高中数学排列组合题型总结

合集下载

排列组合题型总结

排列组合题型总结

排列组合题型总结排列组合是高中数学中的一个重要知识点,也是各类数学竞赛常见的题型之一。

它在实际生活中有着广泛的应用,如排队、选材、抽奖等。

因此,对排列组合的掌握至关重要。

下面将对排列组合的概念、性质、计数原理以及常见题型进行总结。

一、排列与组合的概念1. 排列:对给定的一组元素,按照一定的顺序进行排列。

有放回的排列叫做重复排列,不放回的排列叫做不重复排列。

2. 组合:从给定的一组元素中,取出一部分元素进行组合,不考虑元素的顺序。

有放回的组合叫做重复组合,不放回的组合叫做不重复组合。

二、排列组合的性质1. 排列性质:(1) 重复排列:对于n个不同元素,重复排列数为P(m, n) =n^m。

(2) 不重复排列:对于n个不同元素取m个元素进行不重复排列数为A(m, n) = n! / (n-m)!2. 组合性质:(1) 重复组合:对于n个不同元素,从中取出m个元素进行重复组合,共有C(m+n-1, m)种组合方式。

(2) 不重复组合:对于n个不同元素取m个元素进行不重复组合,共有C(m, n)种组合方式。

三、排列组合的计数原理1. 乘法原理:当某件事情分为几个步骤进行,并且每个步骤的选择数目不受前一步骤选择的限制时,总的选择数目等于各个步骤选择数目的乘积。

2. 加法原理:当某件事情可以分为几种情况进行,并且这些情况没有重叠部分,总的选择数目等于各种情况选择数目的和。

3. 减法原理:当某件事情总的选择数目已知,但其中某些选择数目不符合要求时,可以采用总的选择数目减去不符合要求的选择数目得到符合要求的选择数目。

四、常见排列组合题型1. 对于排列问题,常见的题型有:(1) 从n个元素中取m个元素进行排列有多少种方法?(2) 字母排列问题,例如:用字母ABCDF构成几位无重复、有重复的排列?(3) 位置固定的排列问题,例如:某实验有4个步骤,进行3次,每个步骤有多少种选择方法?(4) 特殊位置的排列问题,例如:某分队有4名队员,第一、二名只能选A或B,第三名只能选C或D,第四名只能选E 或F,共有多少种分队方法?2. 对于组合问题,常见的题型有:(1) 从n个元素中取m个元素进行组合有多少种方法?(2) 元素重复的组合问题,例如:甲、乙、丙、丁四个人挑选队员,队员不多于2人,共有多少种选择方法?(3) 特定条件下的组合问题,例如:某公司有5个经理、7个主管、10个员工,要从中选取3个人组成考核小组,其中至少一人是经理,共有多少种选择方法?(4) 若干元素组成一个团队,其中必须包含A,B两人,并且团队至少需要5人,共有多少种选择方法?以上只是排列组合题型的几个常见例子,实际应用中还会出现更复杂的题型。

高中数学搞定排列组合方法,各种问题大全

高中数学搞定排列组合方法,各种问题大全

高考数学定排列组合方法 问题大全排队问题大全三男四女排队30问小结[ 典例 ]:有3名男生和4名女生,若分别满足下列条件, 则各有多少种不同的排法:1.全体排一排:504077=A 2、选5人排一排:==575557A A C 25203.甲站在正中间:6!=720 ____________ 4.甲只能站在正中间或两头: 5.甲既不在排头也不在排尾:6.甲、乙必须在两头: ______________ 7.甲、乙不站排头和排尾: ____________ 8.甲不在排头、乙不在排尾:9.甲在乙的右边: ________________ 10.甲、乙必须相邻: _____________ 11.甲、乙不能相邻:12.甲、乙、丙三人都相邻: 13.甲、乙、丙三人都不相邻:14.7人排成一排,其中甲、乙、丙三人中,有两人相邻,但这三人不同时相邻: 15.男女生各站在一起:16.男生必排在一起: __( 或女生必排在一起:______________ ) 17.男女各不相邻(即男女相间、4女互不相邻): 18.男生不排在一起:19.任何两男生彼此不相邻: 20.甲、乙两人之间须相隔1人: 21.甲、乙两人中间恰有3人:22.甲、乙、丙3人自左至右顺序不变(即男生顺序一定,只排女生): 23.从左到右,4名女生按甲、乙、丙、丁的顺序不变(即只排男生): 24.甲、乙两人相邻,但都不与丙相邻: 25.甲、乙相邻且丙不站排头和排尾: 26.排成前后两排,前3人后4人:27.前3后4人且甲、乙在前排,丙排后排:28.三名男生身高互不相同,且从左到右按从高到矮顺序排: 29.若两端都不能排女生:一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A = C 14A 34C 13练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学排列组合解题技巧

高中数学排列组合解题技巧

高中数学排列组合解题技巧在高中数学中,排列组合是一个重要的概念和考点。

它涉及到对一组对象进行有序或无序地选择和排列的问题,常常出现在数学竞赛和高考中。

掌握排列组合的解题技巧对于提高数学成绩至关重要。

本文将介绍一些常见的排列组合题型,并提供解题技巧和例题分析,帮助高中学生和家长更好地掌握这一知识点。

一、排列问题排列问题是指从给定的一组对象中,按照一定的顺序选择一部分或全部对象的问题。

常见的排列问题有全排列、循环排列和有条件的排列等。

1. 全排列全排列是指从n个不同的元素中,按照一定的顺序选取m个元素进行排列的问题。

全排列的计算公式为P(n, m) = n! / (n-m)!,其中n!表示n的阶乘。

例题1:从1、2、3、4中任选3个数字,共有多少种排列方式?解析:根据全排列的计算公式,P(4, 3) = 4! / (4-3)! = 4! / 1! = 4 × 3 × 2 = 24。

因此,共有24种排列方式。

2. 循环排列循环排列是指将n个不同的元素排成一个环状,不计顺序的排列问题。

循环排列的计算公式为C(n) = (n-1)!,其中n!表示n的阶乘。

例题2:将1、2、3、4排成一个环状,共有多少种循环排列方式?解析:根据循环排列的计算公式,C(4) = (4-1)! = 3! = 3 × 2 = 6。

因此,共有6种循环排列方式。

二、组合问题组合问题是指从给定的一组对象中,按照一定的顺序选择一部分对象的问题。

与排列不同的是,组合不考虑对象的顺序,只关注对象的选择。

常见的组合问题有选择问题和有条件的组合等。

1. 选择问题选择问题是指从n个不同的元素中,按照一定的顺序选取m个元素的问题。

选择问题的计算公式为C(n, m) = n! / (m! × (n-m)!)。

例题3:从1、2、3、4中任选3个数字,共有多少种选择方式?解析:根据选择问题的计算公式,C(4, 3) = 4! / (3! × (4-3)!) = 4! / (3! × 1!) = 4。

13种排列组合题型详解,助你拿下高考数学卷上17分,一分都不能丢

13种排列组合题型详解,助你拿下高考数学卷上17分,一分都不能丢

13种排列组合题型详解,助你拿下高考数学卷上17分,一分都不能丢高考数学中有一部分知识叫做排列组合概率及统计学,大概占17分左右,但是这部分知识又不是很难,所以这17分一分都不能丢!类型一、特殊元素和特殊位置优先策略位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素;若以位置分析为主,需先满足特殊位置的要求,再处理其它位置;若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

