北师大版八年级上册数学 第二章复习精选 优秀教案

合集下载

北师大版初中数学八年级上册第二章2.2《平方根》教案

北师大版初中数学八年级上册第二章2.2《平方根》教案
具体举例说明:
1.教学重点举例
-定义举例:通过具体的数值,如9、16等,让学生理解平方根的概念,掌握求平方根的方法。
-运算举例:通过计算√9+√16、√9×√16等,让学生熟练掌握平方根的运算规则。
-性质举例:通过分析正数、非负数的平方根特点,如√9=3,-√9=-3,让学生掌握平方根的性质。
-估算举例:以√10为例,教授学生使用近似计算方法估算平方根,如先找到最接近的完全平方数9,再计算√10与√9之间的差距。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是一个数乘以自身得到另一个数的运算,它是解决几何、物理等问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。比如,求解一个边长为10cm的正方形的面积,通过平方根的概念可以轻松得到面积为100cm²。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和运算这两个重点。对于难点部分,比如平方根的性质和估算,我会通过举例和比较来帮助大家理解。
4.估算平方根:学会使用近似计算方法估算一个数的平方根。
5.应用平方根解决实际问题:运用平方根知识解决生活中的问题,如面积、体积等计算。
二、核心素养目标
1.培养学生的逻辑推理能力,通过平方根的定义和性质的学习,使学生掌握数学推理的基本方法,提高分析问题和解决问题的能力。
2.培养学生的数学运算能力,让学生熟练掌握平方根的运算规则,提高数学计算的速度和准确性。
-实际问题举例:将实际问题,如计算正方形面积,转化为求平方根的问题,教授学生如何建模和求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版数学八年级上册《认识无理数(2)》教案一、学生起点分析学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是: 1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.三、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <21<s<4 1.4<a <1.5[来源:学+科+1.96<s<2.25 1.41<a <1.42 1.9881<s<2.0164 1.414<a <1.415 1.999396<s<2.002225 1.4142<a <1.41431.99996164<s<2.00024449归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础. 2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).[来源:学.科.网Z.X.X.K]目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念. 第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力. 第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数.有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数例1填空: 0.351, 4.96••-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形; (D ) 面积为1.44的正方形. [来源:Z 。

北师大版八年级上册数学 第二章复习精选参考教案

北师大版八年级上册数学   第二章复习精选参考教案

一、知识点梳理有理数1 .概念:(1) 有限小数:小数部分的位数是有限的小数。

(2) 无限小数:小数部分的位数是无限的小数。

(3) 循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

例如: 0.333 …, 5.32727 …等等。

注意:循环小数是无限小数,也称作无限循环小数。

2 .,因为整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。

无理数1.无理数:无限不循环小数叫做无理数。

2.无理数的特征:(1)无理数的小数部分位数不限;(2)无理数的小数部分不循环,不能表示成分数的形式。

实数有理数和无理数统称为实数。

实数的分类:由以上学到的,我们可以对实数进行分类 1.按定义:2.按符号:实数分为正实数,零,负分数。

3.实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。

数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。

(实数与数轴上的点一一对应。

)4.实数大小比较的方法:1.有理数大小的比较法则在实数范围内同样适用,即:法则1:在数轴上表示的两个实数,右边的数总比左边的数大。

法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。

2.平方比较法。

3.作差比较法。

5.实数化简公式:=⋅b a ( ) (a ≥0,b ≥0);=b a ( ) (a ≥0,b >0) 二、典型例题:例题1:比较311与5的大小。

例题2a 2,小数部分为b ,求-16ab-8b 的立方根。

例题3:已知22(4)0,()y x y xz -+++=求的平方根。

三、过关练习:一.填空题:1.如果162=x ,那么_____=x ;2.144的平方根是______,64的立方根是_______;3._____2516=±,_____814=-,____104=,_____106=-;4.______287169=,_____8333=,_____643=--; 5.要切一面积为16平方米的正方形钢板,它的边长是__________米;6.5-的相反数是__________,绝对值是_________,倒数是_________; 8 ____________数和数轴上的点一一对应;9.=0144.0_________;=-327102__________;=+∙632__________,=⎪⎪⎭⎫ ⎝⎛-2323____________,()()_______2525=+-;10.比较大小5-______6-,14.3- _______π, 213-______ 21;12.若492=x ,则x =______,若64)1(3=-x ,则x =______; 13.______的倒数是21-.14.如果0)6(42=++-y x ,那么=+y x ; 15.若a 、b 互为相反数,c 、d 互为负倒数,则______3=++cd b a ; 16.已知x 、y 满足0242422=+-++y x y x ,则_______16522=+y x ;21.2)5(-的平方根是三.解答题:22.222318+-23.71428-24.33122a a a ∙ 25.)15)(15(-+26.10101540+- 27.()225+28.102)121()52()21(1)2(2--+--++-29.已知322+-+-=x x y ,求x y 的平方根;。

北师大初中数学八年级上册第二章《2.7二次根式》教案

北师大初中数学八年级上册第二章《2.7二次根式》教案

北师大版数学八年级上册第二章《二次根式》教案教学目标:1.式子b a b a ⋅=⋅ (a ≥0,b ≥0),b a ba = (a ≥0,b >0)的运用;能利用化简对实数进行简单的四则运算.(重点) 2.让学生能根据实际情况灵活地运用两个法则进行有关实数的四则运算.(难点)3.通过对法则的逆运用,让学生体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.教法及学法指导:本节采用“导学-探究—反馈”教学模式,引导学生对设计的问题进行主动思考、小组讨论、主动探究,最后自己得到二次根式化简的方法,并能进行简单的四则混合运算. “两个公式的逆运用”是本节课的重点知识,“灵活地运用公式进行实数运算”是本节课的难点知识.对以上两个知识,要通过大量练习,才能让学生熟练掌握. 课前准备:制作课件,学生课前进行预习工作.教学过程:一、 导学1.让学生回顾算术平方根的概念,并提出问题:下面正方形的边长分别是多少?(利用课间展示图片)学生思考后踊跃回答,上述两个问题学生很容易完成.在这个环节为了方便表示,设大正方形的边长为a ,小正方形的边长为b .因此,学生得到:.2,822==b a 由算数平方根的定义很容易得到:.2,8==b a2.老师继续提出问题:这两个正方形的边长之间有什么关系?(停留片刻,展示分割大正方形的图片)借助图片,学生得出:,2b a =即:.228=3.你能借助什么运算法则解释它吗?点明本节课研究任务——化简,导入新课.二、 探究1.利用课件出示上节课研究的两个运算法则:b a b a ⋅=⋅(a ≥0,b ≥0), ba b a=(a ≥0,b >0).并明确指出逆用仍然是成立的,面积8 面积2即:b a b a ⋅=⋅,b a b a = (a ≥0,b >0).2.老师提出问题:能否根据该公式将8化成22呢?在这个环节,由于学生课前已经自学完课本,有部分学生能够解决这个问题.学生回答:2242428=⨯=⨯=.(强调:含有根号的数与一个不含根号的数相乘,一般把不含根号的数写在前面,并省略去乘号)3.探究方法老师提出问题:以上化简过程有何规律呢?学生得出:被开方数被拆成两个因数乘积的形式,并且其中一个因数能够直接开平方,而且在这个变化过程当中逆用了我们上节课研究的乘法运算公式.老师明确:像这种运算我们称为化简,像8被开方数含有开得尽的因数,一般需要进行化简.4.典例解析:32如何化简?学生在这个环节进行小组探究,学生得出(1):82848432=⨯=⨯=(学生比较热于利用乘法口诀); 学生得出(2):2416216232=⨯=⨯=老师引导学生:两名同学化简的结果有什么区别?学生:82可以继续化简,即2442242282=⨯=⨯=.老师继续提出:哪种方法更好呢?我们以后应该采用哪种方法?学生一定选择第二种方法,第二种方法的优点是只需一次化简,而第一种方法需要两次化简.总结方法:对于32这种式子的化简,被开方数拆成两个因数乘积的形式,其中一个因数能够直接开方,而另一个不再含有开方开得尽的因数.5.反馈练习:化简:(1)45;(2)27;(3)54;(4)98;(5)16125. 五名同学在黑板板书,其余同学独立完成.完成后同位交换批改,并订正答案.黑板上的让同学点评.6.拓展:事实上,对带有根号的数的化简,不仅仅限于以上提出的要求,它还有其他要求.类比(4)98 (5)16125的化简,让学生化简21.(小组合作探究) 学生会有两种做法: 方法一: 212121==.在此指出这种结果并非最简,还需进行分母有理化,但分母有理化不是我们现在的教学要求,以后我们习题课的时候有可能会涉及到.方法二: 22424221===.自学效果好的同学得到这种方法,这种方法是我们这节课要掌握的方法.那么这种方法的特点是什么呢?学生回答:被开方数的分母利用分数的基本性质扩大一定的正整数倍,配成能够直接开方的数.有些学生有这种想法: 2242216816821====.这种情况里面8还需要化简.因此分母扩大一定的正整数倍后,应该配成最小的能够直接开平方的数.老师总结:原来被开方数含有分母,化简后,被开方数不含分母了.7.反馈练习:化简:(1)31 (2) 121 (两名同学黑板板书,其余同学独立完成,并同位间批改订正)8.小结归纳:带根号的数的化简要求:(1)使被开方数不含开得尽的数;(2)使被开方数不含分母.9.知识运用例1 化简:(1)50;(2)348-;(3)515-. 对于例题的处理:先让学生自学例题,注意解题格式和步骤,然后合上课本把例题再做一遍,并且找四名同学到黑板上板书,最后让学生点评例题.三、反馈1.课本60页随堂练习1:(三名同学到黑板板书,然后其余同学独立完成,同位间批改订正,黑板上同学的完成情况,让学生点评)化简:(1)18;(2)7533-;(3)72.2.补充习题, 化简:(1)81;(2)278;(3)2.1;(4)1615 (找同学板书) 说明:(3)(4)大部分同学无从下手,老师给予适当点拨.(3)要先把小数化成分数,再考虑下一步的化简.(4)要把带分数化成假分数,再考虑下一步的化简.3.补充习题,化简:(1)128; (2)900; (3)48122+;(4)325092-+; (5)5145203--; (找同学板书) 课堂小结小组内交流讨论,总结本节课的收获.以小组为单位做出总结:(1)被开方数中含有分母或者含有能开得尽的因数的式子需要化简;(2)公式b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0)从左往右或从右往左在化简中会灵活运用.(3)能够进行含有根式的式子的四则混合运算.限时作业课本62页 习题 2.10 知识技能 1.课本64页 复习题 8.化简 (4)(5)(6)板书设计:教学反思:1.这是一节实数的运算、化简课,只有在熟练掌握两个公式(和这两个公式的逆运用)的基础上,反复利用练习来巩固学生对知识理解和融汇.2.本节课通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并体验实数的运算、化简;让学生根据实例进行探索,通过同学们互相交流合作,得出两个化简的公式(实际上是两个运算公式的逆运用),培养他们的合作精神和探索能力.3.由于课本的知识量比较少,我在新课引入和反馈训练方面所花的时间相对多一些,这§2.6.3 实数(三)1.法则 2.例题讲解b a b a ⋅=⋅ (a ≥0,b ≥0);b a ba =(a ≥0,b >0) 练 习 区也是数(或式)的运算的通用的做法,旨在通过练习、例题来巩固学生对所学知识的理解和掌握.。

