,以获得高质量的焊接接头。
四、焊接材料选用焊接材料的选择对于异种金属焊接的成功至关重要。
在选择焊接材料时,需要考虑母材的化学成分、力学性能以及焊接工艺要求。
通常情况下,焊接材料的成分应介于两种母材之间,以确保焊接接头在性能上能够与母材相协调。
此外,焊接材料的熔点和热膨胀系数等特性也需要与母材相匹配,以避免产生焊接缺陷。
五、焊接工艺参数焊接工艺参数的选择直接影响到焊接接头的质量和性能。
在异种金属焊接中,需要特别关注焊接电流、电压、焊接速度、预热温度等参数的设置。
这些参数的选择需要综合考虑金属的种类、厚度、热导率以及热膨胀系数等因素。
通过合理的工艺参数设置,可以获得良好的焊缝成形和焊接接头性能。
六、焊接接头设计焊接接头的设计对于异种金属焊接同样重要。
在接头设计时,需要充分考虑应力分布、热传递以及变形等因素。
合理的接头设计可以减少焊接过程中的应力集中和变形,提高焊接接头的强度和密封性。
同时,还需要考虑接头的可维修性和可检查性,以便在必要时进行修复或更换。
异种材料焊接接头的连接强度与耐久性评估方法研究
异种材料焊接接头的连接强度与耐久性评估方法研究引言:在现代工程领域中,由于不同材料的特性和用途需求,异种材料的焊接接头被广泛应用。
然而,由于异种材料之间的差异,焊接接头的连接强度和耐久性成为了焊接工程师们面临的挑战。
本文将探讨异种材料焊接接头的连接强度与耐久性评估方法的研究。
一、背景分析1. 异种材料焊接接头的定义异种材料焊接接头是指由不同材料组成的焊接接头。
常见的异种材料焊接接头包括金属与非金属、金属与陶瓷、金属与复合材料等。
2. 异种材料焊接接头的挑战由于异种材料之间的差异,焊接接头的连接强度和耐久性常常受到影响。
不同材料的热膨胀系数、熔点、热导率等特性差异,可能导致焊接接头出现应力集中、裂纹等问题。
二、连接强度评估方法1. 金属与非金属焊接接头的连接强度评估针对金属与非金属焊接接头,可以采用拉伸试验、剪切试验、冲击试验等方法进行连接强度评估。
拉伸试验可通过测量焊接接头的破坏拉力来评估连接强度;剪切试验可测量焊接接头在剪切载荷下的破坏强度;冲击试验则可以评估焊接接头在冲击载荷下的耐久性。
2. 金属与陶瓷焊接接头的连接强度评估对于金属与陶瓷焊接接头,由于陶瓷的脆性特性,连接强度评估更加复杂。
常用的方法包括三点弯曲试验、压缩试验等。
这些试验方法可以通过测量焊接接头的破坏载荷、破坏形态等来评估连接强度。
三、耐久性评估方法1. 焊接接头的疲劳寿命评估焊接接头在长期使用过程中可能会受到疲劳载荷的影响,因此疲劳寿命评估是非常重要的。
可以通过疲劳试验来评估焊接接头的疲劳寿命,常见的方法有拉伸疲劳试验、弯曲疲劳试验等。
2. 焊接接头的腐蚀耐久性评估焊接接头在恶劣环境下可能会受到腐蚀的影响,因此腐蚀耐久性评估也是必要的。
可以通过浸泡试验、盐雾试验等方法来评估焊接接头的腐蚀耐久性。
四、未来发展方向随着科学技术的不断进步,异种材料焊接接头的连接强度与耐久性评估方法也在不断发展。
未来的研究方向包括:1. 探索新的连接强度评估方法,如声发射检测、红外热成像等非破坏性检测方法的应用。
异种钢焊接
异种钢接头的焊接1.异种钢接头定义。
异种钢接头主要包括两方面概念:即不同组织(重点指奥氏体和非奥氏体钢)钢之间的焊接;不同强度等级、不同化学成分(其组织基本类似)钢之间的焊接。
其中不同组织钢材之间的焊接难度最大。
2.奥氏体和非奥氏体异种钢焊接主要有三个问题:2.1.焊接时母材的稀释:由于母材的稀释,会出现对裂纹相当敏感的马氏体组织。
例如当低碳钢、低合金钢和不锈钢焊接时,若用一般不锈钢焊材,由于焊缝金属被低碳钢或低合金钢稀释,往往会产生奥氏体和马氏体组织,而熔合线附近,会产生马氏体带;若用低碳钢或低合金钢焊材,不锈钢一侧被稀释部分及焊缝金属会产生马氏体和奥氏体组织,从而引起开裂的危险。
