2020-2021学年安徽省芜湖市中考数学模拟试题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新安徽省芜湖市中考数学模拟试卷
一、选择题(本题共10小题,每小题4分,共40分)
1.在实数﹣2,0,2,3中,最小的实数是()
A.﹣2 B.0 C.2 D.3
2.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()
A.B.C.D.
3.若代数式在实数范围内有意义,则x的取值范围是()
A.x≥﹣3 B.x>3 C.x≥3 D.x≤3
4.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()
A.0.242×1010美元B.0.242×1011美元
C.2.42×1010美元D.2.42×1011美元
5.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:
成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80
人数 1 2 4 3 3 2
那么这些运动员跳高成绩的众数是()
A.4 B.1.75 C.1.70 D.1.65
6.下列代数运算正确的是()
A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1
7.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()
A.3 B.2C.3D.
8.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()
A.10cm B.13cm C.14cm D.16cm
9.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E 点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x 函数关系的图象是()
A.B.C.D.
10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()
A.B.C.D.
二、填空题(本题共4小题,每题5分,共20分)
11.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是.12.如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为.
13.分解因式:2x2y﹣12xy+18y= .
14.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:
①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.其中正确结论的序号是.
三、(本题共3小题,每题8分,共16分)
15.计算:﹣1﹣31﹣(3.14﹣π)0+2015.
16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.
17.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.
四、(本题共1小题,每题8分,共16分)
18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)画出△ABC关于点B成中心对称的图形△A1BC1;
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.
五、(本题共2小题,每题10分,功0分)
19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?
20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下
不完整的统计图.
根据上述信息,解答下列问题:
(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
六、(本题12分)
21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED
(1)求证:ED∥AC;
(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.
七、(本题12分)
22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
八、(本大题14分)
23.设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.
(1)用θ和b的关系式表示m;
(2)若a>b,试比较a+m与b+n的大小;
(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.