北师大版数学八年级上册第二章实数单元复习课课件

北师大版数学八年级上册第二章实数单元复习课课件

④8的立方根是___2____.
图Z2-2
6. (202X湘潭)在数轴上到原点的距离小于4的整数可以为
_3_(__答__案__不__唯__一__)____.(任意写出一个即可)
7. 下列数中:①-|-3|;②-0.3;③

⑦0;⑧1.202 002 000 2…(每两个2之间依次多一个0),⑨
无理数是__③__④__⑧___,整数是__①__⑥__⑦___,负分数是___②__⑨____.(
知识导航
无理数 概念:无限不循环小数
算术平方根

定义:一般地,如果一个正数x的平方等于a,即
数 平方根 x2=a,那么这个正数x就叫做a的算术平方根.
规定:0的算术平方根是0.
表示方法:正数a的算术平方根表示为 读作
“根号a”
续表
平方根 定义:一般地,如果一个数x的平方等于a,即x2 = a,那么这个 数叫做a 的平方根(二次方根). 平 性质: 实 方 ①一个正数有两个平方根,它们互为相反数; 数 根 ②0只有一个平方根,它是0本身; ③负数没有平方根
运算:实数的运算法则及运算律对二次根式仍然适用
专题1 平方根、立方根
1. (202X南京)3的平方根是( D )
A. 9
B.
C.
D. ±
2.
的算术平方根的倒数是( C )
A.
B. ±
C.
D. ±
3.有理数8的立方根为( B )
A.-2
B.2
C.±2
D.±4
4. 下列计算正确的是( D )
A.
=-3 B.
+(7-c)2=0,求-2a-b-c的立方根.
解:因为|a+3|+

八年级数学上册第二章实数:估算教案新版北师大版

八年级数学上册第二章实数:估算教案新版北师大版

八年级数学上册教案新版北师大版:2.4估算教学目标1.能估算一个无理数的大致取值范围;(重点)2.能通过估算比较两个数的大小;(难点)3.掌握估算的方法,形成估算的意识.教学过程第一环节:情境引入内容:由修建环保公园的实际问题情境引出本节课的学习内容――公园有多宽.某市开辟了一块长方形的荒地用来建一个以环保为主题的公园.已知这块地的长是宽的两倍,它的面积为400000平方米.此时公园的宽是多少?长是多少?给出这个问题情境,先让学生凭感觉说出公园的长和宽分别是多少.给出引导问题:公园的宽有1000米吗?(没有)那么怎么计算出公园的长和宽.解:设公园的宽为x米,则它的长为2x米,由题意得:x·2x =400000,2x2=400000,x.目的:从现实情境引入,一方面让学生初步建立数感,另一方面让学生体会生活中的数学从而激发学习的积极性.效果:学生通过与生活紧密联系的问题情境初步感受到估算的实用价值.第二环节:活动探究内容:1.探究一个无理数估算结果的合理性.2.学会估算一个无理数的大致范围.例1 下列结果正确吗?你是怎样判断的?与同伴交流.解答:这些结果都不正确.怎样估算一个无理数的范围?例2 你能估算它们的大小吗?说出你的方法.(①②误差小于0.1;③误差小于10;④误差小于1.)解答:说明:误差小于10就是估算出的值与准确值之间的差的绝对值小于10,的估算值在误差小于10的前提下可以是310,也可以是320,还可以是310到320之间的任何数.教材使用误差小于10,而不用精确到哪一位,目的在于降低要求。

目的:同伴间进行交流,教师适时引导.在解决问题的同时引导学生对解决方法进行总结,和学生一起归纳出估算的方法.让学生从被动学习到主动探究,激发学生的学习热情,培养学生自主学习数学的能力.效果:通过简单无理数大致范围的估计,初步积累一些解决问题的经验,为接下来的实际应用做好准备.第三环节:深入探究内容:用估算来解决数学的实际问题.例1你能比较512与12的大小吗?你是怎样想的?512与12>2>1512>12.解:∵5>4)2>22,2,>1,即512>12.例2 解决引入时“公园有多宽?”的问题情境中提出的问题.=?(1)如果要求误差小于10米,它的宽大约是?(大约440米或450米)说明:只要是440与450之间的数都可以.(2)该公园中心有一个圆形花圃,它的面积是800平方米,你能估计它的半径吗(误差小于1米)?(15米或16米)说明:只要是15与16之间的数都可以.例3 给出新的问题情境——画能挂上去吗?生活表明,靠墙摆放梯子时,若梯子底端离墙距离为梯子长度的三分之一,则梯子比较稳定.现有一长度为6米的梯子,当梯子稳定摆放时,(1)他的顶端最多能到达多高(保留到0.1)?(2)现在如果请一个同学利用这个梯子在墙高5.9米的地方张贴一副宣传画,他能办到吗?解:设梯子稳定摆放时的高度为x 米,此时梯子底端离墙恰好为梯子长度的13,根据勾股定理:2x +(13×6)2=62, 2x +4=36,2x =32,x因为3236.316.52<=因为3249.327.52>=所以画不能挂上去目的:学生通过独立思考与小组讨论相结合的方式解决新的实际问题,让学生初步体会数学知识的实际应用价值.效果:在解决实际问题中再次体会估算的方法,从而体验到学习数学的乐趣.第四环节:反馈练习内容:反馈练习1 估算下列数的大小.(10.1);(21).解答:(1)∵3.6 3.7,或3.7(只要是3.6与3.7之间的数都可以).(2)∵910,或10(只要是9与10之间的数都可以).反馈练习2通过估算,比较下面各数的大小.(1312与12;(2 3.85.解答:(12,<1, 即312<12. (2)∵3.852=14.8225,3.85.反馈练习3给出与生活密切联系的实际问题情境一个人一生平均要饮用的液体总量大约为40立方米,如果用一圆柱形的容器(底面直径等于高)来装这些液体,这个容器大约有多高(误差小于1米)?目的:教学引导学生解决问题,学生通过独立思考和与同伴合作交流的方式解决提出的问题,让学生再次体会估算的方法和估算的实际应用,调动探究的积极性.效果:进一步激发学生对利用估算的方法解决问题的兴趣,调动学生学习数学的热情.第五环节:反思归纳内容:1.用自己的语言表达学习这节内容的感想(1)通过这节课的学习,你掌握了哪些知识?(2)通过学习这些知识,对你有怎样的启发?(3)对于这节课的学习,你还有哪些疑问?2.浏览给出的知识点归纳.目的:引导学生归纳本节的基本内容,让学生及时小结,教师展示知识脉络图并反思本节课教学设计的不足,及时做出后面教学的调整.效果:部分学生能大胆地提出疑问.第六环节:作业巩固内容:习题2.6 1,2,3,6目的:给出作业内容,学生浏览给出的作业.效果:让学生在练习中及时巩固所学知识.教学设计反思(一)突出重点、突破难点的策略“公园有多宽”这节内容是让学生掌握估算的方法,训练他们的估算能力,而学生在生活中接触用估算解决实际问题的情况比较少,所以比较陌生,进而学习起来难度就比较大。

