动物实验方案设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动物实验方案设计
动物实验指在实验室内,为了获得有关生物学、医学等方面的新知识或解决具体问题而使用动物进行的科学研究。以下小编为你整理了动物实验方案设计,希望对你有所参考帮助。
实验设计就是拟定实验方案,在进行科学研究时,对研究方案作合理的安排,以减少随机误差的影响。采用适当的研究实验次数,减少实验的成本并能对数据进行有效的分析,提高实验研究的可靠性,从而实现研究的目的。
研究设计包括专业设计与统计设计两个部分。统计设计主要是依据研究目的,从研究的现况条件出发,规定研究因素、选择效应指标、确定研究对象的引入方式方法和规模,拟实施的方法、方案,及数据收集、整理分析的模式,直至结果的解释,进行系统的安排,使其消耗最少的人力物力和时间,而获得可靠的信息与结论。
实验设计的基本要素为:实验单位、处理因素和实验效应。
(1)大多数情况下,实验单位等同于实验对象、受试对象,在动物实验中的动物即为实验单位。
(2)处理要素:是研究者根据研究目的施加于实验单位,在实验中需要观察并阐明其效应的因素,是实验单位分组的标志。而非处理因素则是指实验中非人为施加的、与处理因
素同时存在,同样可以使受试对象产生实验效应的因素,如实验动物的雌雄、体重等因素。突出研究因素的主导作用,排除混杂因素的干扰作用,可以通过相应的实验设计方法,尽量使非处理因素在各处理组中的分布达到一致或均衡,以便分离出处理因素的效应。另外,处理因素的施加方法、强度、频率和持续时间等,在整个实验中应始终保持不变,以保证实验结果评价的可靠性和稳定性;处理因素作用于受试对象的反应,是研究结果的最终体现,其基本要求客观性、特异性、灵敏性和精确性。
(3)实验效应:处理因素作用于实验动物后,出现实验效应,一般是用各种指标来反映的。指标按其性质可分为计数(含等级)指标和计量指标,计数指标如“是”“否”“有”“无”,“阳性”“阴性”,“痊愈”“显效”“好转”“无效”,“存活”“死亡”等。计量指标指可测量(含间接测量)的指标,如很多检查和检验指标。
在对指标进行观察时应注意:
①实验效应的观察应避免偏性。研究者的心理往往偏于阳性结果,为了消除或减少测量偏差,设计时常采用盲法。
②应注意处理和效应的关系:处理与效应之间存在一定的关系,如剂量反应曲线。做实验应选择一个合适的实验剂量。
实验设计的三大原则即为重复(replication)、随机化
(randomization)和对照(control),这是药理实验设计的基本要求。其目的是排除非处理因素的作用,控制随机误差,避免系统误差,提高实验效率。
(1)重复原则(重复稳定性):能够充分重现的实验,才能称为可靠的实验。另外,实验研究应有一定数量的重复观测结果,即实验单位要达到一定数量。避免将个别情况误认为普遍情况,将偶然误认为必然,将实验结果错误推广,同一实验条件下、同一观测指标的多次测量会有变异,多次测量才能描述变异,估计随机误差。实验单位足够多时,才能获得随机误差比较小的统计量。重复的目的是估计和控制实验中的随机误差,提高实验结果的可靠性。样本中包含的实验单位数称为样本含量(样本量)。重复原则的应用就是样本含量的估计。
首先要考虑实验要有足够的例数,能准确重复再现,同时尽可能排除对实验的干扰,它包括:①动物方面,如品种、品系、体重、年龄、性别、饲料及饲养环境等;②仪器方面:准确性、稳定性、电压稳定性及操作熟练程度等;③药物方面:性能、批号、纯度、剂量和注射速度等。此外还有室温、气压、季节等物理因素,甚至实验是在上午还是下午,动物群养或单养等,均应预先考虑清楚,做好设计。
(2)随机化原则:其目的是一切干扰因素分配到各组时只受纯机遇的抽样误差的影响,避免受实验者主观因素的干
扰,减小或避免偏性误差,是实验设计中的重要原则之一。随机化手段可采取随机数字表或小计算机上的随机数字键。
在实验分组时,每个受试对象均有相同的概率或机会被分配到实验组和对照组。随机化是一种实验设计的分组程序,而非“随便”、“随意”和“非选择性”。随机化的意义是保证各种非处理因素在各个实验组和对照组达到均衡,从而显现处理因素的作用,避免各种主、客观因素可能导致的偏性,减少系统误差,提高研究结果的效度。随机化分组是从假设检验结果推论因果关系的基础,确定处理因素与实验结果之间因果关系的前提是随机分组后、施加干预前,所有观察对象都属于同一个总体。
(3)对照原则:确定实验组时,同时设立对照组,即不施加处理因素的实验组,只暴露于非处理因素。对照组除没有处理因素外,其他对实验结果可能有影响的因素(已知、可控的非处理因素)都应该与实验组尽量相同。
常用的对照形式,分为空白对照(blank control)、实验对照(experimental control)、标准对照(standard control)、相互对照(mutual control)、潜在对照(potential control)。空白对照即对对照组不施加干预,对照组的处理因素为“空白”;实验对照即对照组不施加干预,但施加某种与处理因素有关的实验因素,用于处理因素的施加需伴随其他因素,而这些因素又可能影响实验结果时;标准对照组
的干预采用现有“标准”方法或常规方法,主要用于临床试验,当伦理上不允许对对照组患者采用空白对照或假干预,如新药研究采用目前疗效确定的药物作为对照药;相互对照则不专门设立对照组,各实验组间互为对照,如比较几种同类药物的疗效差别:潜在对照也不用专门设立对照组,以过去的研究结果为对照(历史对照)。另外,当实验组和对照组例数相等时,统计学证明其统计效率最高,轻视对照或对照较少是错误的和不妥当的。
抽样和分组必须严格遵守随机原则,主要因素要均衡一致,但抽取哪一只动物。分配到哪一组则按随机数字表或键而定。如果随意拿取动物,先取到的为第一组,依次递推,则反应活泼敏捷不易抓到的动物势必集中到最后几组,各组的条件就有了偏性误差。为此,下面介绍几种主要的分组实验设计方法。
完全随机设计(completely random design)亦称单因素设计,即将受试对象随机分到各处理组中进行试验观察,或分别从不同总体中随机抽样进行对比观察。它适用于两个或两个以上样本的比较,各组间样本量可相等,也可不相等,但是样本相等时统计分析效率较高。
例1.将12只动物随机分配到A、B两组。
(1)先将12只动物编号为1、2……12号,然后在随机数字表内任意确定一个起始点和方向连续取12个随机数字,