2.2.焊接残余应力和热应力:在焊接热循环或使用温度下,由于两种材料抗膨胀系数和导热性不同(或热膨胀系数和导热性近似,但由于强度等级不同而带来的形变差异)引起的热应力,焊接后残余应力较大且在热处理后不能消除。
碳钢、低合金钢和珠光体耐热体的热膨胀系数大体相同,而奥氏体不锈钢热膨胀系数比碳钢等材料大30~50%,而导热系数却只有碳钢等材料的1/3。
2.3.碳扩散:当铁素体钢和奥氏体钢焊接后,焊接接头重复加热或高温使用时,在铁素体钢一侧,由于碳原子的迁移(扩散),使含碳量减少而形成软化带,而在奥氏体钢一侧却由于碳的过剩而形成硬化带,对于焊接碳稳定化元素不同的材料时,也应注意高温运行条件下的脱碳影响。
2.4.上述三个问题的综合作用的结果是:整个异种钢焊接接头是一个成分、组织和性能严重不均的非均匀体,是构件的局部薄弱地带,这种非均匀体在力学检验和运行中均会出现应力、变形集中和失效的局域化,因此在选择焊接材料时,要充分考虑其焊接工艺性、常温力学性能和长期运行性能,更重要的是要考虑其长期运行性能。
3.异种钢接头焊接材料的选择3.1.不同强度等级铁素体或珠光体类型钢之间焊接:包括低合金高强度钢(18MnMoNbg等)与碳钢、一般耐热钢(12Cr1MoV等)与碳钢、高合金耐热钢(SA-213 T91等)与碳钢、一般耐热钢(12Cr1MoV等)与高合金耐热钢(SA-213 T91等),其总的特点是线膨胀系数接近,导热系数相差不大,焊后或消除应力后的残余应力和高温运行的热应力不大,因而主要考虑运行时工作应力平滑过渡、组织稳定,一般选用成分或强度(常温强度和高温强度)介于两被焊母材之间的焊接材料。
常见异种金属材料的焊接
常见异种金属材料的焊 接
珠光体钢与马氏体钢的焊 接
马氏体钢是介于珠光体钢与奥氏体钢之间 的钢种,含铬量5%-9%和12%的高铬钢。由于含铬量较 高,所以抗氧化性能好,在高温580℃以上,高温持 久强度比一般常用的珠光体耐热钢高,并且有较好的
抗蠕变性能。
• 一、焊接性
常见异种金属材料的焊 接
• 四、焊接材料和坡口
珠光体耐热钢与低合金钢焊接时,应根 据钢材的力学性能来选择相应强度等级的焊接材 料,而不是根据珠光体耐热钢的化学成分来选择
焊接材料。
焊接坡口的选择原则是希望珠光体耐热钢 熔入焊缝金属的量越少越好,即熔合比越小越好。 其目的是为了减少热影响区脆硬的马氏体组织,
常见异种金属材料的焊 接 2、形成增碳层和脱碳层
如果焊后再760℃、保温4-5h进行回火热 处理,则为碳扩散创造了更充分的条件,在靠近 12Cr1MoV钢一ቤተ መጻሕፍቲ ባይዱ焊缝的熔合区形成了一个1.0-
1.5mm宽的脱碳层。
常见异种金属材料的焊 接 二、焊接工艺
这类异种钢焊接时,由于焊接性较差,所以 必须采取严格的工艺措施。
常见异种金属材料的焊 接
• 三、预热温度和层间温度
无论是定位焊,还是正式施焊,焊前均 应进行预热。预热温度可根据珠光体耐热钢的要 求(4d or150mm)进行选择。可以整体或局部预热。 对于焊接结构刚度比较大、质量要求高的产品, 最好采用整体预热,而且多层焊时层间温度不能 低于此温度,并一直要保持到焊接结束。焊接过 程如果间断,则焊件应保温后再缓慢冷却,必要 时,还应进行脱氢处理,再施焊时,仍按原要求
常见异种金属材料的焊 接
迁钢3#炉坡口
(Q345+15GrMo)
焊接异种钢的要求
焊接异种钢的要求(1)连接两种钢的焊缝应该是成形良好,无裂纹、未熔合等缺陷。
(2)异种钢焊接接头性能,通常做不到也不要求是两钢种的平均值,但焊接接头的力学性能不应低于两钢种中的较低者,其它性能(如耐腐蚀性)也不应低于两钢种中的较低者。