这种首先确定排列还是组合的问题,对于首位和末位无须考虑顺序,但是首位末位有优先需求,所以先要排首位和末位,末位必须是奇数,也就是从1,3,5这个里边去挑选一个即可,那首位还不能排0,在排除一个奇数,只剩下4个数可以选择,所以剩下的三位我们直接全排列就可以。

类型二、相邻/相间元素捆绑策略要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题,即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列。

审题时一定要注意关键字眼。

类型三、不相邻问题插空策略先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端。

所以这两个方法的关键字都是相邻,以元素相邻为附加条件的应把相邻元素视为一个整体,即采用“捆绑法”;以某些元素不能相邻为附加条件的,可采用“插空法”。

“插空”有同时“插空”和有逐一“插空”,并要注意条件的限定。

类型四、定序问题倍缩空位插入策略顺序固定问题用“除法”,对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。

当然还可以用倍缩法,还可转化为占位插空模型处理。

类型五、重排问题求幂策略分房问题又名:住店法,重排问题求幂策略,解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解。

高中数学排列组合题型总结

高中数学排列组合题型总结

排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。

一. 直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

高中数学排列组合问题的类型及解答

高中数学排列组合问题的类型及解答

高中数学排列组合问题的类型及解答一、相邻问题捆绑法例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种A. 720B. 360 C. 240D. 120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。

由分步计数原理可知,共有=240种不同排法,选C。

评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。

二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。

由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。

评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。

此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。

三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。

现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。

解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。

评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。

这类问题用缩小倍数的方法求解比较方便快捷。

四、标号排位问题分步法例4同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种 B. 9种C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。

高中排列组合基础题 (含答案)

高中排列组合基础题 (含答案)

排列、组合问题基本题型及解法同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法.一、相邻问题“捆绑法”将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法”该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端).例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?.分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2种方法.则共有5254A A =440种排法.三、定位问题“优先法”指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素.例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种.分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个排在余下的5个位置上,有55A 种方法.则共1545A A =480种排法.还可以优先排两端(位置优先). 四、同元问题“隔板法”例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ××××一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和.例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( )(A )210个 (B )300个 (C )464个 (D )600个分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、1333A A 个,合计300个,所以选B例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个?【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种,其中0居首位的有314544C C A 种,故符合条件的五位数共有325314555544C C A C C A =11040个.【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的.①不含0的:由三个奇数字和两个偶数字组成的五位数有325545C C A 个;②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法,再选三个奇数数与一个偶数数字全排放在其他数位上,共有31415444C C A A 种排法.综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +31415444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3的自然数?【解】设A ={满足题设条件,且百位数字是3的自然数},B ={满足题设条件,且比20000大的自然数},则原题即求()card U B A ,画韦恩图如图,阴影部分 即UBA ,从图中看出()()card card UBA B AB =-.又A BB ,由性质2,有()()()card card card .B A B B A B -=-()card B 即由数字1,2,3,4,5组成无重复数字,且比20000大的自然数的个数,易知()1444card A A B =.()card A B 即由数字1,2,3,4,5组成无重复数字、比20000大,且百位数字是3的自然数的个数,易知()1333card A A AB =,所以()14134433card A A A A UB A =-=78.即可组成78个符合已知条件的自然数.典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.例2 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

排列组合题型总结

排列组合题型总结

排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。

在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。

1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。

解决排列问题时,可以使用如下的排列公式。

公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。

2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。

解决组合问题时,可以使用如下的组合公式。

公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。

3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。

解决重复排列问题时,可以使用如下的重复排列公式。

公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。

4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。

解决重复组合问题时,可以使用如下的重复组合公式。

公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。

高中数学排列与组合部分重要知识点总结

高中数学排列与组合部分重要知识点总结

高中数学排列与组合部分重要知识点总结高中数学排列与组合部分重要知识点总结①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 kk!=(k+1)!-k!排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把详细问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,防止“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的`和:Cn0+Cn1+Cn2+ Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn 9+…=2n -1③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

高中数学排列组合20种解题方法

高中数学排列组合20种解题方法

高中数学排列组合20种解题方法# 方法一:特殊元素优先法。

题目1:用0,1,2,3,4这五个数字,可以组成多少个没有重复数字且个位数字是2的五位数?解析:因为个位数字已经确定是2,所以只需要考虑其他四个位置。

_万位不能为0_,那么万位有3种选择(1,3,4)。

千位有3种选择(剩下的3个数字),百位有2种选择,十位有1种选择。

根据排列组合的乘法原理,可组成的五位数有3×3×2×1 = 18个。

# 方法二:特殊位置优先法。

题目2:从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,其中偶数共有多少个?解析:先确定特殊位置个位,_个位必须是偶数_,从2,4,6,8中选一个放在个位,有C_4^1种方法。

然后从剩下的3个偶数中选1个,从5个奇数中选3个,有C_3^1×C_5^3种选法。

将选出的4个数字全排列放在其他四个位置,有A_4^4种排法。

所以偶数共有C_4^1×C_3^1×C_5^3×A_4^4 = 2880个。

# 方法三:捆绑法。

题目3:7人站成一排照相,甲、乙、丙三人必须相邻,有多少种不同的排法?解析:把甲、乙、丙三人看作一个整体(捆绑),与其余4人全排列,有A_5^5种排法,同时甲、乙、丙三人内部有A_3^3种排法。

根据乘法原理,共有A_5^5×A_3^3 = 720种不同的排法。

# 方法四:插空法。

题目4:4名男生和3名女生排成一排,若女生不能相邻,有多少种不同的排法?解析:先排4名男生,有A_4^4种排法,4名男生排好后产生5个空位,_将3名女生插入这5个空位中_,有A_5^3种排法。

所以共有A_4^4×A_5^3 = 1440种不同的排法。

# 方法五:定序问题缩倍法。

题目5:A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有多少种?解析:把A,B看作一个整体,与C,D,E全排列,有A_4^4种排法,因为B在A 的右边,所以A,B之间的顺序是固定的,_需要将全排列的结果除以A,B的排列数A_2^2_,即不同的排法有frac{A_4^4}{A_2^2}= 12种。

微考点7-3 排列组合11种常见题型总结分析(11大题型)-【高频考点解密】2024年高考数学二轮卷

微考点7-3 排列组合11种常见题型总结分析(11大题型)-【高频考点解密】2024年高考数学二轮卷

微考点7-3 排列组合11种常见题型总结分析(11大题型)题型一:特殊元素与特殊位置优待法解题思路:对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