北师大版八年级数学上册第二章《实数》教案

北师大版八年级数学上册第二章《实数》教案

八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。

2.无理数是_________的小数,如_________,_________,_________等都是无理数。

3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。

二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。

师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。

即有理数和无理数统称为实数。

生:也就是说实数可分为有理数和无理数。

师:对!你说的太对啦!实数从定义可分为有理数和无理数。

无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。

师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。

师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。

互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。

师:同学们回答的非常好,-2的倒数是什么?生:是-。

师:的倒数是什么?生:思考回答。

师:实数a的倒数是什么?生:是。

师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。

是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

北师大版-数学-八年级上册-上第二章第2节平方根(1) 教案

北师大版-数学-八年级上册-上第二章第2节平方根(1) 教案

北师大版八年级上第二章第2节平方根(1)教案教学目标:(一)教学知识点1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.(二)能力训练要求1.加强概念形成过程的教学,提高学生的思维水平.2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神.(三)情感与价值观要求1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:了解算术平方根的概念、性质.课堂导入:上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.教学过程:1.问题的提出:(1)根据勾股定理,结合图形填空.x2=_________y2=_________z2=_________w2=_________(2)x,y,z,w中哪些是有理数?哪些是无理数?(3)怎样表示x,y,z,w呢?请大家仔细看书后回答.解:(1)x2=2, y2=3, z2=4, w2=5.(2)x,y,w是无理数,z是有理数.因为没有任何整数或分数的平方等于2,3,5,所以x,y,z不是有理数,而22=4,所以z=2.(3)x=2,y=3,z=4,w=5.2.算术平方根的概念:若一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根.记为“a ”读作“根号a ”.特别地,规定0的算术平方根是0,即0=0.3. 算术平方根的性质: 算术平方根a 具有双重非负性:(1)被开方数a 是非负数,即a ≥0;(2)算术平方根a 本身是非负数,即a ≥0.4.例题讲解:[例1]求下列各数的算术平方根:(1)900;(2)1;(3)6449;(4)14. 解:(1)因为302=900,所以900的算术平方根是30,即900=30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为,6449)87(2=所以6449的算术平方根是87,即876449=; (4)设一个正数x , 142=x ,14=∴x ,即14的算术平方根是14.通过上面的例题,我们可以看出一个正数的平方和求算术平方根是互为逆运算.[例2]自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?解:将h =19.6代入公式 h =4.9t 2 得t 2=4, 所以t =4=2(秒)即铁球到达地面需要2秒.[师]非常正确,那负数的算术平方根是否为负数呢?若(-2)2=4.则4=-2对吗?或者4-=-2对吗?[生甲]不对.因为算术平方根的定义是一个正数的x 的平方等于a ,这个正数x 就叫做a 的算术平方根,所以算术平方根不可能是负数.[师]由此看来,定义中的a 和x 都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为a (a ≥0)为非负数,这是算术平方根的性质.课堂练习:(一)P 39随堂练习1、2题.(二)补充练习.1.填空题(1)若一个数的算术平方根是5,则这个数是_________.(2)94的算术平方根是_________. (3)正数_________的平方为971,25144的算术平方根为_________. (4)(-1.44)2的算术平方根为_________.(5)81的算术平方根为_________,04.0=_________2.求下列各数的算术平方根,并用符号表示出来:(1) (7.4)2 ; (2) (-3.9)2 ; (3) 2.25 ; (4) 241. 课后作业:P 40习题2.3活动与探究1. 一个圆的面积为原来的100倍时,它的半径变为原来的多少倍?2. 一个圆的面积变为原来的n 倍时,它的半径变为原来的多少倍?教学反思:要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.参考答案:课堂练习:(一) P 39随堂练习1.6,,43 17, 0.9, 210- 2.10米.(二) 补充练习1.(1)5;(2)32;(3)512,34;(4)1.44;(5)3,0.2 2.(1)7.27.2)2=(;(2) 3.93.9)2=(-;(3) 1.52.25=;(4)23412=.课后作业:P 40习题2.31.11, ,53 1.4, 103 ; 2.0.3米 ; 3.2倍,3倍,10倍,n 倍 活动与探究:1.10倍; 2.n 倍。

北师大版 八年级上册 课题:《一次函数》复习课教学设计

北师大版 八年级上册 课题:《一次函数》复习课教学设计

北师大版八年级上册课题:《一次函数》复习课教学设计一. 教材分析《一次函数》是北师大版八年级上册数学第二章的内容,主要介绍了函数的概念、一次函数的定义、图像和性质。

本节课的教学内容是对一次函数的复习,通过复习使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。

二. 学情分析学生在之前的学习中已经掌握了函数的概念和一次函数的基本知识,但部分学生对一次函数的图像和性质理解不够深入,解决实际问题的能力有待提高。

此外,学生的数学基础和学习兴趣存在差异,因此在教学过程中需要关注学生的个体差异,激发学生的学习兴趣。

三. 教学目标1.知识与技能:通过对一次函数的复习,使学生掌握一次函数的基本概念、图像和性质,提高学生解决实际问题的能力。

2.过程与方法:通过复习课的教学,培养学生自主学习、合作交流的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的数学素养,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一次函数的基本概念、图像和性质。

2.难点:一次函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,激发学生的学习兴趣。

2.启发式教学法:引导学生通过自主学习、合作交流,发现一次函数的性质。

3.案例教学法:通过解决实际问题,培养学生应用一次函数的能力。

4.反馈评价法:及时了解学生的学习情况,调整教学策略。

六. 教学准备1.教学课件:制作一次函数的复习课件,包括一次函数的基本概念、图像和性质。

2.教学案例:准备一些实际问题,用于巩固一次函数的应用。

3.作业布置:提前布置一次函数的相关作业,了解学生的掌握情况。

七. 教学过程1.导入(5分钟)通过生活实例引入一次函数,激发学生的学习兴趣。

例如,讲解购物时打折优惠的问题,引导学生发现折扣率与价格之间的关系是一次函数。

2.呈现(10分钟)呈现一次函数的基本概念、图像和性质,让学生回顾和巩固一次函数的知识。

八年级数学上册第二章实数:二次根式第3课时二次根式的混合运算教案新版北师大版

八年级数学上册第二章实数:二次根式第3课时二次根式的混合运算教案新版北师大版

八年级数学上册教案新版北师大版:2.7二次根式3课时二次根式的混合运算教学目标熟练掌握二次根式的综合运算.(重点、难点)教学过程一、情境导入已知一个直角三角形的两条直角边长分别为(3-2)cm、(3+2)cm,求这个三角形的面积和周长.二、合作探究探究点一:二次根式的混合运算计算:(1)ab(a3b+ab3-ab)(a≥0,b≥0);(2)(232-12)×(128+23);(3)(32+48)×(18-43).解:(1)原式=ab(a ab+b ab-ab)=a ab×ab+b ab×ab-ab ab=a2b+ab2-ab ab;(2)原式=(6-22)(2+63)=6×2+6×63-22×2-22×63=23+2-1-33=1+533;(3)原式=(32+43)(32-43)=(32)2-(43)2=18-48=-30.方法总结:二次根式的混合运算,一般先将二次根式转化为最简二次根式,再灵活运用乘法公式等知识来简化计算.探究点二:二次根式的化简求值已知a=15-2,b=15+2,求a2+b2+2的值.解析:先化简已知条件,再利用乘法公式变形,即a2+b2=(a+b)2-2ab,最后代入求解.解:∵a=15-2=5+2(5-2)(5+2)=5+2,b=15+2=5-2(5+2)(5-2)=5-2,∴a+b=25,ab=1.∴a2+b2+2=(a+b)2-2ab+2=(25)2-2+2=20=2 5.方法总结:解此类问题时,直接代入求值很麻烦,要先化简已知条件,再用乘法公式变形代入即可求得.探究点三:运用二次根式的运算解决实际问题教师节就要到了,李欣同学准备做两张大小不同的正方形贺卡送给老师以表示祝贺,其中一张面积为288平方厘米,另一张面积为338平方厘米,如果用彩带把贺卡镶边会更漂亮,她现在有1.5米的彩带,请你帮忙算一算她的彩带够不够用.(2≈1.414)解析:可以通过两个正方形的面积分别计算出正方形的边长,进一步求出两个正方形的周长之和,与1.5米比较即可得出结论.解:贺卡的周长为4×(288+338)=4×(122+132)=4×252≈141.4(厘米).∵1.5米=150厘米,150>141.4,∴李欣的彩带够用.方法总结:本题是利用二次根式的加法来解决实际生活中的问题,解答本题的关键在于理解题意并列出算式.三、板书设计二次根式⎩⎪⎨⎪⎧综合运算化简求值实际应用教学反思经历本节课的学习,进一步理解二次根式的概念,熟悉二次根式的化简,了解根号内含有字母的二次根式的化简,利用二次根式的化简解决简单的数学问题.学生通过独立思考,能选择合理的方法解决问题;在运算过程中巩固知识,与小组成员交流总结方法.。