(3)异种钢的焊缝是由焊丝金属加上两母材钢种三者熔合而成。
一般说来,异种钢焊接时,应该力求焊接接头的化学成分均匀、金相组织均匀。
(4)异种钢焊缝和两种母材的化学成分相异,它们的导热系数和膨胀系数不同,焊后焊接接头中存在着较大的残余应力,当温度变化时还有温度应力,这些应力不应该导致构件的破坏.异种钢焊接的工艺原则异种钢焊接要获得良好的焊接接头,必须采取特殊的工艺措施。
由于异种钢种类繁多,工艺措施不全相同,但需要遵守以下几个共同原则。
1.选择合宜的焊丝异种钢的焊接质量,在很大程度取决于所选用的焊丝。
由于焊缝和熔合区的化学成分和金相组织的不均匀性,可能引起结合性能差和使用性能低。
选择焊丝时,首先考虑的是结合性能,其次才考虑使用性能。
还有当焊缝金属的强度和塑性不能相互兼顾时,应选用塑性好的焊丝。
两种强度等级不同的结构钢之间的异种钢焊接时,选用焊丝的原则是根据强度等级低的母材选择焊丝,这样可保证焊缝的塑性不低于强度等级高的母材的塑性.异种耐热钢焊接时,焊丝的选择按照“低匹配”的原则,即耐热钢和低碳钢或低合金钢焊接时,按低碳钢或低合金钢母材选用焊丝。
当不同Cr、Mo含量的异种耐热钢焊接时,按Cr、Mo含量低的耐热钢选用焊丝。
2.熔合比和坡口角度熔合比就是焊缝金属中被熔化的母材金属所占的百分比。
熔合比小就是焊缝中母材量小,而焊丝熔入到焊缝中量多。
两种不同钢组织的异种钢焊接时,希望焊缝金属中有比较多的焊丝熔入的量,这样焊缝的性能主要取决于焊丝,容易得到良好的焊接接头。
也就是说异种钢焊接要求熔合比小。
增大坡口,就是增加焊丝熔人焊缝的量,也即减小熔合比。
如果两种钢组织较接近的异种钢焊接时,则不宜采用大坡口和小熔合比。
异种金属
3、异种材料焊接方法
异种材料焊接常用的方法分为熔焊和压焊两大类。
(1)熔焊
熔焊在异种材料焊接中应用很广,主要的熔焊方法有焊条电弧焊、气体保护焊、电子束焊、激光焊等。对于相互溶解度有限、物理化学性能差别很大的异种材料,由于熔焊时的互相扩散作用会导致接头部位的化学成分和金相组织不均匀或生成脆性化合物,所以异种材料熔焊时应降低稀释率,尽量用小电流、高焊速,或是在坡口一侧或两侧堆焊中间合金过渡层。
焊接异种材料时,焊接材料的选择一般原则包括:
1)保证焊接接头的使用性能,即保证焊缝金属与基体金属具有良好的力学性能,可根据接头两侧焊接性较差或强度较低的材料选择焊接材料。
2)保证焊缝金属具有一定的致密性,无气孔、夹杂或仅有单个小气孔与夹杂,但数量在单位长度内不超过规定值。
3)应具有良好的工艺性能,即在焊接接头区内不出现热裂纹和冷裂纹,能够适应各种空间位置的焊接,有一定的生产效率等。
4、异种焊接材料的选用
为了保证异种材料焊接接头在使用中的可靠和安全,选择焊接材料时不仅要保证焊接接头强度,而且还要保证具有较高的塑韧性。因此,在选择焊接材料时,常常不得不选用强度稍低,但塑韧性较好的熔敷金属。这时焊缝成为焊接接头中的一层“软的”中间层,根据焊缝金属的“约束强化”理论,仍能获得使用性能良好的焊接接头。
3)材料的表面状态
材料的表面状态,如表面氧化层(氧化膜)、结晶表面层、吸附的氧离子和水分、油污、杂质等,直接影响异种材料的焊接性,必须给予充分重视。生产中往往由于表面氧化膜和其他吸附物的存在给焊接带来极大的困难。
此外,焊接异种材料时,必定会产生一层成分组织及性能与母材不同的过渡层,过渡层的性能对焊接接头的整体性能有很大的影响。过大的熔合比,会增加母材对焊缝金属的稀释率,使过渡层更为明显;焊缝金属与母材的化学成分相差越大,熔池金属越不容易充分混合,过渡层越明显;精密仪器池金属液态存在的时间越长,越容易混合均匀。所以,焊接异种材料时需要采取相应的工艺措施来控制过渡层,以保证接头的性能。
第三节 异种钢的焊接要点