【精选例题】【例1】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A)280种(B)240种(C)180种(D)96种【例2】7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有()种站排方式.A.672B.864C.936D.1056【例3】将甲、乙、丙、丁、戊五名志愿者分配到A、B、C三项不同的公益活动中,每人只参加一项活动,每项活动都需要有人参加,其中甲必须参加A活动,则不同的分配方法有种.(用数字作答)【题型专练】1.某校从8名教师中选派4名教师到4个边远地区支教(每地1人),要求甲、乙不同去,甲、丙只能同去或同不去,则不同的选派方案有______种.2.某医院安排王医生、李医生、赵医生、张医生、孙医生5人到三个社区开展主题为“提高免疫力,预防传染病”的知识宣传活动,要求每人只能参加一个社区的活动,每个社区必须有人宣传,若李医生、张医生不安排在同一个社区,孙医生不单独安排在一个社区,则不同的安排方法有种.3.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为()A.288B.336C.368D.4124.某旅行社有导游9人,其中3人只会英语,4人只会日语,2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有种.题型二:分类讨论思想解题思路:遇到情况比较复杂,我们可以通过分类讨论,分出几种情况,再用分类加法原理进行计算【精选例题】【例1】(2023全国卷乙卷真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有()A.120B.60C.30D.20【例2】(2023全国卷甲卷真题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).【例3】在8张奖券中有一、二、三等奖各1张,其余5张无奖,将这8张奖券分配给4个人,每人2张,不同的获奖情况数()A.60B.40C.30D.80【题型专练】1.甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有()A.20种B.16种C.12种D.8种2.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有___种.题型三:插空法(不相邻问题)解题思路:对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可【例1】黄金分割最早见于古希腊和古埃及.黄金分割又称黄金率、中外比,即把一条线段分成长短不等的a,b 两段,使得长线段a 与原线段a b +的比等于短线段b 与长线段a 的比,即()::a a b b a +=,其比值约为0.618339….小王酷爱数学,他选了其中的6,1,8,3,3,9这六个数字组成了手机开机密码,如果两个3不相邻,则小王可以设置的不同密码个数为( )A .180B .210C .240D .360【例2】把5件不同产品A ,B ,C ,D ,E 摆成一排,则( ) A .A 与B 相邻有48种摆法B .A 与C 相邻有48种摆法C .A ,B 相邻又A ,C 相邻,有12种摆法D .A 与B 相邻,且A 与C 不相邻有24种摆法【例3】有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A .12B .48C .72D .96【题型专练】1.有互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,则共有摆放方法( )A .120种B .32种C .24种D .16种2.某单位为葫芦岛市春节联欢会选送了甲、乙两个节目,节目组决定在原有节目单中6个节目的相对顺序保持不变的情况下填加甲乙两个节目,若甲、乙演出顺序不能相邻,那么不同的演出顺序的种数为 .(用数字作答)3.四名男生和两名女生排成一排,要求两位女生不相邻,则不同排法的种数是 .(结果用数字作答)题型四:捆绑法(相邻问题)解题思路:对于某几个元素相邻的排列问题,可先将相邻的元素捆绑,再将它与其它元素在一起排列,注意捆绑部分的内部顺序。

高中数学排列组合经典题型全面总结版

高中数学排列组合经典题型全面总结版

高中数学排列与组合(一)典型分类讲解一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

排列组合题型方法总结

排列组合题型方法总结

排列组合题型方法总结排列组合是高中数学中的一个重要概念,是组合数学的一部分。

在实际问题中,排列组合经常用于解决具体的计数问题。

在本文中,我将总结一些常见的排列组合题型及解题方法。

一、排列题型排列是指将一组元素按照一定的顺序进行排列,其中每个元素只能使用一次。

在排列题中常见的有以下几个题型:1. 线性排列:将不同的元素排成一列,求出排列的总数。

解题方法:根据要求确定对应的元素个数,并使用乘法法则计算排列的总数。

2. 圆排列:将不同的元素排成一个圆,求出排列的总数。

解题方法:将圆转成线性排列问题,然后使用相应的公式计算总数。

3. 重复排列:将一组相同的元素排列,求出排列的总数。

解题方法:根据相同元素的个数和元素总数使用组合计数的方法求解。

4. 位置固定:将一组元素排列,其中有一些元素的位置是固定的,求出排列的总数。

解题方法:先将固定位置的元素排列,再将剩余的元素排列,最后将两部分排列的总数相乘。

二、组合题型组合是指从一组元素中选取一部分元素进行组合,其中元素的顺序不重要。

在组合题中常见的有以下几个题型:1. 选取固定元素数量:从一组元素中选取固定数量的元素,求出组合的总数。

解题方法:根据选取数量使用排列计数的方法求解,然后除以固定元素的排列数。

2. 选取至少/至多元素数量:从一组元素中选取至少或至多数量的元素,求出组合的总数。

解题方法:分别计算满足要求的最少元素数量和最多元素数量的组合数,再将两者相加。

3. 选取按顺序:从一组元素中按照一定的顺序选取元素,求出组合的总数。

解题方法:根据顺序确定每个元素的选取范围,然后使用乘法法则计算总数。

4. 选取排除元素:从一组元素中选取一部分元素,其中不能包含某些特定的元素,求出组合的总数。

解题方法:先计算从总元素中选取的组合数,再计算不包含特定元素的组合数,最后将两者相减。

三、应用题在实际问题中,排列组合常常用于解决具体的计数问题。

下面列举几个常见的排列组合应用题:1. 手环问题:将不同颜色的手环依次戴在手上,求出不同戴法的总数。

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案排列组合问题经典题型解析排列组合问题是高中数学中常见且重要的数学问题类型之一。

本文将从基本概念入手,逐步解析几个经典的排列组合问题,并附带解答。

# 1. 排列问题排列是指从给定的一组对象中选出若干个进行有序的排列。

下面以“abcd”为例,演示几个经典的排列问题。

## 1.1 无重复元素的排列问题描述:从元素集合{a, b, c, d}中,选取3个元素进行排列。

解答思路:首先来分析问题中的条件和要求。

问题中给出了四个元素{a, b, c, d},要求选取其中的三个元素进行排列,即考虑顺序。

根据排列的定义,我们知道从n个元素中选取k个元素进行排列,共有A(n, k)种情况。

其中,A(n, k)表示从n个元素中选取k个元素的排列数,计算公式为:A(n, k) = n! / (n-k)!对于本问题,选取3个元素进行排列,即A(4, 3),计算结果为:A(4, 3) = 4! / (4-3)! = 4! = 4 * 3 * 2 * 1 = 24。