最新北师大版八年级数学上册 第二章 有理数及其运算 教案

最新北师大版八年级数学上册 第二章 有理数及其运算 教案

第二章 有理数及其运算2.1 有理数1.在具体情境中,进一步认识负数,学会用正负数表示具有相反意义的量,体会负数是实际生活的需要. 2.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类.(重点)阅读教材P23~24,完成预习内容. (一)知识探究1.正整数、0和负整数统称为整数.正分数和负分数统称为分数. 2.整数和分数统称为有理数. (二)自学反馈1.(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么-0.03克表示什么? (3)某大米包装袋上标注着“净重量:10 kg ±150 g ”,这里的“10 kg ±150 g ”表示什么? 解:(1)沿顺时针方向转了12圈记作-12圈.(2)-0.03克表示乒乓球的质量低于标准质量0.03克. (3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即每袋大米的净含量最多是10 kg +150 g ,最少是10 kg -150 g.2.把下列各数写在相应的集合里.-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16.正整数集合:{10,+66,2 009,…}负整数集合:{-5,-16,…}负分数集合:{-4.5,-2.15,-35,…}正分数集合:{+235,0.01,15%,227,…}整数集合:{-5,10,0,+66,2 009,-16,…} 负数集合:{-5,-4.5,-2.15,-35,-16,…}正数集合:{10,+235,0.01,+66,15%,227,2 009,…}有理数集合:{-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16,…}3.有理数的分类(分两类).有理数的分类标准要统一.活动1 小组讨论例1 在知识竞赛中,如果用“+10”表示加10分,那么扣20分记作什么? 解:记作-20分.例2 在数-5,23,0,-0.24,7,4 076,-59,-2中,正数有23,7,4 076,负数有-5,-0.24,-59,-2,整数有-5,0,7,4 076,-2,分数有23,-0.24,-59,有理数有-5,23,0,-0.24,7,4__076,-59,-2.例3 下列说法不正确的是(A)A .正整数和负整数统称为整数B .正有理数和负有理数和零统称有理数C .整数和分数统称有理数D .正分数和负分数统称为分数 活动2 跟踪训练1.下列说法正确的是(D)A .一个有理数不是正数就是负数B .正有理数和负有理数组成有理数C .有理数是指整数、分数、正有理数、负有理数和零这五类数D .负整数和负分数统称为负有理数2.有理数:-7,3.5,-12,112,0,π,1317中正分数有(C)A .1个B .2个C .3个D .4个3.下列各数:-8,-113,2.03,0.5,67,-44,-0.99,其中整数是-8,-44,负分数有-113,-0.99.4.有理数中,是整数而不是负数的是非负整数,是负有理数而不是分数的是负整数.活动3 课堂小结通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.2.2 数轴1.了解数轴的概念,学会画数轴,知道如何在数轴上表示有理数.(重点)2.能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.(重点) 3.体会数形结合的思想方法.阅读教材P27~28,完成预习内容. (一)知识探究1.规定了原点、正方向、单位长度的直线叫做数轴. 2.数轴是一条直线,它可以向两端无限延伸. 3.数轴上原点左侧是负数,正数在原点的右侧. (二)自学反馈1.数轴的三要素是原点、正方向、单位长度.2.如图,数轴上点A 、B 表示的数分别是-2.5、2.3.指出图中所画数轴的错误:解:略.活动1 小组讨论例 (1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75; (2)画一条数轴,并表示出如下各点:1 000,5 000,-2 000; (3)画一条数轴,在数轴上标出到原点的距离小于3的整数; (4)画一条数轴,在数轴上标出-5和+5之间的所有整数. 解:略.数轴的三要素、画法、适当地选择单位长度和原点的位置.活动2 跟踪训练1.在数轴上点A 表示-4,如果把原点向负方向移动1.5个单位,那么在新数轴上点A 表示的数是(C) A .-512B .-4C .-212D .2122.在数轴上表示-1.2的点在(B)A .-1与0之间B .-2与-1之间C .1与2之间D .-1与1之间 3.数轴上表示-8的点在原点的左侧,距离原点8个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是-5.4.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有4个.5.写出数轴上点A ,B ,C ,D ,E 所表示的数:解:0,-2,1,2.5,-3.6.画一条数轴表示下列各数,并用“<”把这些数连接起来. 13,2,-4.5,0,52,-0.5,-14. 解:略.7.一个点在数轴上表示的数是-5,这个点先向左边移动3个单位长度,然后再向右边移动6个单位长度,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数? 解:-2,-1.利用数轴数形结合解题.活动3 课堂小结1.数轴的出现对数学的发展起了重要作用,以它作基础师生共同研究,什么是数轴?如何画数轴?如何在数轴上表示有理数?2.利用数轴很多数学问题都可以借助图直观地表示.2.3 绝对值1.借助数轴,理解绝对值和相反数的概念,知道|a|的含义以及互为相反数的两个数在数轴上的位置关系. 2.能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小.(重点) 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用.(难点)阅读教材P30~31,完成预习内容. (一)知识探究1.一般地,数轴上表示数a 的点与原点的距离,叫做数a 的绝对值.2.一个正数的绝对值是它本身,即:若a>0,则|a|=a ;一个负数的绝对值是它的相反数,即:若a<0,则|a|=-a ;0的绝对值是0(双重性). (二)自学反馈1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是±6.03.所以|6.03|=6.03,|-6.03|=6.03. 2.(1)|+13|=13; (2)|-8|=8; (3)|+315|=315;(4)|-8.22|=8.22.3.-213的绝对值是213,绝对值等于213的数是±213,它们是一对相反数.非负数的绝对值是它本身,负数的绝对值是它的相反数.活动1 小组讨论例1 -2的相反数是(A)A .2B .-2C .0.5D .-0.5 例2 下列四组数中不相等的是(C)A .-(+3)和+(-3)B .+(-5)和-5C .+(-7)和-(-7)D .-(-1)和|-1| 例3 下列说法正确的是(B)A .一个数的绝对值的相反数一定不是负数B .一个数的绝对值一定不是负数C .一个数的绝对值一定是正数D .一个数的绝对值一定是非正数例4 若|x -3|+|y -2|=0,则x =3,y =2. 例5 比较下列每组数的大小: (1)-1和-5; (2)-56和-2.7.解:(1)-1>-5.(2)-56>-2.7.活动2 跟踪训练1.在|-7|,5,-(+3),-|0|中,负数共有(A)A .1个B .2个C .3个D .4个 2.一个数的绝对值等于这个数本身,这个数是(D) A .1 B .+1,-1,0 C .1或-1 D .非负数3.在数轴上距离原点2个单位长度的点表示的数是±2,也就是说绝对值等于2的数是±2. 4.在数轴上表示下列各数,并求它们的绝对值:-32,6,-3,-8.6. 解:32;6;3;8.6.图略.5.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离. 解:8.6.比较下列各组数的大小: (1)-110,-27;(2)-0.5,-23;(3)0,|-23|;(4)|-7|,|7|. 解:(1)-110>-27.(2)-0.5>-23.(3)0<|-23|.(4)|-7|=|7|.7.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等. 解:(1)错误,可能等于0. (2)错误,可能比0大. (3)错误,可能互为相反数. (4)正确.活动3 课堂小结1.求一个有理数的相反数.2.绝对值的定义:有理数到原点的距离3.化简绝对值. |a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)4.两个负数比较大小,绝对值大的反而小.2.4 有理数的加法第1课时 有理数的加法法则1.了解有理数加法的意义,理解有理数加法法则的合理性. 2.能运用有理数加法法则正确进行有理数加法运算.(重点)阅读教材P34~36,完成预习内容. (一)知识探究结合课本对两个有理数相加的7个计算式,类似地再列举出相应的计算式并结合数轴解释,得出结果(如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0),根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?结合以上内容,总结得出有理数加法法则:1.同号两数相加,取相同符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数. (二)自学反馈计算:(1)16+(-8)=8; (2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5; (5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论 例1 计算:(1)(-3)+(-9); (2)(-4.7)+3.9.解:(1)-12. (2)-0.8.例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0. 活动2 跟踪训练1.两个数的和为负数,则下列说法中正确的是(D) A .两个均是负数 B .两个数一正一负 C .至少有一个正数 D .至少有一个负数 2.一个正数与一个负数的和是(D)A .正数B .负数C .零D .不能确定符号 3.计算:(1)(+3)+(+8);(2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)(-19)+8.3;(6)-3.4+4.解:11,-14,-7,-1112,-10.7,0.6.注意计算的符号,特别是负号.4.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均温度是多少? 解:2 ℃.活动3 课堂小结 有理数的加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值. 3.任意有理数和零相加,仍得这个数.第2课时 有理数的加法运算律1.掌握有理数加法的运算律,理解小学中加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算,会根据算式的特点选择适当的简便运算方法.(重难点)阅读教材P37~38,完成预习内容. (一)知识探究加法的交换律的文字表达:两个数相加,交换加数的位置,和不变. 加法的交换律的字母表达:a +b =b +a . 加法的交换律的例子说明:1+2=2+1.加法的结合律的文字表达:三个数相加,先用前两个数相加,或者先用后两个数相加,和不变. 加法的结合律的字母表达:(a +b)+c =a +(b +c). 加法的结合律的例子说明:(1+2)+3=1+(2+3). (二)自学反馈 计算:(1)(-7.34)+(-12.74)+7.34+12.4; (2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115); (4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1.活动1 小组讨论例1 计算:(1)(-2)+3+1+(-3)+2+(-4); (2)16+(-25)+24+(-35); (3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6); 解:(1)-3.(2)-20.(3)-2.(4)0.例2 有一批食品罐头,标准质量为每听454 g ,现抽取10听样品进行检测,结果如下表:这10听罐头的总质量是多少? 解:解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4 550(g).解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:这10(-10)+5+0+5+0+0+(-5)+0+5+10 =[(-10)+10]+[(-5)+5]+5+5=10(g). 因此,这10听罐头的总质量为454×10+10=4 540+10=4 550(g).注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22); (2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33). 解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米? (2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发地0千米. (2)118a.活动3 课堂小结有理数加法交换律、结合律: 1.加法交换律:a +b =b +a ;加法结合律:(a +b)+c =a +(b +c). 2.简便运算: ①运用运算律;②运用相反数的和为零; ③凑整.2.5 有理数的减法1.掌握有理数的减法法则,熟练地进行有理数的减法运算.(重点) 2.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P40~41,完成预习内容. (一)知识探究通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x ,使x +(-3)=4,易知x =7,所以4-(-3)=7.① 另一方面,4+(+3)=7,② 由①②有4-(-3)=4+(+3).再试把减数-3换成正数,任意列出一些算式进行计算,如: 计算:9-8与9+(-8);15-7与15+(-7). 由上述内容,得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a -b =a +(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.有理数的减法法则是:减去一个数,等于加这个数的相反数; 用字表示为:a -b =a +(-b). (二)自学反馈 计算:(1)(-3)-(-6); (2)0-8; (3)6.4-(-3.6);(4)-312-(+514).解:(1)3.(2)-8. (3)10.(4)-834.(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a -b =a +(-b)活动1 小组讨论 例 计算:(1)(-38)-(-36); (2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234);(6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-5.5.活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)-1123-(-110);(3)(-1.5)-(-1.4)-(-3.6)-4.3-(+5.2);(4)(5-6)-(7-9).解:(1)-2312.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数; (2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2.61. (2)-|-13|-(-23)=-13+23=13.活动3 课堂小结1.有理数的减法法则:a -b =a +(-b). 2.转化原则:减号变加号,减数变成相反数.2.6 有理数的加减混合运算 第1课时 有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,能把有理数加法运算省略加号和括号,理解有理数的和.(重难点)阅读教材P43,完成预习内容. (一)知识探究把下列算式统一为加法,并写成省略加号的形式:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7, (-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10. 认识算式:①2-5;②-5+3;③-2-8;④-4+2-6的意义.注意有理数的加减混合运算写成省略加号的和的形式的意义.(二)自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略加号的和的形式,并计算.解:23-45-15+13-1=-1.活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进了2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元? 解:增加了,增加了1 625元.例3 把-a +(+b)-(-c)+(-d)写成省略加号的和的形式为-a +b +c -d .总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练1.把下列算式先统一为加法运算再写成省略括号和的形式,并把结果用两种读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3; (2)(-13)-(+22)+(-17)-(-18). 