第三节异种钢的焊接要点异种钢焊接的主要问题是熔合线附近的金属韧性下降。
由于焊件经受加热和冷却的作用,在熔合线附近产生脆性的马氏体组织和渗碳层,若再受到热应力的作用,就很易产生裂纹。
焊接参数、接头形式、预热温度及操作技术等直接决定着焊缝的稀释率。
而稀释率又取决于母材金属的熔合比,如图2-1和式(2—2)所示。
当用E308-16、E308-15型焊条焊接奥氏体钢与低碳钢,或焊接异种低合金钢时,即使焊缝的稀释率控制在20%左右,也容易在熔合线附近出现脆性的过渡层:其宽度为0.1--0.8mm,金相组织属于马氏体类型,显著地恶化了接头的质量。
异种钢焊接接头的设计,应有助于焊缝稀释率的减少,应避免在某些焊缝中产生应力集中。
较厚的焊件对接焊时宜用X形坡口或双U形坡口,这样稀释率及焊后产生的内应力较小,但坡口的根部必须焊透。
如受结构限制而只能采用单面焊双面成形工艺时,则先用手工钨极氩弧焊进行打底层焊接,从第二层开始改用焊条电弧焊。
厚度相差较大的焊件,为防止产生过大的应力集中,不推荐采用异种钢焊接。
焊缝的稀释率与钢材的合金含量有关,在同样的熔化面积下,随着合金含量的增多而稀释率增大。
珠光体耐热钢单层对接焊的稀释率在20%~40%。
奥氏体不锈钢的稀释率比珠光体钢约高10%~20%。
焊接电流、焊条直径、焊接速度、焊条摆动方法及焊接层数的选择,应以减少母材金属的熔化和提高焊缝的堆积量为主要原则。
为减少焊缝金属的稀释率,一般采用小电流、细直径焊条及高的焊接速度进行焊接。
随着焊接电流的增大,焊缝稀释率增大。
采用多层多道焊,对于避免接头中的冷裂纹有着显著的效果。
当被焊的两种钢材之一是淬硬钢时,必须进行预热,其温度应根据焊接性差的钢材选择。
用奥氏体钢焊条焊接异种钢接头时,可适当降低预热温度或不预热。
焊接复杂结构时,先分件组装焊接,然后再整体拼装焊接比整体组装焊接好,有助于减小刚度及焊接残余应力。
装配时的定位焊截面不能太薄。
奥氏体不锈钢与其他钢材对接焊时,可在非不锈钢一侧的坡口边缘预先堆焊一层高铬高镍的金属,焊条牌号选用E309-16、E309-15。
异种金属焊接时的焊接材料和焊接方法选择讲解
第二节异种金属焊接时的焊接材料和焊接方法选择一、熔合区的特点异种金属焊接时,在母材和焊缝之间有一个成分和母材或焊缝都不相同且往往介于两者之间,实际上形成了化学成分的过渡层(图3-2-1。
如果焊条(或焊丝)成分和母材成分,或者两种母材的成分相差很大时,熔合区的性能将对焊接接头的性能有着很大的影响。
所以,在选择焊接材料和确定焊接工艺时,不仅要考虑焊缝金属本身的成分和性能,还要考虑熔合区成分和性能。
虽然熔合区的厚度极小,通常只有几个晶粒,或者更小,但它对接头的性能影响却是很大的。
实际上熔合区可分为未混合区和半熔化区。
如果焊缝金属和母材金属化学成分差别愈大,愈不容易充分混合,则熔合区越明显。
熔合比和稀释率高时,熔合区也更明显。
熔合区金属液体存在时间越长,或液体金属流动性越好,则成分越均匀,熔合区会有所减小。
熔合区成分的不均匀性,可通过调整焊接参数、热处理工艺来进行适当的改善。
图3-2-1化学元素的含量在过渡区的分布1—化学元素在母材中的含量大于在焊缝中的含量时的理论分布曲线2—化学元素在母材中的含量小于在焊缝中的含量时的理论分布曲线3—实际分布曲线二、异种钢焊接时焊接方法的选择原则大部分的焊接方法都可以用于异种钢的焊接,只是在焊接参数及措施方面需适当考虑异种钢的特点。
在选择焊接方法时,既要保证满足异种钢焊接的质量要求,又要尽可能考虑效率和经济。
在一般生产条件下使用焊条电弧焊最为方便,.因为焊条的种类很多,便于选择,适应性强,可以根据不同的异种钢组合确定适用的焊条,而且焊条电弧焊熔合比小。
堆焊可以降低熔合比。
埋弧焊则生产效率高。