因此,从元素集合{a, b, c, d}中选取3个元素进行排列,共有24种情况。

## 1.2 有重复元素的排列问题描述:从元素集合{a, b, b, c}中,选取3个元素进行排列。

解答思路:与上一个问题类似,只是在元素集合中存在重复元素。

排列问题的解法是一样的,只是在计算结果时需要考虑重复元素。

对于本问题,选取3个元素进行排列,即A(4, 3),计算结果为:A(4, 3) = 4! / 2! = 4 * 3 * 2 * 1 / 2 * 1 = 12。

因此,从元素集合{a, b, b, c}中选取3个元素进行排列,共有12种情况。

# 2. 组合问题组合是指从给定的一组对象中选取若干个进行无序的组合。

下面以“abcd”为例,演示几个经典的组合问题。

## 2.1 无重复元素的组合问题描述:从元素集合{a, b, c, d}中,选取3个元素进行组合。

上海市高中数学—排列组合题型方法归纳

上海市高中数学—排列组合题型方法归纳

题型一:排列数与组合数的推导、化简和计算例1.已知n ,m 为正整数,且n m ≥,则在下列各式中错误的是(排列组合题型方法归纳)A.36A 120=;B.77712127A C A =⋅;C.111C C C m m m n n n ++++=;D.C C m n mn n-=例2.已知n ,m 为正整数,且n m ≥,则在下列各式中,正确的个数是()①36A 120=;②77712127A C A =⋅;③111C C C m m m n n n ++++=;④C C m n m n n-=A.1B.2C.3D.4例3.若332A 10A n n =,则n =()A.7B.8C.9D.10例4.已知2121313C C x x -+=,则x 的值为()A.3B.3或4C.4D.4或5例5.(多选题)已知23301A A 2!4m+=-,则m 的可能取值是()A.0B.1C.2D.3例6.(多选题)下列等式正确的是()A.mn m nnC C-=B.!m m nnA C n =C.22(2)(1)m m n n n n A A ++++=D.111r r rn n n C C C ---=+例7.(多选题)下列等式中,正确的是()A.11m m m n n n A mA A -++=B.11r r n n rC nC --=C.111111m m m m n n n n C C C C +--+--=++D.11mm n nm C C n m++=-例8.解下列不等式或方程(1)288A 6A x x -<(2)567117C C 10C m m m -=例9.(1)计算:()2973100101101C C A +÷;(2)计算:3333410C C C +++ ;(3)解方程:755A A 89A n nn-=.例10.利用组合数公式证明111m m m nn n C C C ++++=.题型二:直接法例11.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54B.72C.96D.120例12.某校开展研学活动时进行劳动技能比赛,通过初选,选出,,,,,A B C D E F 共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),A 和B 去询问成绩,回答者对A 说“很遗㙳,你和B 都末拿到冠军;对B 说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种B.600种C.480种D.384种例13.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种B.6种C.4种D.12种例14.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为().A.10B.30C.40D.46题型三:间接法例15.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,则不同的站法有().A.1860种B.3696种C.3600种D.3648种例16.某学校计划从包含甲、乙、丙三位教师在内的10人中选出5人组队去西部支教,若甲、乙、丙三位教师至少一人被选中,则组队支教的不同方式共有()A.21种B.231种C.238种D.252种例17.中园古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每周安排一次讲座,共讲六次.讲座次序要求“射”不在第一次,“数”和“乐”两次不相邻,则“六艺”讲座不同的次序共有()A.408种B.240种C.1092种.D.120种例18.红五月,某校团委决定举办庆祝中国共产党成立100周年“百年荣光,伟大梦想”联欢会,经过初赛,共有6个节目进入决赛,其中2个歌舞类节目,2个小品类节目,1个朗诵类节目,1个戏曲类节目.演出时要求同类节目不能相邻,则演出顺序的排法总数是()A.96B.326C.336D.360题型四:捆绑法例19.甲、乙等5人去北京天安门游玩,在天安门广场排成一排拍照留念,则甲和乙相邻且都不站在两端的排法有()A.12种B.24种C.48种D.120种例20.某一天的课程表要排入语文、数学、英语、物理、化学、生物六门课,如果数学只能排在第一节或者最后一节,物理和化学必须排在相邻的两节,则共有()种不同的排法A.24B.144C.48D.96例21.甲、乙、丙、丁、戊5人排成一排,则甲、乙相邻的排法有()A.72种B.60种C.48种D.36种例22.3位教师和4名学生站一排,3位教师必须站在一起,共有()种站法.A.144B.360C.480D.720例23.某晚会上需要安排4个歌舞类节目和2个语言类节目的演出顺序,要求语言类节目之间有且仅有2个歌舞类节目,则不同的演出方案的种数为().A.72B.96C.120D.144题型五:插空法例24.2022年2月4日,中国北京第24届奥林匹克冬季运动会开幕式以二十四节气的方式开始倒计时创意新颖,惊艳了全球观众.衡阳市某中学为了弘扬我国二十四节气文化,特制作出“立春”、“惊蛰”、“雨水”、“春分”、“清明”、“谷雨”六张知识展板分别放置在六个并排的文化橱窗里,要求“立春”和“春分”两块展板相邻,且“清明”与“惊蛰”两块展板不相邻,则不同的放置方式有多少种?()A.24B.48C.144D.244例25.高中数学新教材有必修一和必修二,选择性必修有一、二、三共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是()A.72B.144C.48D.36例26.五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且商、角不相邻,徽位于羽的左侧,则可排成的不同音序有()A.18种B.24种C.36种D.72种例27.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有()种A.15B.20C.10D.9例28.某等候区有7个座位(连成一排),甲、乙、丙三人随机就坐,因受新冠疫情影响,要求他们每两人之间至少有一个空位,则不同的坐法有()A.4种B.10种C.20种D.60种例29.为迎接新年到来,某中学2022作“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行.校文娱组委员会要在原定排好的8个学生节目中增加2个教师节目,若保持原来的8个节目的出场顺序不变,则不同排法的种数为()A.36B.45C.72D.90)共有()题型六:定序问题(先选后排)例30.满足x i ∈N *(i =1,2,3,4),且x 1<x 2<x 3<x 4<10的有序数组(x 1,x 2,x 3,x 4个.A.C 94B.P 94C.C 14D.P 14例31.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边,(A ,B 可以不相邻)那么)不同的排法有(A .120种B.90种C.60种D.24种例36.如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是()例33.某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有()A.120种B.80种C.20种D.48种例34.某次数学获奖的6名高矮互不相同的同学站成两排照相,后排每个人都高于站在他前面的同学,则共有多少种站法()A.36B.90C.360D.720例35.花灯,又名“彩灯”“灯笼”,是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的8盏不同的花灯需要取下,每次取1盏,则不同取法总数为()例32.DNA 是形成所有生物体中染色体的一种双股螺旋线分子,由称为碱基的化学成分组成它看上去就像是两条长长的平行螺旋状链,两条链上的碱基之间由氢键相结合.在DNA 中只有4种类型的碱基,分别用A 、C 、G 和T 表示,DNA 中的碱基能够以任意顺序出现两条链之间能形成氢键的碱基或者是A -T ,或者是C -G ,不会出现其他的联系因此,如果我们知道了两条链中一条链上碱基的顺序,那么我们也就知道了另一条链上碱基的顺序.如图所示为一条DNA 单链模型示意图,现在某同学想在碱基T 和碱基C 之间插入3个碱基A ,2个碱基C 和1个碱基T ,则不同的插入方式的种数为()A.20B.40C.60D.120A.2520B.5040C.7560D.10080A.6B.10C.12D.24题型七:列举法例39.设x 1,x 2,x 3∈{-1,0,1,2},那么满足0≤x 13+x 22+x 32≤8的所有有序数组(x 1,x 2,x 3)的)组数为(A .45B.46C.47D.48例40.从集合{1,2,3,4, ,15}中任意选择三个不同的数,使得这三个数组成等差数列,这样)个的等差数列有(A .98B.56C.84D.49例41.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不.能.连.续.固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.例37.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有()A.6种B.8种C.10种D.16种例38.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A.4种B.5种C.6种D.12种题型八:多面手问题例42.我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有种不同的选法.A.675B.575C.512D.545)例43.