解:(1)9-10-2+8+3. (2)-13-22-17+18. 2.计算:(1)(-7)-(+5)+(-4)-(-10); (2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1; (4)-2.4+3.5-4.6+3.5.解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算可以利用运算顺序进行计算. 2.熟练进行含有整数、小数、分数的加减混合运算.第2课时 有理数加减混合运算中的简便计算1.运用加法交换律和结合律简化有理数加减混合运算.(重难点) 2.能熟练地进行有理数的加减混合运算.阅读教材P44~45,完成预习内容. (一)知识探究计算:4.5+(-3.2)+1.1+(-1.4). 解:原式=4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1.运用加法交换律和结合律可以简化运算.(二)自学反馈运用交换律和结合律计算: (1)3-10+7=3+7-10=0;(2)-6+12-3-5=-6-3-5+12=-2.活动1 小组讨论 例1 计算:(1)(-9)-(-7)+(-6)-(+4)-(-5); (2)(+4.3)-(-4)+(-2.3)-(+4).解:(1)原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7. (2)原式=4.3+4-2.3-4=2.例2 已知上周周五(周末不开盘)收盘时股市指数以2 880点报收,本周内股市涨跌情况如下表,则本周四收盘时的股市指数为(D)A.2 880 B .2 877 C .2 855 D .2 887正数表示涨,负数表示跌,每天的变化是相对于前一天来比较的,所以周四的股市指数为2 880+50-21-100+78=2 887.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练 1.计算:(1)(-8)-(-15)+(-9)-(-12); (2)(-13)-15+(-23);(3)(-18)-(-65)+(+8)-(+710);(4)-23+(-16)-(-14)-12.解:(1)10.(2)-16.(3)-9.5.(4)-1312.2.甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.5米,相持一会后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家的欢呼鼓励中,标志物又向甲队方向移动了0.9米,若规定标志物向某队方向移动2米该队即可获胜,那么现在谁赢了?用算式说明你的判断.解:甲队获胜,因为-0.2+(+0.5)+(-0.4)+(+1.3)+(+0.9)=+2.1(米)>2(米),所以甲队获胜.活动3 课堂小结在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.第3课时有理数加减混合运算的应用1.能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(重难点)2.感受到有理数运算的实用性,增强学好数学的信心.阅读教材P47,完成预习内容.知识探究折线统计图可以表示同一种量在不同时间的变化规律,如北京周一到周日的天气变化情况.正确地画出折线统计图是观察变化情况的依据.画法及步骤:①写出统计图名称,如天气、水位等;②画出横、纵两条互相垂直的数轴(有时不画箭头,一般向上为正方向,向右为正方向),分别表示两个量,标出单位和单位长度;③根据统计数据,分别描出对应点,描点时可借助三角板来完成;④用线段把所描的点顺次连接起来.活动1 小组讨论例下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示(②上周日12时的水位高度为2米.(1)请你通过计算说明本周末水位是上升了还是下降了.(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.分析:计算这七天水位变化量的和,看结果是正、还是负,若是正,说明周末水位上升了;若是负,说明水位下降了.解:(1)因为(+0.4)+(-0.3)+(-0.4)+(-0.3)+(+0.2)+(+0.2)+(+0.1)=0.4-0.3-0.4-0.3+0.2+0.2+0.1=-0.1(米),所以本周末水位下降了.(2)折线图如图所示:由折线图可看出,本周水位先上升,再下降,最后上升.①画折线统计图时,要先确定哪一个量或哪一个数值为0,即基准;②要标出横线和竖线的单位;③选择单位长度时要考虑使统计图有明显的上升和下降的幅度,能看出变化情况.活动2 跟踪训练1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:(2)(3)最高和最矮的学生身高相差多少?解:(1)依次填入:162 160 163 -6 +5.(2)小山最高,小亮最矮.(3)最高和和最矮的学生身高相差11厘米.2.9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周(周末不开盘)的股市指数升跌情况,+号表示指数比头一天上升,-号表示指数比头一天下跌:(1)本周内哪天股市指数最高?哪天股市指数最低?(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数记为0点,请你画出本周的股市指数折线图.解:(1)本周内星期四股市指数最高,星期二股市指数最低.(2)本周五的股市指数比上周五的股市指数高(3)图略.活动3 课堂小结1.知识归纳:利用正、负数表示相反意义的量,进行有理数的加减混合运算解决实际问题.2.数学思想方法:用已学知识解决新问题的转化思想.2.7 有理数的乘法第1课时 有理数的乘法法则1.了解有理数乘法的实际意义.2.理解有理数的乘法法则,能熟练地进行有理数乘法运算.(重点)阅读教材P49~51,完成预习内容. (一)知识探究有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值. 乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.看书第50、51页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负.几个数相乘,如果其中有一个因数是0,积等于0. (二)自学反馈1.计算:(-114)×(-45)=1,(+3)×(-2)=-6,0×(-4)=0,123×(-115)=-2,(-15)×(-13)=5,-│-3│×(-2)=6.2.计算:(-2)×(-3)×(-5)=-30, (-723)×3×(-123)=1,(-9.89)×(-6.2)×(-26)×(-30.7)×0=0.(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.活动1 小组讨论例1 计算:(+5)×(+3)=15, (+5)×(-3)=-15, (-5)×(+3)=-15, (-5)×(-3)=15, (+6)×0=0, 6×(-4)=-24,(-6)×4=-24, (-6)×(-4)=24. 例2 计算:(1)(-112)×815×(-23)×(-214)=-115;(2)14×(-16)×(-45)×(-114)×8×(-0.25)=8. 活动2 跟踪训练 1.计算:(1)(-5)×0.2=-1; (2)(-8)×(-0.25)=2; (3)(-312)×(-27)=1;(4)0.1×(-0.01)=-0.001;(5)(-59)×0.01×0=0;(6)(-2)×(-5)×(+56)×(-30)=-250;(7)312×(-47)+(-25)×(-334)=-12.2.a ×(-56)=1则a =-65.一个有理数的倒数的绝对值是7,则这个有理数是±17.3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×) (2)两数相乘,若积为负数,则这两个数异号.(√) (3)两个数的积为0,则两个数都是0.(×) (4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√) 活动3 课堂小结1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.第2课时 有理数的乘法运算律1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.(重难点)阅读教材P52~53,完成预习内容.(一)知识探究 乘法的交换律文字表达:两个数相乘,交换因数的位置,积相等.乘法的交换律字母表达:ab =ba . 乘法的结合律文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法的结合律字母表达:(ab)c =a(bc). 乘法的分配律文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 乘法的分配律字母表达:a(b +c)=ab +ac .(二)自学反馈1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1). 解:-9.2.计算:(1)-34×(8-43-1415);(2)191819×(-15). 解:(1)-4310.(2)-299419.运用运算律进行简便运算.活动1 小组讨论例 计算:(1)(-0.5)×(-316)×(-8)×113; 解:-1.(2)-10556×12; 解:-1 270.(3)(-34+156-78)×(-24); 解:-5.(4)317×(317-713)×722×2122; 解:-4.(5)(23-49+527)×27-1117×8+117×8. 解:3.活动2 跟踪训练1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)A .(-3)×4-3×2-3×3B .(-3)×(-4)-3×2-3×3C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)3.对于算式2 007×(-8)+(-2 007)×(-18),逆用分配律写成积的形式是(C)A .2 007×(-8-18)B .-2 007×(-8-18)C .2 007×(-8+18)D .-2 007×(-8+18)4.计算1357×316最简便的方法是(D) A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×316 5.计算:(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(134-78-112)×117; (3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).解:(1)-10.(2)1921.(3)250. 活动3 课堂小结1.有理数乘法交换律.2.有理数乘法结合律.3.有理数乘法分配律.2.8 有理数的除法1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.(重点)3.感受转化、归纳的数学思想.阅读教材P55~56,完成预习内容.(一)知识探究1.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数.2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数仍得0.(二)自学反馈(1)(-18)÷6=-3; (2)5÷(-15)=-25; (3)(-27)÷(-9)=3;(4)0÷(-2)=0.0不能作除数.活动1 小组讨论例1 计算:(1)(-15)÷(-3); (2)12÷(-14); (3)(-0.75)÷0.25;(4)(-12)÷(-112)÷(-100). 解:(1)5.(2)-48.(3)-3.(4)-1.44.例2 计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解:(1)27.(2)323.乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.活动2 跟踪训练1.两个不为零的有理数的和等于0,那么它们的商是(B)A .正数B .-1C .0D .±12.两个不为0的数相除,如果交换它们的位置,商不变,那么(D)A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数3.计算:(1)-0.125÷(-38); (2)(-215)÷1110; (3)(-112)÷34÷1.4. 解:(1)13.(2)-2;(3)-107. 活动3 课堂小结1.法则1:a ÷b =a ·1b. 2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数.2.9 有理数的乘方1.理解有理数乘方的意义,理解乘方运算、幂、底数等概念的意义.2.正确进行有理数乘方运算.(重点)阅读教材P58~59,完成预习内容.(一)知识探究1.求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂,a 叫底数,n 叫指数.乘方a n 有双重含义:(1)表示一种运算,这时读作“a 的n 次方”;(2)表示乘方运算的结果,这时读作“a 的n 次幂”.2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数.(二)自学反馈1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.(特别注意)2.底数是-23,指数是3的幂是-827. 3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数、分数时一定要加括号.3.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4. 4.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3)3×(-42)=432;(-324)2-324=4516.活动1 小组讨论例 计算:(1)(-2)2×(-2)3; (2)5×(-3)2;(3)(-2)4-(-4)2; (4)(-3×2)2-3×22.解:(1)-32.(2)45.(3)0.(4)24.活动2 跟踪训练1.如果一个数的平方与这个数的差等于零,那么这个数只能是(D)A .0B .-1C .1D .0或12.下列说法正确的是(D)A .一个数的偶次幂一定是正数B .一个正数的平方比原数大C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数3.任何一个有理数的二次幂是(B)A .正数B .非负数C .负数D .无法确定4.当n 为整数时,(-1)2n -1+(-1)2n 的值为(B)A .-2B .0C .1D .25.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有=1__024个,为了简便可以记作210.6.①边长为a 的正方形的面积为a 2; ②棱长为a 的正方体的体积为a 3;③把一张纸对折一次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?23.如果对折10次、100次,用算式如何表示?210,2100.7.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数. 解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127. 其中最大的数为-127,最小的数为-27.活动3 课堂小结1.乘方2.乘方的计算:3.乘方的性质.2.10 科学记数法掌握科学记数法的表示方法,能用科学记数法来表示比较大的数据.(重点)阅读教材P63~64,完成预习内容.(一)知识探究把一个大于10的数用科学记数法可以表示为a×10n的形式(其中a是大于或等于1且小于10的数,即1≤a<10;n 等于原整数的位数减去1).(二)自学反馈用科学记数法表示下列各数:1.1 000 000=1×106;2.57 000 000=5.7×107;3.123 000 000 000=1.23×1011;4.10 000=1×104;5.800 000=8×105;6.7 400 000=7.4×106.在上面的计算中,等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数,其中10的指数是n-1.活动1 小组讨论例用科学记数法表示下列各数:(1)中国森林面积有128 630 000公顷;(2)2016年某市总人口达1 022.7万人;(3)地球到太阳的距离大约是150 000 000千米;(4)光年是天文学中的距离单位,1光年大约是950 000 000 000千米;(5)2008年北京奥运会门票预算收入为140 000 000美元;(6)一只苍蝇腹内的细菌多达2 800万个.(在使用科学记数法时要注意单位的转换,如1万=104,1亿=108) 解:(1)1.286 3×108.(2)1.022 7×103万.(3)1.5×108.(4)9.5×1011.(5)1.4×108.(6)2.8×103万.活动2 跟踪训练1.某校在校师生共有2 000人,如果每人借阅10册书,那么中国国家图书馆共2亿册书,可以供多少所这样的学校借阅(B)A.100 000所B.10 000所C.1 000所D.2 000所2.将0.36×45×105的计算结果用科学记数法来表示,正确的是(B)A.16.2×105B.1.62×106C.16.2×106D.16.2×100 0003.1纳米相当于1根头发丝直径的六万分之一,用科学记数法表示头发丝的半径是(D)A.6×103纳米B.6×104纳米C.3×103纳米D.3×104纳米4.填空:(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.5.若-59 600 000用科学记数法表示为a×10n,则a=-5.96,n=7.6.用科学记数法表示下列各数:(1)700 900;(2)-50 090 000;(3)人体中约有25 000 000 000 000个细胞;。