焊接金相组织不同的钢,如珠光体钢和奥氏体钢焊接时,还应考虑尽量使金属熔化量降到最小限度,即尽可能地降低熔合比,以防止过渡区出现脆性的淬硬组织和裂纹等缺陷。
不同的珠光体钢焊接以及珠光体钢与高铬马氏体钢焊接,采用二氧化碳气体保护焊,具有广泛实用性。
高合金异种钢焊接一般采用惰性气体保护焊,一般薄件采用钨极氩弧焊,厚件采用熔化极惰性气体保护焊。
异种钢焊接接头i型碳化物yi类碳迁移
异种钢焊接接头中的碳迁移是一种常见的焊接现象,特别是在碳含量较高的母材与碳含量较低的母材焊接时更容易发生。
碳迁移主要是由于焊接过程中熔合了不同含碳量的母材,导致熔合线附近区域碳含量变化,从而影响焊接接头的性能。
在异种钢焊接接头中,碳迁移通常分为I型碳迁移和II型碳迁移。
I型碳迁移是指碳从含碳量较高的区域向含碳量较低的区域迁移,通常发生在熔合线附近区域。
这种迁移会导致接头中碳含量降低,从而影响接头强度和韧性。
I型碳迁移的影响因素包括焊接工艺、母材成分、焊缝成分等。
焊接工艺参数如焊接电流、电弧电压、焊接速度等都会影响熔合线附近的碳含量分布。
此外,母材成分差异也会影响碳迁移的程度。
焊缝成分对I型碳迁移的影响较小,因为焊缝中的碳含量通常可以通过控制焊条或焊丝的成分来控制。
在异种钢焊接接头中,I型碳迁移的处理方法包括优化焊接工艺、调整焊缝成分以及选择适合的焊接材料等。
通过优化焊接工艺参数,可以减少熔合线附近的碳含量差异,从而减少I 型碳迁移的发生。
调整焊缝成分,例如使用低碳或超低碳含量的焊条或焊丝,可以有效地控制焊缝中的碳含量,进一步减少I型碳迁移的影响。
此外,选择适合的焊接材料,如具有良好冶金性能的焊材,也可以减少I型碳迁移的发生。
总之,异种钢焊接接头中的I型碳迁移是一种常见的焊接现象,可以通过优化焊接工艺、调整焊缝成分以及选择适合的焊接材料等措施来处理。
在实际应用中,应根据具体情况选择合适的处理方法,以确保焊接接头的性能满足要求。
异种金属焊接后处理方法
异种金属焊接后处理方法
异种金属焊接后的处理方法通常包括以下几个方面:
1. 表面清洁,在焊接完成后,需要对焊接接头进行表面清洁,去除焊接过程中产生的氧化物、焊渣和其他杂质,以保证接头表面的光洁度和清洁度。
常用的清洁方法包括机械清洁、化学清洁和电化学清洁等。
2. 热处理,对于某些需要提高材料性能的异种金属焊接接头,可以进行热处理。
热处理可以消除焊接过程中产生的应力,提高接头的强度和韧性,常见的热处理方法包括退火、正火、淬火和时效处理等。
3. 表面处理,针对不同的金属材料,可以进行表面处理以提高其耐腐蚀性能和外观质量。
常见的表面处理方法包括喷砂、酸洗、镀层和涂装等。
4. 检测与检验,对焊接接头进行非破坏性检测和破坏性检验,以确保焊接质量符合要求。
非破坏性检测包括超声波检测、射线检测和磁粉检测等,而破坏性检验则包括拉伸试验、冲击试验和硬度
测试等。
5. 修补和重焊,如果在焊接过程中出现质量缺陷,需要进行修
补或者重焊。
修补可以采用局部焊接或者热补焊的方式,而重焊则
需要重新进行整个焊接过程。
总的来说,异种金属焊接后的处理方法需要综合考虑材料特性、焊接工艺和使用要求,采取相应的措施以保证焊接接头的质量和性能。
希望以上回答能够满足你的需求。
异种钢的焊接
焊缝金属的强度和塑性,则应该选用塑性较好的 焊接材料。 2.在许多情况下焊缝金属性能只需要符合两种母 材的一种,即认为技术要求。 3.焊接材料应具有良好的工艺性能,焊缝成型美 观。 4.焊接材料应经济、易得。
异种钢焊接工艺要点:
(主要解决熔合线附近的金属韧性下降的问题) 1.异种钢焊接接头的设计,应有助于焊缝稀释率的
1、焊接方法选择
这类异种钢焊接时,选择焊接方法,除考虑生产和 具体条件外,关键是控制 熔合比,焊接时尽量减小熔合 比,以降低对焊缝的稀释作用。使用奥氏体钢或镍基合 金填充金属焊接或堆焊时,各种焊接方法可得到不同的 熔合比范围。