某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有(种不同的选法A.225B.185C.145D.110例44.“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有()A.26种B.30种C.37种D.42种例45.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有()A.56种C.74种B.68种D.92种题型九:错位排列例46.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有()A.10种B.20种C.30种D.60种例47.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数)B.为(A.90135C.270D.360例48.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片)的方法数有(A.20B.90C.15D.45题型十:涂色问题例50.随机给如图所示的四块三角形区域涂色,有红、黄、蓝、绿、黑这5种颜色供选择,则“任意两个有公共边的三角形所涂颜色不同”的概率为()64A.12524B.12564C.625D.例49.某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案有()种A.36B.48C.54D.72256625例52.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色例51.无盖正方体容器的五个面上分别标有A 、B 、C 、D 、E 五个字母,现需要给容器的5 个表面染色,要求有公共棱的面不能染同一种颜色,现有5种不同的颜色可供选择,则不同的染色方案有()种.A.420B.340C.300D.120可供使用,则不同的染色方法总数为()A.180B.240C.420D.480例53.在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色,现有5种不同的颜色可供选择,则不同涂色方案有()A.720种B.2160种C.4100种D.4400种例54.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种A.14400B.28800C.38880D.43200的9个小正方形(如图1),使得例55.用红、黄、蓝三种颜色之一去涂图中标号为1,2,,9任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有123456789A.108种B.60种C.48种D.36种1、C ;2、C ;3、B ;4、B ;5、CD ;6、ACD ;7、ABD 参考答案;8、(1)由题意得:08028x x ≤≤⎧⎨≤-≤⎩,解得:28x ≤≤,288A 6Ax x -<,即()()8!8!68!82!x x <⨯--+,解得:712x <<,结合28x ≤≤,可得:8x =(2)567117C C 10C m m m -=,则05m ≤≤,即()()()!5!!6!!7!75!6!107!m m m m m m ----=⨯,解得:21m =(舍去)或2故方程的解为:m =29、(1)原式()32333331011001001011011011013333A 11C CACAA A A 6=+÷=÷=÷==;(2)原式43334334334451055106610C C C C C C C C C C =+++⋅⋅⋅+=++⋅⋅⋅+=++⋅⋅⋅+434101011C C C 330=⋅⋅⋅=+==;(3)原方程可化为()()()()()()()()()12612489124n n n n n n n n n n n n --⋅⋅⋅----⋅⋅⋅-=--⋅⋅⋅-,整理得()()56189n n ---=,即2112989n n -+=,化简得211600n n --=,解得15n =或4n =-(舍去),所以原方程的解是15n =.10、证明:因为()11(1)!1!()!m n n C m n m +++=+-,()()()1!11!!!(1)!(1)!!()!(1)!()!(1)!()!m mn n n n m m n n n C C n m m m n m m n m m n m +⎡⎤-+++⎣⎦++==--+-+--=+,所以111m m m nn n C C C ++++=.11、A ;12、D ;13、B ;14、C ;15、D ;16、B ;17、A ;18、C ;19、B ;20、D ;21、C ;22、D ;23、D ;24、根据题意先将“立春”和“春分”两块展板捆绑在一起,与“雨水”、“谷雨”排列,有4个空,然后“清明”与“惊蛰”去插空,所以不同的放置方式有232234A A A 144=种.故选:C25、先将选择性必修有一、二、三这三本书排成一排,有33A =6种方法,再将必修一、必修二这两本书插入两个空隙中,有24A =12种方法,所以把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是:612=72⨯.故选:A.26、先将宫、徽、羽三个音节进行排序,且徽位于羽的左侧,有33A 32=,再将商、角插入4个空中,共有243A 36=种.故选:C .27、根据题意,因为关掉3盏路灯不能是两端2盏,也不能相邻,则需要用插空法分析:先将亮的6盏灯排成一列,除去2端,有5个符合条件的空位,在5个空位中,任选3个,安排熄灭的灯,有35C 10=种情况,即有10种关灯方法.故选:C(1)在6个小球中任选2个放入相同编号的盒子里,有C 62=15种选法,假设选出的2个小球的编号为5、628、甲、乙、丙每两人之间至少有一个空位,即甲、乙、丙互不相邻,相当于有四个空位放置成一排,形成5个空档,甲、乙、丙三人各带一个座位插入,所以有A 5360(种)不同的坐法,故选:D .采用插空法即可:29、第1步:原来排好的8个学生节目产生9个空隙,插入1个教师节目有9种排法;第2步:排好的8个学生节目和1个教师节目产生10个空隙,插入1个教师节目共有10种排法,故共有9×10=90种排法.故选:D.题型六30、A ;31、C ;32、C ;33、C ;34、B ;35、A ;36、B ;题型七37、C ;38、C ;39、C ;40、A ;41、60;题型八42、A ;43、B ;44、C ;45、D ;题型九46、先选择两个编号与座位号一致的人,方法数有C 52=10,另外三个人编号与座位号不一致,方法数有2,所以不同的坐法有10⨯2=20种.故选:B47、根据题意,分以下两步进行:;(2)剩下的4个小球要放入与其编号不一致的盒子里,对于编号为1的小球,有3个盒子可以放入,假设放入的是2号盒子.则对于编号为2的小球,有3个盒子可以放入,对于编号为3、4的小球,只有1种放法.综上所述,由分步乘法计数原理可知,不同的放法种数为15⨯3⨯3=135种.故选:B.48、根据题意,分2步分析:①先从5个人里选1人,恰好摸到自己写的卡片,有C51种选法,②对于剩余的4人,因为每个人都不能拿自己写的卡片,因此第一个人有3种拿法,被拿了自己卡片的那个人也有3种拿法,剩下的2人拿法唯一,所以不同的拿卡片的方法有C51⋅C31⋅C31=45种.故选:D.题型十49、如图:将五个区域分别记为①,②,③,④,⑤,则满足条件的涂色方案可分为两类,第一类区域②,④涂色相同的涂色方案,第二类区域②,④涂色不相同的涂色方案,其中区域②,④涂色相同的涂色方案可分为5步完成,第一步涂区域①,有4种方法,第二步涂区域②,有3种方法,第三步涂区域③,有2种方法,第四步涂区域④,有1种方法,第五步涂区域⑤,有2种方法,由分步乘法计数原理可得区域②,④涂色相同的涂色方案有4⨯3⨯2⨯1⨯2种方案,即48种方案;区域②,④涂色不相同的涂色方案可分为5步完成,第一步涂区域①,有4种方法,第二步涂区域②,有3种方法,第三步涂区域③,有2种方法,第四步涂区域④,有1种方法,第五步涂区域⑤,有1种方法,由分步乘法计数原理可得区域②,④涂色不相同的涂色方案有4⨯3⨯2⨯1⨯1种方案,即24种方案;所以符合条件的涂色方案共有72种,故选:D.50、随机给如图所示的四块三角形区域涂色,有红,黄,蓝,绿,黑这5种颜色供选择,每个三角形均有5种涂法,故基本事件总数n =54,有公共边的三角形为不同色,先考虑中间一块涂色有5种方法,其他的三个三角形在剩下的4中颜色中任意涂色均可有43种涂法,这一共有5⨯43种涂法,3434645453125⨯==5.∴所求概率为P =故选:A .51、如图,正方体的左侧面为A ,右侧面为C ,前侧面为D ,后侧面为B ,底面为E .5个面如果用完五种颜色,则不同的染法为A 55=120.5个面如果有四种颜色,则必有A 、C 同色或B 、D 同色,故不同的染法种数为420,故选:3=605A 则不同的染法为C 5个面如果有三种颜色,则必有A 、C 同色且B 、D 4=2402A 4C 则不同的染法为C 514.同色,33.A.52、分两步,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用乘法原理可求解,由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5⨯4⨯3=60种染色方法;当S,A,B染好时,不妨设所染颜色依次为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法,即当S,A,B染好时,C,D还有7种染法.故不同的染色方法有60⨯7=420种.故选:C53、考虑A、C、E三个区域用同一种颜色,共有方法数为5⨯43=320种;考虑A、C、E三个区域用2种颜色,共有方法数为(5⨯4⨯3)⨯4⨯3⨯3=2160种;考虑A、C、E三个区域用3种颜色,共有方法数为A53⨯33=1620种.所以共有方法数为320+2160+1620=4100种.故选:C.54、从P点出发的4条侧棱一定要用4种不同的颜色,有A64=360种不同的方案,接下来底面的染色根据是否使用剩下的2种颜色分类计数.不使用新的颜色,有2种颜色分类方案;使用1种新的颜色,分为2类;第一类,染一条边,有2•4•4=32种方案;第二类,染两条对边,有2•2•4=16种方案.使用2种新的颜色,分为4类;第一类,染两条邻边,有4•2•3=24种方案;第二类,染两条对边,有2•2•4=16种方案;第三类,染三条边,有4•2•2=16种方案;第四类,染四条边,有2种方案.因此不同的染色方案总数为360⨯[2+(32+16)+(24+16+16+2)]=38880,选C.55、首先1、5、9颜色确定,有三种可能,于是2、6就只有两种可能.如果2、6颜色相同的两种情况下,3就有4种可能.若2、6颜色不同,则只有一种可能,加之2、6排列不同,2种.于是右上角三个数有6种排法.同理左下角三个数有6种排法.有3⨯6⨯6=108种可能.。