八年级数学上册第2章《认识无理数(1)》优质教案(北师大版)

八年级数学上册第2章《认识无理数(1)》优质教案(北师大版)

第二章实数1. 认识无理数(1)一、学情与教材分析1.学情分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.2.教材分析《认识无理数》是义务教育课程标准北师大版实验教科书新秋版八年级(上)第二章《实数》的第一节,原标题为“数怎么又不够用了”,但在内容设置上除了个别习题的增删,几乎没有其他改动(习题2.1删掉一题,习题2.2删改一题,新增一题).本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.以及学生亲自动手做拼图活动,培养学生的动手能力和探索精神.二、教学目标1.通过拼图活动,让学生感受客观世界中无理数的存在;2.能判断三角形的某边长是否为无理数;3.能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.三、教学重难点教学重点:①让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数. ②会判断一个数是否为有理数.教学难点:①把两个边长为1的正方形拼成一个大正方形的动手操作过程.②判断一个数是否为有理数.四、教法建议合作探究法五、教学设计(一)课前设计1.预习任务用两张颜色不同的纸做出如图的两个边长为1分米的小正方形,剪一剪,拼一拼,设法得到一个大的正方形,思考下列问题?1)大正方形的面积为 ________________平方分米.2)设大正方形的边长是a分米,则a满足什么条件?3)想一下,a是整数么?a是分数么?2.预习自测一、选择题1.下列说法正确的是()A.非负数包括零和整数 B.正整数包括自然数和零C.零是最小的整数 D.整数和分数统称为有理数答案:D解析:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选D.点拨:根据有理数的分类,利用排除法求解.二、填空题2. 在数+8.5,﹣4,﹣0.8,﹣,0,90,﹣,﹣|﹣24|中,___________________________不是整数.答案:+8.5,﹣0.8,﹣,﹣解析:+8.5,﹣0.8,﹣,﹣不是整数.点拨:根据整数的概念进行判断即可.3. 下列说法正确的有__________.(填序号)①﹣a是负数.②0既不是正数,也不是负数③一个有理数不是整数就是分数.④0是最小的有理数.⑤有理数的绝对值是正数.⑥如果两个数的绝对值相等,则这两个数互为相反数.答案:②③解析:①﹣a可能是负数、零、正数,故①说法错误;②零既不是正数也不是负数,故②说法正确;③有理数包括整数和分数,故③说法正确;④没有最小的有理数,故④说法错误;⑤有理数的绝对值是非负数,故⑤说法错误;⑥两个数的绝对值相等,这两个数相等或互为相反数,故⑥说法错误;故答案为:②③.点拨:根据小于零的数是负数,可判断①;根据零的意义,可判断②;根据有理数的分类,可判断③;根据有理数的意义,可判断④;根据绝对值的意义,可判断⑤;根据相反数的性质,可判断⑥.(二)课堂设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:探究发现;第三环节:知识运用;第四环节:随堂检测;第五环节:课堂小结.第一环节:情境引入问题情景:同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?(在小学我们学过自然数、小数、分数,在初一我们还学过负数.)对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.意图:通过情景引导学生思考学过哪些数,进而进行下一步的探究.第二环节:探究发现活动1:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形.(学生高兴地投入活动中)经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下. 现在我们一起把大家的做法总结一下:活动2:再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知22a=.a=可判断a应是1点几.[生丙]由22大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a是分数吗?请大家分组讨论后回答.=,…整数的平方越来[生甲]我们组的结论是:因为211=,224=,239越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为111224339,,224339224⨯=⨯=⨯=,…两个相同因数的乘积都为分数,所以a不可能是分数.经过大家的讨论可知,在等式22a=中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.做一做:(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?(3)b是有理数吗?请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数---无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.第三环节:知识运用1.如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3,h 不可能是整数,也不可能是分数.2.下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB=2,BE=1,AB、BE是有理数.AD2=AB2+BD2=22+32=13,AC2=1+1=2.AE2=AB2+BE2=22+12=5.AC、AD、AE既不是整数,也不是分数,所以不是有理数.第四环节:随堂检测一、选择题1. 在数下列各数:+3、+(﹣2.1)、﹣、﹣π、0、﹣0.1010010001…、﹣|﹣9|中,负有理数有()个.A.1个 B.2 个 C.3个 D.4个答案:C解析:在+3、+(﹣2.1)、﹣、﹣π、0、﹣0.1010010001…、﹣|﹣9|中,负有理数有+(﹣2.1)、﹣、﹣|﹣9|,只有3个.故选C.点拨:根据有理数的定义,在给定的数中找出负有理数,查出其个数,此题得解.二、填空题2. 在,0,﹣30,,+20,π,﹣2.6这7个数中,整数有________________,负分数有________________.答案:0,﹣30,+20;,﹣2.6.解析:在,0,﹣30,,+20,π,﹣2.6这7个数中,整数有0,﹣30,+20,负分数有,﹣2.6.点拨:有理数分为整数和分数,据此填空.3. 将下列各数填在相应的集合里﹣3.8,﹣10,10π,﹣|﹣|,4,0,﹣(﹣)整数集合:____________________;分数集合:____________________;正数集合:____________________;有理数集合:________________________________.答案:见解析解析:整数集合:﹣10,4,0;分数集合,﹣|﹣|,﹣(﹣);正数集合:10π,4,﹣(﹣);有理数集合:﹣3.8,﹣10,﹣|﹣|,4,0,﹣(﹣); 点拨:可按照有理数的分类填写:有理数; 有理数. 第五环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.师生相互交流总结:1.通过拼图活动,感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.2.能判断一个数是否为有理数.布置作业:1.课本习题2.1 T22.边长分别为2、3的长方形,它的对角线长可能是整数吗?可能是分数吗?若边长分别为1.5、2呢?解:①设长、宽分别为3、2的长方形的对角线长为a ,得2223213a =+=,a不可能是整数,也不可能是分数;②边长分别为1.5、2时,根据勾股定理可知,对角线长为2.5,是分数,也是有理数.。

八年级数学上册第二章实数:立方根教案新版北师大版

八年级数学上册第二章实数:立方根教案新版北师大版

八年级数学上册教案新版北师大版:2.3立方根教学目标1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点) 教学过程一、情境导入填空并回答问题:(1)( )3=0.001;(2)( )3=0;(3)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质 【类型一】立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根. 【类型二】立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2求其算术平方根即可.解:∵x -2的平方根是±2,∴x -2=4.∴x =6.∵2x +y +7的立方根是3,∴2x +y +7=27,把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根. 【类型三】立方根的实际应用已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r.解析:将公式变形为r 3=3V 4π,从而求r. 解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取 3.14,∴r ≈33×113.044×3.14=327=3(cm).故这个小皮球的半径r 约为3cm. 方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算求下列各式的值.(1)-3343;(2)31027-5;(3)-3-8÷214+(-1)100.解:(1)-3343=-7;(2)31027-5=3-12527=-53;(3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73.方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a都只有一个立方根,记为“3a”,读作“三次根号a”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a的立方根的运算叫做开立方,其中a叫做被开方数.开立方与立方互为逆运算.教学反思本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识.。

北师大版初中数学八年级上册第二章教案

北师大版初中数学八年级上册第二章教案
55
c b
⑤ a=5,b=6, c2 =——,
11
⑦ a= ,b= ,c2 =——,
23
⑥ a=9,b=12, c2 =——, ⑧ a=0.6,b=0.8, c2 =——,
Ca
B
(2)分析上述 c2 的结果,我们知道,c 是整数的有———,c 是分数的有———
,c 既不是整数又不是分数的有———(填上序号)
个数的近似值。 随堂练习:P33 1 小结: 1)内容总结: ①算术平方根的定义、表示;
② a 的双重非负性。
2)方法归纳: 转化的数学方法:即将陌生的问题转化为熟悉的问题解决。 作业: P34 习题 2.3 试一试
平方根(2)
教学目标:1、了解平方根的概念,会用根号表示一个数的平方根。 2、会求一个正数的平方根。 3、了解平方根和算术平方根的性质。 4、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术 平方根和平方根。
C
6、式子 x2=a,当 a 是什么数时,x 一定不是有理数?
7、如图,Rt△ABC 的三边分别为 a、b、c。
(1)根据所给 a、b 的值,求出 c2 的值。
A
① a=1,b=2, c2 =——,
3
② a=1,b=
4
, c2 =——,
③ a=3,b=4, c2 =——,
11
④ a= ,b= , c2 =——,
若一个正方形的面积为 a ,则这个正方形的边长为

若一个正方体的体积是 a ,那么这个正方体的棱长为多少呢?
2、某化工厂使用半径为 1 米的一种球形储气罐储藏气体,现在要造一个新的球形储气
罐,如果它的体积是原来 8 倍,那么她的半径是原储气罐半径的多少倍?如果储气罐