表1-19奥氏体不锈钢与珠光体钢焊接方法熔合比及特点 比较
序号 1 2 3 4 5
减小,应避免在某些焊缝中产生应力集中。较厚 对接时宜用X形坡口或U形坡口。 2.焊接电流、焊条直径、焊接速度、焊条摆动方式 及焊接层数的选择,应以减少母材金属的熔化和 提高焊缝的堆积量为主要原则。 3.当被焊的两种钢之一是淬硬钢时必须预热,预热 温度应根据焊接性差的一方选择。 4.复杂结构应先分件组装焊接,然后 再整体拼装焊 接比整体组装焊接好
既要满足异种钢焊接质量(尽可能减小熔合 比防止裂纹产生),又要尽可能考虑效率和经济。
优先选择焊条电弧焊(焊条种类多,适应性 强。珠光体钢与高铬马氏体钢焊接可采用二氧化 碳焊;高合金异种钢焊接一般氩弧焊;简单异种 钢构件可采用扩散焊、钎焊等
异种钢焊接材料选择原则:
要求焊缝金属力学性能及其他性能不低于母材中 的较低的一侧的指标。
H1Cr26Ni21 0.18 1.40 0.54 26.2 18.80 27.01 24.90 e
(1)采用H1Cr19Ni9焊丝
异种金属的焊接
①与珠光体钢相似; ②与马氏体钢相似; ③与两种钢完全不同,采用奥氏体钢焊丝或焊条。
8.珠光体钢与奥氏体钢的焊接
一、焊接性
①焊缝的稀释 ②过渡层的形成 ③熔合区扩散层的形成(脱碳层、增碳层) ④焊接接头应力状态的特点 ⑤延迟裂纹
二、焊接工艺
①焊接方法的选择 焊条电弧焊,熔合比小,且操作灵活,不受焊件形状的限制。 ②焊接材料的选择 根据母材种类和工作温度进行选择
(2)焊接材料
焊接材料的选择原则:
4.异种钢的焊接要点
1)接头的设计应有助于焊缝稀释率的减小,应避免在某些 焊缝中产生应力集中。
2)焊接电流、焊条直径、焊接速度、焊条摆动方法及焊接层 数的选择,应以减小母材金属的熔化和提高焊缝的堆积量为主 要原则。 3)焊接淬硬钢时,必须进行预热。 4)焊接复杂结构时,先分件组装焊接,再整体拼装,有助于 减小刚度及焊接残余应力。
厚度大于3mm,开X形坡口,保证焊透,或采用埋弧焊。 压焊:真空扩散焊、电阻焊、或闪光焊、爆炸焊;
三、钢与镍及其合金的焊接
①钢与镍及其合金的焊接性
镍与铁的物理及化学性能差别不大,有利于焊接,但易产生气孔及热裂 纹。
高温下镍与氧形成NiO,冷却时镍与氢、碳发生反应,镍被还原,生成 水蒸气和一氧化碳。结晶时形成气孔。
间接熔焊(加过渡段,采用爆炸焊方法制成钛-钢复合件。)
11. 异种有色金属的焊接
一、铝与铜的焊接
①铝与铜的焊接性
方法:压焊(铜与铝的塑性很好)
利用压焊制成铝铜过渡接头,实现同种金属的焊接。
②铝与铜的焊接工艺
<1>氩弧焊 铝与铜氩弧焊时,要将电弧向铜的一侧偏移约相当于板厚 1/2的距离,以便达到两种材料的均匀熔化。
不同材质的焊接
不同的材料之间焊接一般来讲就是异种钢的焊接1 异种钢的种类异种钢的焊接种类很多,归纳起来主要有低碳钢与低合金钢之间的焊接,如20#钢与16Mn钢相焊;两种不同的低合金钢之间的焊接,如16Mn钢与15CrMo钢相焊;低碳钢与奥氏体不锈钢之间的焊接,如20#钢与SUS304钢相焊;低合金钢与奥氏体不锈钢之间的焊接,如16Mn钢与SUS304钢相焊;奥氏体不锈钢与镍基合金之间的焊接如SUS304钢与Inconel600钢相焊,等等。
2 异种钢焊接接头的特性异种钢焊接接头化学成分、金属组织和机械性能的不均匀性以及线膨胀系数相差较大,使异种钢接头在使用中产生附加应力,这些因素对焊接方法、焊接材料、预热和热处理规范、接头形式的选择以及设备运行的可靠性,都有显著的影响。
异种钢焊接时,焊缝金属与母材热影响区之间的界面没有一条截然的界线,它们之间存在着熔合区,即焊缝中的未混合区和母材中的半熔化区。