排列组合知识点总结及题型归纳

排列组合知识点总结及题型归纳

排列组合知识点总结及题型归纳嘿!今天咱们来好好聊聊排列组合这个让人又爱又恨的知识点呀!首先呢,咱们得搞清楚啥是排列,啥是组合。

哎呀呀,简单来说,排列就是从一堆东西里选出来,然后再排个顺序;组合呢,只要选出来就行,不管顺序啦!一、排列的知识点1. 排列的定义:从n 个不同元素中取出m(m≤n)个元素的排列数,记为A(n,m) 。

哇,这个公式可重要啦,A(n,m) = n! / (n - m)! ,记住没?2. 排列数的计算:咱们来算个例子,比如说从5 个不同的元素里选3 个进行排列,那就是A(5,3) = 5! / (5 - 3)! = 60 呀!二、组合的知识点1. 组合的定义:从n 个不同元素中取出m(m≤n)个元素的组合数,记为C(n,m) 。

公式是C(n,m) = n! / [m!(n - m)!] 。

2. 组合数的计算:就像从6 个不同元素里选4 个的组合数,C(6,4) = 6! / [4!(6 - 4)!] = 15 呢!三、常见的排列组合题型1. 排队问题:比如说,几个人排队,有多少种排法?这就得考虑有没有特殊位置或者特殊的人啦!2. 分组问题:把一些东西分成不同的组,要注意平均分和不平均分的情况哟!3. 分配问题:把人或者物品分配到不同的地方,这里面可藏着不少小陷阱呢!四、解题技巧1. 优先考虑特殊元素或特殊位置:哎呀呀,这可是解题的关键呀!2. 捆绑法:有些元素必须在一起,那就把它们捆起来当成一个整体来处理。

3. 插空法:有些元素不能相邻,那就先排好其他的,再把不能相邻的插进去。

总之呢,排列组合虽然有点复杂,但是只要咱们掌握了这些知识点和题型,多做几道题练习练习,就一定能搞定它!哇,加油呀!。

高考数学中的常见排列组合

高考数学中的常见排列组合

高考数学中的常见排列组合在高中数学中,排列组合是一个重要的概念和方法,也是高考中常见的题型之一。

掌握排列组合的基本原理和解题方法,对于学生们提高数学成绩,顺利应对高考至关重要。

本文将介绍高考数学中常见的排列组合知识点及其解题技巧。

一、排列排列是指从给定的一组数或对象中按照一定的顺序取出一部分或全部进行排列。

常见的排列问题有以下几种情况:1. 直线排列:假设有n个对象,从这n个对象中按一定顺序排列取出k个,就构成了从n个对象中取出k个对象的直线排列。

直线排列的公式为:A(n, k) = n * (n-1) * (n-2) * ... * (n-k+1),其中n ≥ k。

2. 圆排列:假设有n个对象,从这n个对象中按一定顺序排列取出k个,构成了从n个对象中取出k个对象的圆排列。

圆排列的公式为:P(n, k) = (n-k+1) * (n-k+2) * ... * n * (n-1) * (n-2) * ... * 2 * 1,其中n ≥ k。

3. 重复排列:重复排列是指从给定的一组数或对象中,按照一定的顺序取出一部分或全部进行排列,允许重复。

重复排列的公式为:A'(n, k) = n^k,其中n ≥ k。

排列问题在高考中常常涉及选排队、座位、字母、数字等情况,解题时需要根据具体题目中的条件和要求来确定应用哪种排列公式,并注意计算时的条件约束。

二、组合组合是指从给定的一组数或对象中,按照一定的顺序取出一部分或全部进行组合。

与排列不同,组合中的元素的排列顺序不重要。

常见的组合问题有以下几种情况:1. C(n, k)表示从n个对象中选择k个不同的对象组成一个集合,其中n ≥ k。

定义组合公式为:C(n, k) = A(n, k) / k! = n! / [(n-k)! * k!]。

2. n个相异对象的m个同类分成若干组,每组可以有0个或者多个,此种情况下共有C(m-1, n)种不同的组合。

组合问题在高考中常常涉及选人、选课、摆放等情况,解题时需要根据具体题目中的条件和要求来确定应用哪种组合公式,并注意计算时的条件约束。

2024年高考数学专项复习排列组合12种题型归纳(解析版)

2024年高考数学专项复习排列组合12种题型归纳(解析版)