2023八年级数学上册第二章实数本章归纳总结教案(新版)北师大版

2023八年级数学上册第二章实数本章归纳总结教案(新版)北师大版
-设计预习问题:围绕实数的定义与分类、运算性质等课题,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解实数的基本概念和性质。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
6.实数在实际问题中的应用:解决实际问题,如长度、面积、体积的计算等。
7.实数的推理与证明:利用实数的性质和运算规律进行推理和证明。
8.实数与几何:实数在几何中的运用,如坐标系、距离、角度等。
9.实数与概率:实数在概率论中的作用,包括概率的计算和分析。
10.实数的进一步研究:无理数的性质、实数的数轴表示等。
-提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
-自主学习法:引导学生自主思考,培养自主学习能力。
-信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
作用与目的:
-帮助学生提前了解本节课的主要内容,为课堂学习做好准备。
-培养学生的自主学习能力和独立思考能力。
然而,我也意识到,在教学过程中,我还有许多需要改进的地方。例如,在讲解实数与函数的部分,我发现部分学生对于函数的概念和图像的理解还有些模糊。这让我意识到,我需要在教学中更加注重学生的基础知识的巩固,而不能够一味地追求教学进度。
此外,我也需要更多地关注每一个学生的学习情况。在课堂上,我尽量让更多的学生参与到讨论中来,但我发现,还是有一些学生比较内向,他们不敢主动发言。这让我意识到,我需要在课堂上创造一个更加轻松自由的环境,让每一个学生都能够自由地表达自己的思考。

北师大版八年级上册第二章实数第七节二次根式第二课时二次根式及其性质教案

北师大版八年级上册第二章实数第七节二次根式第二课时二次根式及其性质教案

第二章实数第七节二次根式第二课时二次根式及其性质教案二次根式的乘除运算教案一、教学目标1. 理解并掌握二次根式的乘除运算规则,理解其算术运算性质。

2. 学会对二次根式进行乘除运算,并能够应用于实际问题中。

3. 培养学生的数学思维能力和解决实际问题的能力。

二、教学重点和难点1. 教学重点:二次根式的乘除运算规则及其算术运算性质。

2. 教学难点:二次根式乘除法的应用,以及运算符的使用。

三、教学过程1. 概念和定义:讲解二次根式的定义和相关概念,包括平方根、算术平方根等,使学生对二次根式有一个初步的认识。

2. 整数乘法口诀:回顾整数乘法口诀,引导学生总结规律,为后续学习打下基础。

3. 二次根式的乘除运算:通过具体的例子,讲解二次根式的乘除运算规则,并引导学生自己推导,加深理解。

4. 运算符的使用:强调运算符的优先级和运算顺序,通过练习题使学生掌握正确的运算方法。

四、教学方法和手段1. 利用多媒体讲解二次根式的乘除运算,形象生动,易于学生理解。

2. 通过小组讨论学习二次根式的乘除运算,互相交流,发现并解决问题。

3. 阅读相关题型进行练习,巩固所学知识,提高解题能力。

五、课堂练习、作业与评价方式1. 选择练习题进行课堂练习,检验学习效果,巩固所学知识。

2. 布置作业题,要求学生在规定时间内完成,培养学生独立思考和解决问题的能力。

3. 对学生的练习和作业进行评价,给予肯定和鼓励,同时指出不足之处,提出改进意见。

六、辅助教学资源与工具1. PPT讲解:通过PPT展示,帮助学生更好地理解二次根式的概念和性质。

2. 各类题型练习:提供多种类型的练习题,包括选择题、填空题和计算题等,以便学生进行巩固和拓展。

3. 参考书籍:推荐一些相关的数学参考书籍,供学生自行阅读和学习。

七、结论本节课旨在使学生掌握二次根式的乘除运算规则和方法,并通过实际问题的解决提高其数学应用能力。

通过课堂讲解、小组讨论和练习与作业等多种方式,学生对二次根式的乘除运算有了更深入的理解和掌握。

北师大版 初中数学八年级上册第二章《2.1认识无理数》教案

北师大版 初中数学八年级上册第二章《2.1认识无理数》教案

北师大版数学八年级上册《认识无理数》教案教学目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.探索无理数与有理数的区别,并能辨别出一个数是无理数还是有理数.2.通过学生活动准确认识到有理数都可以划成有限小数和无限循环小数,发展学生的抽象概括能力. 3.让学生理解估算的意义,掌握估算的方法,同时发展学生的估算能力,在数学活动发挥学生的积极作调学生参与数学问题的积极性,培养学生的合作精神. 教学重点与难点:重点:无理数概念的建立过程;了解无理数与有理数的区别,并能正确判断.难点:无理数概念的建立及估算;会判断一个数是无理数还是有理数,有理数与无理数的区别.教法与学法指导:本节课是在上一节课对无理数定性分析的基础上,借助于计算器,采用估算等方法,对无理数的产生进行定性的研究.在教学中要强调让学生探究概念形成的过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调小组之间的合作与交流,强化应用意识,培养学生多方面的能力.学生要借助工具多动手、动口、动脑,自主探究,提高学习的兴趣,进一步体会数学的地位和作用. 课前准备:多媒体课件、计算器. 教学过程:一、创设情境,导入新课教师:同学们还记得有理数是如何分类的吗?教师:很好!上节课我们了解到一些数,如a 2=2,b 2=5中的a ,b 既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来探究这些数的真面目.设计意图:通过这些问题让学生发现有理数不够用了,这些数既不是整数,也不是分数,激发学生的求知欲,去揭示它的真面目.实际效果:激发学生的好奇心和求知欲,吸引学生注意力,引出本节课题“数怎么又不够用了”. 二、合作探究,发现新知探究一:计算器探索面积为2的正方形的边长a .(课件展示) 教师:大家还记的我们上节课是怎样得到面积为2的正方形的吗?学生:有理数 整数(如-1,0,2,3,…):都可看成有限小数.分数 (如-13,25,911,… ):可不可能都化成有限小数或无限小数?学生:把两个边长为1的小正方形,通过剪切、拼图拼成一个大的正方形,它的面积就是2.教师:面积为2的正方形的边长a究竟是多少呢?你能不能估计大正方形的边长a在什么范围内?学生:(观察课件后回答)通过图形可以看出1<a<2.因为12=1,22=4,而a的平方等于2,所以1<a<2.教师:非常好!既然1<a<2,那么a是1点几呢?为什么?学生:(探究后回答)1.4<a<1.5.因为1.42=1.96,1.52=2.25,而a的平方等于2,所以1.4<a<1.5.教师:你能精确到它的百分位吗?千分位呢?万分位呢?下面给大家几分钟的时间,借助计算器进行探索.(学生小组合作,探索交流)教师:谁能说一下小组探索的结果?学生:a=1.4142.教师:恰好是1.4142吗?学生:约等于1.4142,在1.4142与1.4143之间.教师:还有几位小数?学生:无数位.它是一个无限小数.教师:对,大家可以看一下小明同学的探索过程.(展示课件)边长a面积S1<a<2 1<S<41.4< a<1.5 1.96<S<2.251.41< a<1.42 1.9881<S<2.01641.414< a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449教师:如果继续探索下去,你会有什么发现?学生:这个数是无限小数而且不循环.教师:对,事实上,它是一个无限不循环小数.探究二:计算器探索面积为5的正方形的边长b(课件展示)教师:模仿上一个探索过程,你能探索面积为5的正方形的边长b吗?如果能,把探究的结果填入下表.边长b面积S保留整数<b <<S <保留十分位< b <<S <学生:(小组合作,交流探索)把探究结果填入表格. 教师:谁能说一下你能得到什么结论?学生:b =2.23606…,它也是一个无限不循环小数.教师:同学们探索的非常好. 模仿刚才的探索方法,我们也可以探索体积为2的正方体的棱长.借助计算器,可以得到它的棱长为1.25992105…,它也是一个无限不循环小数.设计意图:借助计算器探索出a =1.41421356…,b =2.2360679…,是一个无限不循环小数,并从中感受无限逼近的数学思想.实际效果:通过探究让学生真切感受到无理数确实是无限不循环的,为无理数概念打下基础. 议一议(课件展示):把下列有理数表示成小数,你发现了什么? 3,45,59,845,211. 学生1:3=3.0,54=0.8,95=•5.0,•=71.0458,••=818.1112.学生2:我发现3,54是有限小数,112,458,95是无限循环小数.教师:好!上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像1.41421356…,2.2360679…等这些数的小数位数都是无限的,但是又不是循环的,是无限不循环小数.你能给这类数取个名字吗?生:无理数.教师:很好,哪位同学给无理数下个定义? 学生:无理数就是无限不循环小数.教师:好,圆周率π=3,14159265…也是一个无限不循环小数,目前π值已精确计算到了将近65亿位,但是仍然不是一个精确的数值.故π是无理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数都是无理数.教师:理解无理数的概念一定要抓住哪两方面? 学生:一是无限小数;二是不循环小数.教师:同学们一定要抓住这两点,只要有一点不符合,它就不是无理数.你能举出其他的无理数例子吗?保留百分位 < b < < S < 保留千分位 < b < < S < 保留万分位< b << S <学生:(学生踊跃的)1.2345678987…,2π等等. 教师:无理数多不多? 学生:多.教师:在我们生活中除了π以外,还有非常多的无理数.下面我们看例1,你能分清有理数和无理数吗? 设计意图:通过学生的活动与探究,得出无理数的概念.教学效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.三、例题示范,应用概念 (课件展示)例1 下列各数中,哪些是有理数?哪些是无理数?3.14,34-,••75.0,0.1010010001…(相邻两个1之间0的个数逐次加1),-π.学生:有理数有3.14,34-,••75.0;无理数有0.1010010001…(相邻两个1之间0的个数逐次加1), -π.教师:回答得很好,大家鼓励一下.只要你抓住了无理数的两个特征,你就能把它识别出来. 跟踪练习: 1.填空:0.351,π+1,.68.4,23-, 3.14159, -5.2323332…, -3π ,1.234567891011…(由相继的正整数组成).有理数有: ; 无理数有: . 2.判断下列说法是否正确:(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限小数. ( ) 教师强调:1.无理数是无限不循环小数,有理数是有限小数或无限循环小数. 2.任何一个有理数都可以化成分数形式,而无理数则不能.例2 (1)设面积为10的正方形的边长为x ,x 是有理数吗?说说你的理由. (2)估计x 的值(结果精确到0.1),并用计算器验证你的估计. (3)如果结果精确到百分位呢?解:(1)由题意得x2=10,因为32=9,42=16,而 32 <x2<42.故3<x<4,所以x不是整数,没有一个分数的平方等于10,所以x不是分数.因为x即不是整数也不是分数,故x不是有理数.(2) 估计x≈3.2.(3) x≈3.16.设计意图:通过例1及练习的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类,培养学生总结归纳的能力.而例2属于数的估算.,进一步发展学生的思维判断能力.实际效果:通过师生的共同探究,形成对中学阶段数的系统认识,提高了总结归纳能力.四、课堂总结,盘点收获教师:通过本节课的学习你有哪些收获呢?你还存在疑问吗?学生:我的主要收获是认识了无理数,并且能把无理数与有理数区别开.有理数包括整数和分数,能够化成有限小数或者是无限循环小数,而无理数是无限不循环小数.教师:还有要补充的吗?学生:我还学会了π是无理数以及利用估算的方法探索无理数的范围.教师:大家总结的很全面.以后我们还会学到很多关于无理数的知识,希望同学们继续努力.设计意图:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成良好的学习习惯,提高学生的归纳总结能力,进一步发展学生的思维判断能力。