其成分和性能都与焊缝或母材不同,形成了化学成分的过渡层,如碳钢与不锈钢相焊时接头中形成的脱碳层和增碳层。
过渡层的成分和性能对接头的性能有着重要的影响,故在选择焊接材料和焊接工艺时,不仅要考虑焊缝金属的成分和性能,同时也要考虑过渡层的成分和性能。
焊缝金属与母材金属化学成分差别愈大愈不容易充分混合,则过渡层愈明显;熔合比或稀释率愈高时,过渡层也愈明显;熔合区金属液态存在的时间愈长或液体金属流动性愈好,则愈易于混合均匀,过渡层也有所减小。
因此,可以通过某些工艺措施对过渡层进行适当控制。
3 焊接方法的选择选择焊接方法时,既要保证焊接接头的质量要求,又要尽可能考虑效率和经济。
通常焊接方法不同,直接影响熔合区过渡层的熔合比,从而影响到焊接接头的性能。
表1几种常用焊接方法的熔合比范围焊接方法熔合比(%)酸性焊条手弧焊 15~25碱性焊条手弧焊 20~30钨极氩弧焊 10~100埋弧焊 30~60熔化极气体保护焊 20~30由于一些装置的高温、高压、腐蚀性强等特点,大多数异种钢焊接接头主要考虑接头的晶间腐蚀、应力腐蚀、高温氧化和高温蠕变性能等,要求焊接接头中熔合区成分要稳定、过渡层要不明显,所以采用熔合比小而操作方便的手弧焊就可以了,但在氢工况下的异种钢接头,特别是低合金钢(如16Mn钢)与奥氏体钢(如SUS304)相焊的异种接头,还必须考虑氢腐蚀问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异种金属材料焊接接头常识
一、异种金属材料焊接接头的特点
异种金属材料焊接接头和同种金属材料焊接接头的本质差异和特点,在于熔敷金属两侧焊接热影响区和母材有如下诸方面的不均匀性。
1、化学成分的不均匀性
异种金属焊接时,由于焊缝两侧的金属和焊缝的合金成分有明显的差别。
随着焊缝形状、母材厚度、焊条药皮或焊剂、保护气体种类的不同,焊接熔池的行为也不一样。
因而,母材的熔化量也将随之而不同。
熔敷金属与母材熔化区的化学成分由于相互稀释也将发生变化。
由此可见,异种金属焊接接头各区域化学成分的不均匀程度,不仅取决于母材和填充材料各自的原始成分,同时也随焊接工艺而变化。
例如异种金属施焊时所用的焊接电流要尽量小,熔深要浅则受稀释的影响就小。
2、组织的不均匀性
由于焊接热循环的作用,焊接接头各区域的组织也不同,而且,往往在局部的地方出现相当复杂的组织结构。
根据舍夫勒组织图(见图1)和稀释率(见图2)可以确定异种金属焊接接头中焊缝区的组织结构。
组织的不均匀性,决定于母材和填充材料的化学成分,同时也与焊接方法、焊道层次、焊接工艺以及焊后热处理过程有关。
若能在工艺上适当调整,可以使焊接接头的组织不均匀程度得到一定的改善。
其中,θ按下式计算:
式中,B——填充材料的熔入量(用焊缝中填充材料熔化的截面面积表示);A——母材的熔入量,同样用焊缝中母材熔化的截面面积表示,A=A1+A2;A1、A2——分别为母材1、2熔入的截面面积。
3、性能的不均匀性
焊接接头各区域化学成分和组织的差异,带来了焊接接头力学性能的不同,沿接头各区域的室温强度、硬度、塑性、韧性都有很大的差别。
有时在3~5个晶粒的范围内,显微硬度出现成倍的变化;在焊缝两侧的热影响区,其冲击值甚至有几倍之差。
高温下的蠕变极限和持久强度也会因成分和组织的不同,相差极为悬殊。
物理性能对焊接接头影响最大的因素有热膨胀系数和热导率,它们的差异很大程度上决定着焊接接头在高温下的使用性能。
4、应力场分布的不均匀性
异种金属焊接接头中焊接残余应力分布不均匀,这是因为接头各区域具有不同的塑性决定的;另外,材料导热性的差异,将引起焊接热循环温度场的变化,也是残余应力分布不均匀的因素之一。