排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n 个不同元素中取出m (m ≤n )个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数.用符号“A m n ”表示A m n =n (n -1)(n -2)…(n -m +1)=n !(n -m )!(n ,m ∈N *,且m ≤n )(1)A n n =n !;(2)0!=1C m n =A m nm !组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号“C m n ”表示C m n =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(n ,m ∈N *,且m ≤n )(1)C n n =C 0n =1;(2)C m n =C n -m n ;(3)C m n +1=C mn +C m -1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:2024年高考数学专项复习排列组合12种题型归纳(解析版)【变式演练】1.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.722.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.144B.120C.72D.483.2021年4月15日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有()A.28种B.32种C.36种D.44种【题型二】人坐座位模型2:染色(平面)【典例分析】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则A、C区域颜色不相同的概率是A.1/7 b.2/7 c.3/7 D.4/7【变式演练】1.正方体六个面上分别标有A、B、C、D、E、F六个字母,现用5种不同的颜色给此正方体六个面染色,要求有公共棱的面不能染同一种颜色,则不同的染色方案有()种.A.420B.600C.720D.7802.如图,某伞厂生产的太阳伞的伞篷是由太阳光的七种颜色组成,七种颜色分别涂在伞篷的八个区域内,且恰有一种颜色涂在相对区域内,则不同颜色图案的此类太阳伞最多有().A .40320种B .5040种C .20160种D .2520种3.如图,用四种不同的颜色给图中的A ,B ,C ,D ,E ,F ,G 七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A .192B .336C .600D .以上答案均不对【题型三】人坐座位模型3:染色(空间):【典例分析】如图所示的几何体由三棱锥P ABC -与三棱柱111ABC A B C -组合而成,现用3种不同颜色对这个几何体的表面涂色(底面111A B C 不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A .6种B .9种C .12种D .36种【变式演练】1.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是()A.420B.210C.70D.352.在如图所示的十一面体ABCDEFGHI中,用3种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.3.用五种不同颜色给三棱台ABC DEF的六个顶点染色,要求每个点染一种颜色,且每条棱的两个端点染不同颜色.则不同的染色方法有___________种.【题型四】书架插书模型【典例分析】有12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.168B.260C.840D.560【变式演练】A aB bC cD d1.从A,B,C,D,a,b,c,d中任选5个字母排成一排,要求按字母先后顺序排列(即按(),(),(),()先后顺序,但大小写可以交换位置,如AaBc或aABc都可以),这样的情况有__________种.(用数字作答)2..在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法3.书架上有排好顺序的6本书,如果保持这6本书的相对顺序不变,再放上3本书,则不同的放法共有().A.210种B.252种C.504种D.505种【题型五】球放盒子模型1:球不同,盒子也不同【典例分析】已知有5个不同的小球,现将这5个球全部放入到标有编号1、2、3、4、5的五个盒子中,若装有小球的盒子的编号之和恰为11,则不同的放球方法种数为()A.150B.240C.390D.1440【变式演练】1.将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有()A.30种B.90种C.180种D.270种2.将编号分别为1,2,3,4,5的5个小球分别放入3个不同的盒子中,每个盒子都不空,则每个盒子中所放小球的编号奇偶性均不相同的概率为A.17B.16C.625D.7243.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法种数为()A.15B.30C.20D.42【题型六】球放盒子模型2:球相同,盒子不同【典例分析】把1995个不加区别的小球分别放在10个不同的盒子里,使得第i 个盒子中至少有i 个球(1,2,...,10i ),则不同放法的总数是A .101940C B .91940C C .101949C D .91949C 【变式演练】1.将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为()A .22B .25C .20D .482.把20个相同的小球装入编号分别为①②③④的4个盒子里,要求①②号盒每盒至少3个球,③④号盒每盒至少4个球,共有种方法.A .39C B .319C C .3494C AD .143205C C 3.将7个相同的小球放入A ,B ,C 三个盒子,每个盒子至少放一球,共有()种不同的放法.A .60种B .36种C .30种D .15种【题型七】相同元素排列模型1:数字化法【典例分析】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓才加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9【变式演练】1.一只小蜜蜂位于数轴上的原点处,小蜜蜂每一次具有只向左或只向右飞行一个单位或者两个单位距离的能力,且每次飞行至少一个单位.若小蜜蜂经过5次飞行后,停在数轴上实数3位于的点处,则小蜜蜂不同的飞行方式有多少种?A .5B .25C .55D .752.跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为A .8种B .13种C .21种D .34种3.如图所示,甲、乙两人同时出发,甲从点A 到B ,乙从点C 到D ,且每人每次都只能向上或向右走一格.则甲、乙的行走路线没有公共点的概率为().A .37B .57C .514D .1321【题型八】相同元素排列模型2:空车位停车等【典例分析】1.某单位有8个连在一起的车位,现有4辆不同型号的车需要停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为()A.240B.360C.480D.7202.马路上有编号为1,2,3,4,5,6,7,8,9的9盏路灯,为节约用电,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,满足条件的关灯办法有种【变式演练】1.某公共汽车站有6个候车位排成一排,甲、乙、丙三个乘客在该汽车站等候228路公交车的到来,由于市内堵车,228路公交车一直没到站,三人决定在座位上候车,且每人只能坐一个位置,则恰好有2个连续空座位的候车方式的种数是A.48B.54C.72D.842.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________种.3.地面上有并排的七个汽车位,现有红、白、黄、黑四辆不同的汽车同时倒车入库.当停车完毕后,恰有两个连续的空车位,且红、白两车互不相邻的情况有________种.【题型九】相同元素排列模型3:上楼梯等【典例分析】欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有A.34种B.55种C.89种D.144种【变式演练】1.斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、…..,在数学上,斐波那契数列以如下被递推的方法定义:()11f =,()21f =,()()()()122,f n f n f n n n N *=-+-≥∈.这种递推方法适合研究生活中很多问题.比如:一六八中学食堂一楼到二楼有15个台阶,某同学一步可以跨一个或者两个台阶,则他到二楼就餐有()种上楼方法.A .377B .610C .987D .15972.从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步走完,则从一楼到二楼共有走法.A .12B .8C .70D .663.某人从上一层到二层需跨10级台阶.他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步.从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶.则他从一层到二层可能的不同过程共有()种.A .6B .8C .10D .122010年全国高中数学联赛山东赛区预赛试题【题型十】多事件限制重叠型【典例分析】班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为A .217B .316C .326D .328【变式演练】1.某同学计划用他姓名的首字母,T X ,身份证的后4位数字(4位数字都不同)以及3个符号,,αβθ设置一个六位的密码.若,T X 必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为()A .864B .1009C .1225D .14412.2019年11月19日至20日,北京师范大学出版集团携手北师大版数学教材编写组在广东省珠海市联合举办了以“新课程,我们都是追梦人”为主题的北师大版中小学数学教材交流研讨会,会议期间举办了一场“互动沙龙”,要求从6位男嘉宾,2位女嘉宾中随机选出4位嘉宾进行现场演讲,且女嘉宾至少要选中1位,如果2位女嘉宾同时被选中,她们的演讲顺序不能相邻,那么不同演讲顺序的种数是()A .1860B .1320C .1140D .10203.有2辆不同的红色车和2辆不同的黑色车要停放在如图所示的六个车位中的四个内,要求相同颜色的车不在同一行也不在同一列,则共有______种不同的停放方法.(用数字作答)【题型十一】多重限制分类讨论【典例分析】高一新生小崔第一次进入图书馆时看到了馆内楼梯(图1),她准备每次走1级或2级楼梯去二楼,并在心中默默计算这样走完25级楼梯大概有多少种不同的走法,可是当她走上去后发现(图2)原来在13级处有一宽度达1.5米的平台,这样原来的走楼梯方案需要调整,请问,对于剩下的15级()123+楼梯按分2段的走法与原来一次性走15级的走法相比较少了______种.【变式演练】1.市内某公共汽车站有7个候车位(成一排),现有甲,乙,丙,丁,戊5名同学随机坐在某个座位上候车,则甲,乙相邻且丙,丁不相邻的不同的坐法种数为______;(用数字作答)3位同学相邻,另2位同学也相邻,但5位同学不能坐在一起的不同的坐法种数为______.(用数字作答)2.2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有()种.A .120B .156C .188D .2403.甲、乙、丙、丁等六名退休老党员相约去观看党史舞台剧《星火》.《星火》的票价为50元/人,每人限购一张票.甲、乙、丙三人各带了一张50元钞,其余三人各带了一张100元钞.他们六人排成一列到售票处买票,而售票处一开始没有准备50元零钱,那么他们六人共有多少种不同排队顺序能使购票时售票处不出现找不出钱的状态.()A .720B .360C .180D .90【题型十二】综合应用【典例分析】设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需Ti 分钟,假设Ti 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少()A .从Ti 中最大的开始,按由大到小的顺序排队B .从Ti 中最小的开始,按由小到大的顺序排队C .从靠近Ti 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变【变式演练】1.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是()A .120B .112C .110D .162.设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为()A .32B .56C .72D .843.为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为()A.34B.23C.56D.12【经典题专练】1.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C区域涂色不相同的概率为()A.17B.27C.37D.472.将一个四棱锥S ABCD的每个顶点染上一种颜色,并使同一条棱的两端异色,如果只有5种颜色可供使用,则不同的染色方法的总数是A.540B.480C.420D.3603.清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共有10人进入决赛,其中高一年级3人,高二年级3人,高三年级4人,现采用抽签方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级3人不相邻的概率为()A.512B.712C.914D.5144.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A .2263C A B .2666C A C .2266C AD .2265C A 5.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A .90B .135C .270D .3606.现有9个相同的球要放到3个不同的盒子里,每个盒子至少一个球,各盒子中球的个数互不相同,则不同放法的种数是()A .28B .24C .18D .167.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为A .16B .18C .32D .728.校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)9.如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是()A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为1210.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.11.2020年疫情期间,某县中心医院分三批共派出6位年龄互不相同的医务人员支援武汉六个不同的方舱医院,每个方舱医院分配一人.第一批派出一名医务人员的年龄为1P ,第二批派出两名医务人员的年龄最大者为2P ,第三批派出三名医务人员的年龄最大者为3P ,则满足123P P P <<的分配方案的概率为()A .13B .23C .120D .3412.如图,在某海岸P 的附近有三个岛屿Q ,R ,S ,计划建立三座独立大桥,将这四个地方连起来,每座桥只连接两个地方,且不出现立体交叉形式,则不同的连接方式有().A .24种B .20种C .16种D .12种13.现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是()A .每人都安排一项工作的不同方法数为54B .每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为4154A C C .如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为()3122352533C CC C A +D .每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是1232334333C C A C A +14.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字的表示法如下:数字123456789形式ⅠⅡⅢⅣⅤⅥⅦⅧⅨ其中“Ⅰ”需要1根火柴,“Ⅴ”与“X”需要2根火柴,若为0,则用空位表示.(如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为()A .87B .95C .100D .10315.如图为33⨯的网格图,甲、乙两人均从A 出发去B 地,每次只能向上或向右走一格,并且乙到达任何一个位置(网格交点处)时向右走过的格数不少于向上走过的格数,记甲、乙两人所走路径的条数分别为M、 的值为()N,则M NA.10B.14C.15D.16排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.用符号“A m n”表示A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(n,m∈N*,且m≤n)(1)A n n=n!;(2)0!=1C m n=A m nm!组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号“C m n”表示C m n=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,且m≤n)(1)C n n=C0n=1;(2)C m n=C n-m n;(3)C m n+1=C m n+C m-1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:解答(1):先捆绑俩女生,再排列捆绑女生,然后排列四个男生,两个“女生”插孔即可,2242 3245 C A A A(2)分类讨论24422422243445224542451; (2); (3)2C A A A A A C A A A ()都不相邻:A 两队各自相邻:一对两人相邻:!【方法技巧】人坐座位模型:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。