秋期八年级数学上册 2 实数本章复习教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

秋期八年级数学上册 2 实数本章复习教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

实数本章复习【知识与技能】理解并掌握本章重要知识点,学生估算,能灵活运用运算法则、运算律或公式进行二次根式的运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及到的提高学生的估算能力和运用类比的方法进行二次根式的运算.【情感态度】在学习本章知识的过程中,让学生体会到事物之间的相互联系、相互作用.激发他们的探索热情和提高他们学习的积极性.【教学重点】回顾本章重要的概念,实数的运算.【教学难点】掌握估算的方法,熟练准确地进行二次根式的混合运算.一、知识框图,整体把握【教学说明】教师引导学生回顾本章所学的知识点,展现知识结构体系框图,有助于学生加深理解各知识之间的区别和相互联系.二、释疑解惑,加深理解 对于平方根的求法,一定要看清所给数的形式.如:求81的平方根不能认为是±81=9,其实就是求9的平方根,所以81的平方根应该是±3.2.实数的分类.①并不是所有的带根号的数都是无理数.如:4=2,它是有理数.②1033.=,它是分数,是有理数而不是无理数. 3.二次根式的运算. ①2+3≠5,因为它们本身就是最简二次根式,并且被开方数也不相同,不能直接把被开方数相加.②有一种形式的二次根式的除法运算不能运用分配律.如:这两种形式要认真理解才能算得准确.三、典例精析,复习新知例1(125的算术平方根是;(22x ,则x=;(3a 2,则a=;(42827()-【分析】(125?再求?25=5,55(2)2x 可得3是x 2的算术平方根,所以x 2=9,即可求出x=±3;(3)a 2,a ,即可求a=16;(4)先算出82,(-7)2的值,再求它们的算术平方根,即28()27-例2比较1338与18的大小. 【分析】本题利用估算法,其基本思路是设a 、b 为任意两个正实数,先估算出a 、b 两数或两数中某个数的取值X 围,再进行比较.【分析】先化简二次根式,要保证被开方数开出来结果的正确性,这与a+1a和a-1a的结果有直接的关系..【教学说明】教师和学生共同回顾本章知识点,针对平时容易忽略又会发生错误的地方,教师要给予强调说明.四、复习训练,巩固提高1.下列说法错误的是()【教学说明】这几个比较典型的题目是为了检测学生对本章重点知识的掌握情况,提高学生的解题能力和运算速度.五、师生互动,课堂小结本节复习课你能完整地回顾有关实数的知识点吗?你觉得哪些地方需要给大家提醒的,可以与大家一起分享.教师根据实际情况适当补充.1.布置作业:从复习题中选取.本节课从构建知识框架入手,以学生平时容易犯的错和中考热点为主线,提高学生解决问题的能力和解题速度.。

北师大版八年级上册数学教案:第二章实数回顾与思考

北师大版八年级上册数学教案:第二章实数回顾与思考
二、核心素养目标
1.培养学生运用实数进行问题分析、解决的能力,提高数学抽象和逻辑推理素养;
2.通过实数的四则运算,培养学生数学运算和数学建模的核心素养;
3.引导学生运用实数知识解释生活中的现象,增强数学在实际生活中的应用意识,提升数学直观想象和数据分析素养;
4.深化学生对实数概念的理解,提高数学思维品质,培养创新意识和团队合作精神。
解决方法:设计实际情境题目,让学生将实数知识应用于实际问题的解答,提高数学应用能力。
在教学过程中,教师应针对以上重点和难点内容,有针对性地进行讲解和强调,确保学生理解透彻。同时,结合实际例子和练习,帮助学生巩固所学知识,提高解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要使用实数的情况?”(如购物时计算总价、测量长度等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对实数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“实数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一·实数的组成
实数又可分为正实数,零,负实数
2.数轴:数轴的三要素——原点、正方向和单位长度。

数轴上的点与实数一一对应
二·相反数、绝对值、倒数
1. 相反数:只有符号不同的两个数称为相反数。

数a 的相反数是-a 。

正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。

2.绝对值:表示点到原点的距离,数a 的绝对值为
3.倒数:乘积为1的两个数互为倒数。

非0实数a 的倒数为a 1
.0没有倒数。

4.相反数是它本身的数只有0,;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.
三、平方根与立方根
1.平方根:如果一个数的平方等于a ,这个数叫做a 的平方根。

数a 的平方根记作 (a ≥0)
特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。

负数没有平方根。

正数a 的正的平方根也叫做a 的算术平方根,零的算术平方根还是零。

开平方:求一个数的平方根的运算,叫做开平方。

2.立方根:如果一个数的立方等于a ,则称这个数为a 立方根 。

数a 的立方根用 表示。

任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。

开立方:求一个数的立方根(三次方根)的运算,叫做开立方。

正确理解: 、 、 、 几个性质: 、 、 、
四·实数的运算
1. 有理数的加法法则:
a )同号两数相加,取相同的符号,并把绝对值相加;
b)异号两数相加。

绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。

2.有理数的减法法则:减去一个数等于加上这个数的相反数。

3.乘法法则:
a )两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.
b )几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正
c )几个数相乘,只要有一个因数为0,积就为0
4.有理数除法法则:
a )两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。

0除以任何非0实数都得0。

b )除以一个数等于乘以这个数的倒数。

5.有理数的乘方:
在a n 中,a 叫底数,n 叫指数
a )正数的任何次幂都是正数;负数的偶次幂是正数,奇次幂是负数;0的任何次幂都是0
b )a 0=1(a 不等于0)
6.有理数的运算顺序:
a )同级运算,先左后右
b )混合运算,先算括号内的,再乘方、开方,接着算乘除,最后是加减
五·实数大小比较的方法
1)数轴法:数轴上右边的点表示的数总大于左边的点表示的数
2)比差法:若a-b>0则a>b ;若a-b<0则a<b ;若a-b=0则a=b
3)比商法:A.两个数均为正数时,a/b>1则a>b ;a/b<1则a<b
B.两个数均为负数时,a/b>1则a<b ;a/b<1则a>b
C.一正一负时,正数>负数
4)平方法:a 、b 均为正数时,若a 2>b 2,则有a>b ;均为负数时相反
5)倒数法:两个实数,倒数大的反而小(不论正负) 二次根式知识点归纳
a ±a a -a ±3a | |a 2a a =()2a a =33a a =3a ()
33a a =()0≥a
定义:一般的,式子a ( a ≥ 0 ) 叫做二次根式。

其中
“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、a (a ≥0)是一个非负数。

即a ≥0
2、
()a a =2(a ≥0)
3、()()002<≥
⎩⎨⎧-==a a a a a a 4、 (a ≥0,b ≥0)
反过来: (
a ≥0,
b ≥0)
5、 (a ≥0,b >0) 反过来, (a ≥0,b >0)
一、选择题
1. 如在实数0,- , ,|-2|中,最小的是( ).
A .32
- B . C .0 D .|-2|
2. 四个数-5,-0.1,12
,3中为无理数的是( ). A. -5 B. -0.1 C. 12 D. 3
3. (-2)2的算术平方根是( ).
A . 2
B . ±2
C .-2
D . 2
4. 有意义,则x 的取值范围为( )
A.x≥
12 B. x≤12 C.x≥12- D.x≤12
- 5. 已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 ( ) (A)0>m (B)0<n
(C)0<mn (D)0>-n m
6. 下列运算正确的是( )
A .(1)1x x --+=+
B =
C .22=
D .222()a b a b -=-7.若0)3(12=++-+y y x ,则y x -的值为 ( )
ab b a =∙b a ab ∙=b a
b a
=
b a b a =
A .1
B .-1
C .7
D .-7
8.下面计算正确的是( )
A.3=
3=
2=-
9. 下列计算正确的是( )
(A ) ()088=-- (B )
(C )011--=() (D ) 10. 下列说法正确的是( ) A.0
)2(π是无理数 B.33是有理数 C.4是无理数 D.38-是有理数
11. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,O A 在数轴上,以原点O 为圆心,对角线OB 的长为半径
画弧,交正半轴于一点,则这个点表示的实数是( )
(A )2.5 (B )2 2 (C )
3 (D ) 5
12. 对于实数a 、b ,给出以下三个判断:( )
①若b a =,则 b a =. ②若b a <,则 b a <.
③若b a -=,则 22)(b a =-.其中正确的判断的个数是( )
A .3
B .2
C .1
D .0
13. 设a =19-1,a 在两个相邻整数之间,则这两个整数是( )
A .1和2
B .2和3
C .3和4
D .4和5
二、填空题 14. 已知a 、b 为两个连续的整数,且a b <,则a b += .
15.一个正数的平方根为m -2与63+m ,则=m ,这个正数是 .
16. 12 ② 5.0;
17.按下面程序计算:输入x=3,则输出的答案是___ .
18. 如图,是一个数值转换机.若输入数为3,则输出数是______.
19. 规定一种新的运算: ,则=⊗21____.
三、解答题
20、计算:(1) (2)
输入数 ( )2+1 输出数 减去5 b a b a 11+=⊗1221=⨯)()(--22-|-|=|-4|30)2(4)2011(23-÷+---21
5-
21. 计算:(1) (2) (3)
22. 计算:(1)|-1|-
128-(5-π)0 (2).
23.计算:(1)
21418122-+- (2) 2)352(-
(3)
(4)28
4)23()21(01--+-⨯-
24. 已知:3x 22x y --+-=,求:4y x )(+的值。

25.解方程 (1)27)1(32=-x ; (2)01258133=+x。

相关文档
最新文档