由于异种金属焊接接头各区域热膨胀系数不同,接头在正常使用条件下,因温度循环而出现在界面上的附加热应力,其分布也不均匀,甚至还会出现应力高峰,从而成为焊接接头断裂的重要原因。
由于组织结构不均匀,在整个焊接接头各区域Ⅱ类应力(即微观组织应力)的分布和大小也将存在差异。
总之,对于异种金属焊接接头来说,成分、组织、性能和应力场的不均匀性,是其表现的主要特征。
二、不同焊接方法焊接异种金属时的特点
大多数焊接方法都可用于异种金属的焊接,但在选择焊接方法及制定工艺措施时,仍应考虑异种金属焊接时的特点。
根据母材和焊接接头不同的要求,熔焊、压焊及其他焊接方法在异种金属焊接中都有所应用,但也都各有其优缺点。
1、熔焊
异种金属焊接中应用较多的是熔焊方法,常用的熔焊方法有焊条电弧焊、埋弧焊、气体保护电弧焊、电渣焊、等离子弧焊、电子束焊、激光焊等。
为了减少稀释,降低熔合比或控制不同金属母材的熔化量,通常可选用热源能量密度较高的电子束焊、激光焊、等离子弧焊等方法。
为了减小熔深,可以采取间接电弧、摆动焊丝、带状电极、附加不通电焊丝等工艺措施。
但无论如何,只要是熔焊,总有部分母材熔入焊缝而引起稀释,另外,还会形成诸如金属间化合物,共晶体等。
为了减轻这类不利影响,必须控制和缩短金属在液态或高温固态下的停留时间。
然而,尽管熔焊方法和工艺措施不断改进和完善,却仍然难以解决所有异种金属焊接时的问题,因为金属种类繁多,性能要求又多种多样,接头形式又各不相同,许多情况下还需要采用压焊或其他的焊接方法来解决特定的异种金属接头的焊接问题。
2、压焊
大多数压焊方法都只将被焊金属加热至塑性状态或甚至不加热,而以施加一定的压力为基本特征。
与熔焊相比,在焊接异种金属接头时压焊具有一定的优越性,只要接头形式允许,焊接质量又能满足要求,采用压焊往往是比较合理的选择。
压焊时,异种金属交界表面可以熔化,也可以不熔化,但由于有压力的作用,即使表面有熔化金属存在,也会被挤压而排出(如闪光焊和摩擦焊),只有少数情况下压焊后还保留了曾经熔化的金属(如点焊)。
压焊由于不加热或加热温度低,可以减轻或避免热循环对母材金属性能的不利影响,防止产生脆性的金属间化合物。
某些形式的压焊甚至能将已产生的金属间化合物从接头中挤压出去。
此外,压焊时也不存在因稀释而引起的焊缝金属性能变化问题。
不过,大多数压焊方法对接头形式是有一定要求的,例如点焊、缝焊、超声波焊必须用搭接接头;摩擦焊时至少有一个工件必须具有旋转体的截面;爆炸焊只适用于较大面积的连接等。
压焊设备目前也还不普及。
这些无疑地都限制了压焊的应用范围。
3、其他方法
除熔焊和压焊外,还有一些可以用于异种金属焊接的方法。
例如钎焊就是钎料与母材之间的异种金属焊接方法,不过这里所讨论的则是较特殊的钎焊方法。
有一种方法称作熔焊——钎焊,即对异种金属接头中低熔点母材一侧为熔焊,对高熔点母材—侧为钎焊。
而且通常是以低熔点母材相同的金属为钎料。
因此,钎料与低熔点母材之间就是同种金属的熔焊过程,不存在特殊困难。
钎料与高熔点母材之间则是钎焊过程,母材不发生熔化、结晶,可以避免许多焊接性方面的问题,但要求钎料对母材能良好润湿。
另一种方法称作共晶钎焊或共晶扩散钎焊。
这是将异种金属接触表面加热到一定温度,使两种金属在接触表面处形成低熔点的共晶体,该低熔点共晶体在此温度下呈液态,实质上成了一种不用外加钎料的钎焊方法。
当然,这要求两种金属之间能够形成低熔点的共晶体。
异种金属扩散焊时加入中间层材料,在很低压力下加热使中间层材料熔化,或与被焊金属接触形成低熔点共晶体,此时形成的薄层液体,经一定时间的保温过程,使中间层材料全部扩散到母材中并均匀化,就能形成没有中间材料的异种金属接头。
这类方法在焊接过程中都会出现少量液态金属。
因而又被称作液相过渡焊,他们的共同特点就是接头中不存在铸造组织。
来源:摘自网络。