一. 直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. ·三.间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 四. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

五. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2.…3.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)六. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有711C 种练习1.(a+b+c+d)15有多少项当项中只有一个字母时,有14C 种(即而指数只有15故01414C C ⋅。

当项中有2个字母时,有24C 而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,114C 即24C 114C 当项中有3个字母时34C 指数15分给3个字母分三组即可21434C C 当项种4个字母都在时31444C C ⋅ 四者都相加即可. 练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法(216C )`3.不定方程X 1+X 2+X 3+…+X 50=100中不同的整数解有(4999C )七. 平均分堆问题 例6 6本不同的书平均分成三堆,有多少种不同的方法 分析:分出三堆书(a 1,a 2),(a 3,a 4),(a 5,a 6)由顺序不同可以有33A =6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有33222426A C C C =15种练习:1.6本书分三份,2份1本,1份4本,则有不同分法2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。

八. 合并单元格解决染色问题例7 (全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不 得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有 种(以数字作答)。

3,52,4分析:颜色相同的区域可能是2、3、4、5. 下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素 ①③⑤的全排列数A 44`(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得A 44种着色法.(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格 ①从4种颜色中选3种来着色这三个单元格,计有A C 3334⋅种方法.由加法原理知:不同着色方法共有2A C A 333444+=48+24=72(种)练习1(天津卷(文))将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物 , 不同的种植方法共 种(以数字作答) (72)2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种 同一样颜色的话,不同的栽种方法有 种(以数字作答).(120)《图3 图43.如图4,用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是 种(84) 图5 图6@5.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共 种(420)九. 递推法2,4546132ED CB A4321例八 一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法 分析:设上n 级楼梯的走法为a n 种,易知a 1=1,a 2=2,当n ≥2时,上n 级楼梯的走法可分两类:第一类:是最后一步跨一级,有a n-1种走法,第二类是最后一步跨两级,有a n-2种走法,由加法原理知:a n =a n-1+ a n-2,据此,a 3=a 1+a 2=3,a 4=a #+a 2=5,a 5=a 4+a 3=8,a 6=13,a 7=21,a 8=34,a 9=55,a 10=89.故走上10级楼梯共有89种不同的方法。

九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A 在同一平面上,不同的取法有 种(335C +3=33)2.四面体的棱中点和顶点共10个点(1)从中任取3个点确定一个平面,共能确定多少个平面 (310C -436C +4-334C +3-6C 34+6+2×6=29)(2)以这10个点为顶点,共能确定多少格凸棱锥 三棱锥 C 104-4C 64-6C 44-3C 44=141 四棱锥 6×4×4=96 3×6=18 共有114十. 先选后排法[例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有( ) 种种种种分析:先从10人中选出2人十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.解 把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.25A =20种例11. 个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.解 把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题.59C =126种例12 从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法. 解 把稳体转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。

10991C 例13 -例14某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.解 无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.37C =35(种)例15 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.解 根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题.612C =924(种). 例16 求(a+b+c )10的展开式的项数.解 展开使的项为a αb βc γ,且α+β+γ=10,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题.212C =66(种)例17 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种解 设亚洲队队员为a 1,a 2,…,a 5,欧洲队队员为b 1,b 2,…,b 5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为610C =252(种)十二.转化命题法例18 圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各-分析:因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有415C =1365(个)十三.概率法例19 一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法分析:在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为21,故本例所求的排法种数就是所有排法的21,即21A=360种 十四.除序法 例19 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个 解(1)3377A A (2)443377A A A十五.错位排列例20 同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有 种(9) 公式 1)))(1(21--+-=n n n a a n a n=4时a 4=3(a 3+a 2)=9种 即三个人有两种错排,两个人有一种错排. 2)n a =n!(1-!11+!21-!31+…+()n 1-!1n 练习 有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种(44)。

相关文档
最新文档