电冰箱温度控制系统设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电冰箱温度控制系统设计

一、引言

电冰箱是每个家庭现代化厨房必备的家用电器之一,它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其他物品的家用电器设备。它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的,即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。从1918年世界上第一台电机压缩式电冰箱研制成功,随着科学技术的飞速发展电冰箱也在不断的演变和更新尤其是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。

随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。采用单片机进行控制,可以使电冰箱的控制更准确、灵活、直观。

本次所设计的就是基于51单片机的电冰箱温度控制系统,以AT89C51单片机为核心控制压缩机的启动和停止,解决了传统电冰箱控制系统存在的不足,可以使控制更准确、更灵活。

本次设计的目的是设计一个温度控制系统,要求:

1.利用键盘分别控制冷藏室、冷冻室温度(0~5℃,-7 ~ -18℃);

2.显示各室的温度值;

3.制冷压缩机运行后若突然断电要有30秒延时;

4.各个门开后超过2分钟要报警。

本次设计的意义是通过此次设计加深对测控系统原理与设计课程的理解,掌握微机化测控系统设计的思路,了解一般设计过程。

二、电冰箱温度控制系统硬件电路设计

1. 总体设计方案

以AT89S51单片机为核心,来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块,液晶显示模块、温度控制器模块、报警模块作

)。

图2-1 冰箱控制原理图

当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感

头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。

系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。

2. 主控制部分方案

AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,AT89S51在众多嵌入式控制应用系统中得到广泛应用。

2.1 AT89S51主要性能特点

1、4k Bytes Flash片内程序存储器;

2、128 bytes的随机存取数据存储器(RAM);

3、32个外部双向输入/输出(I/O)口;

4、2个中断优先级、2层中断嵌套中断;

5、6个中断源;

6、2个16位可编程定时器/计数器;

7、2个全双工串行通信口;

8、看门狗(WDT)电路;

9、片内振荡器和时钟电路;

10、与MCS-51兼容;

11、全静态工作:0Hz-33MHz;

12、三级程序存储器保密锁定;

13、可编程串行通道;

14、低功耗的闲置和掉电模式。

2.2管脚说明

VCC:电源电压输入端。

GND:电源地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。PDIP 封装的AT89S51管脚图

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口除了作为普通I/O口,还有第二功能:

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT11)

P3.4 T0(T0定时器的外部计数输入)

P3.5 T1(T1定时器的外部计数输入)

P3.6 /WR(外部数据存储器的写选通)

P3.7 /RD(外部数据存储器的读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

相关文档
最新文档