新人教版必修二高中数学:解析几何中圆的标准方程教案人教版必修2

合集下载

人教A版高中数学必修二《圆的标准方程》教学设计

人教A版高中数学必修二《圆的标准方程》教学设计
《圆的标准方程》教学设计
一、内容及其解析
本节课的教学内容是圆的标准方程,圆是平面解析几何中重要的几何模型,是研究圆锥曲线与方程的重要基础.
坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。通过建立平面直角坐标系,把点和坐标、曲线和方程联系起来.因此在教学过程中,要始终贯穿坐标法中一重要思想,在学习圆与方程这一章节后,使学生初步形成坐标法的基本思想和步骤.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后将代数运算结果“翻译”成相应的几何结论。
解此方程组,得
所以 的外接圆的方程是
练习2:已知圆心为 的圆经过点 ,且圆心 在直线 上,求圆心为 的圆的标准方程.
设计意图:进一步强化圆的标准方程的运用,使学生在不同的背景中熟悉常见的几何模型,能根据题设条件选择适当的方法来解决问题.
师生活动:激活学生思维,借助图形,让学生分析题设的几何特征,描述本题的算法,教师同步展示解答过程.启发引导学生思考教科书第120页的问题,归纳求圆的标准方程的两种方法.最后可以让学生尝试运用另一种方法解答问题7和问题8.
半径 的大小等于圆上任意一点 到圆心 的距离,
圆心为 的圆就是集合
由两点间距离公式,点 的坐标适合的条件可以表示为
式两边平方,得
(1)
若点 在圆上,则由上述讨论知,点 的坐标适合方程(1);反之,若点 的坐标适合方程(1),这说明点 与圆心 的距离为 ,即点 在圆心为 的圆上.我们把方程(1)称为圆心为 ,半径为 的圆的方程,把它叫做圆的标准方程.
3.能力素养:重点提升学生的数学抽象、数学建模、直观想象能力。通过具体事例,让学生在自己的操作与思考中,抽象并概括圆的标准方程的概念、建立圆的标准方程的代数模型,学会利用几何图形理解和解决数学问题.关注现代信息技术工具的运用.

高中数学新人教版必修2教案4.1.1圆的标准方程

高中数学新人教版必修2教案4.1.1圆的标准方程

备课人授课时间课题4.1.1 圆的标准方程课标要求圆的标准方程教学目标知识目标掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

技能目标会用待定系数法求圆的标准方程。

情感态度价值观通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。

重点圆的标准方程难点会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程及方法问题与情境及教师活动学生活动1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。

(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件22()()x a y b r-+-=①化简可得:222()()x a y b r-+-=②642-2-4-55MA引导学生自己证明222()()x a y b r-+-=为圆的方程,得出结论。

1教学过程及方法问题与情境及教师活动学生活动方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

3、知识应用与解题研究例1:写出圆心为(2,3)A-半径长等于5的圆的方程,并判断点12(5,7),(5,1)M M---是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点00(,)M x y与圆222()()x a y b r-+-=的关系的判断方法:(1)2200()()x a y b-+->2r,点在圆外(2)2200()()x a y b-+-=2r,点在圆上(3)2200()()x a y b-+-<2r,点在圆内例2:ABC的三个顶点的坐标是(5,1),(7,3),(2,8),A B C--求它的外接圆的方程分析:从圆的标准方程222()()x a y b r-+-=可知,要确定圆的标准方程,可用待定系数法确定a b r、、三个参数.(学生自己运算解决)例3:已知圆心为C的圆:10l x y-+=经过点(1,1)A和(2,2)B-,且圆心在:10l x y-+=上,求圆心为C的圆的标准方程.分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C的圆经过点(1,1)A和(2,2)B-,由于圆心C与A,B两点的距离相等,所以圆心C在险段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等于CA或CB。

人教版高中必修2圆的标准方程教学设计

人教版高中必修2圆的标准方程教学设计

人教版高中必修2圆的标准方程教学设计《人教版高中必修2圆的标准方程教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标知识和能力1.学会圆的标准方程的推导方法。

2.掌握圆的标准方程并掌握其求法。

3.掌握点与圆的位置关系的判定方法。

过程和方法1.通过五个问题,引导学生理解归纳本节的主要内容,培养学生归纳整理知识的能力。

2.通过电脑演示,引导学生探究、分析图形的几何特征,再用代数的语言描述几何要素及其关系,进而将几何的问题转化为代数问题,体现数形结合的数学思想。

3.通过具体情景,使学生逐步形成在坐标系下用坐标法解几何问题的能力,掌握自主学习的方法和形成合作学习的习惯。

情感态度和价值观1.通过教学,使学生学习运用观察、类比、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力。

2.培养学生勇于探索、坚韧不拔的意志品质。

二、教学重点难点重点:圆的标准方程的推导。

难点:圆的标准方程的求法。

三、教学对象分析圆是学生比较熟悉的曲线。

在初中几何课中已经学习过圆的性质,这里只是用解析法研究它的方程与其它图形的位置关系及一些应用。

对此,教师可在课堂上通过各种教学方法,帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。

这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

四、教学内容分析本节内容首先研究圆的标准方程的特点,和怎样根据不同条件建立圆的标准方程。

由于圆的标准方程(x-a)2+(y-b)2=r2含有三个参数,因此必须具备三个独立条件才能确定一个圆,确定a、b、r,可以根据条件利用待定系数法解决。

还可通过分析图形的几何特征寻找圆心和半径,从而获得圆的标准方程。

点与圆的位置关系可通过点与圆心的距离判定。

以上的方法应尽可能在老师的启发引导下,由学生自己比较、归纳得到。

高中数学4.1.1圆的标准方程教案新人教A版必修2

高中数学4.1.1圆的标准方程教案新人教A版必修2
所以我通过用几何画板作图的方法,让学生研究圆的位置由哪些要素确定的,认识曲线的方程和方程的曲线。
四、教学策略选择与设计
(1)突出重点抓住关键突破难点
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,在突出重点的同时突破了难点.
(2)A=0,表示点(a,b)
(3)A<0,不表示任何图形
培养学生积极动脑思考,探索未知的能力,以及数形结合的能力
提问式教学,培养观察能力,总结归纳能力
(10分钟)
练习一:
1.说出下列圆的方程:
(1)圆心在原点,半径为3.
(2)圆心在点C(3, -4),半径为7.
部分学生上黑板上演算,教师巡视所有学生答题情况
二、教学目标
知识与技能
1.掌握圆的标准方程;
2.会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
3.利用圆的标准方程解决简单的实际问题.
过程与方法
1.进一步培养学生用代数方法研究几何问题的能力;
2.加深对数形结合思想的理解以及对待定系数法2.选择恰当的坐标系解决与圆有关的实际问题.
六、教学过程
教师活动
学生活动
设计意图
复习引入:请同学们复习一下上节课学习的求轨迹方程的步骤
学生回答:
1.建系设点M (x,y)
2.找等量
3.列方程
4.化简为f(x,y)=0
5.注意x,y的取值范围
复习巩固,为新课做准备
新课讲授:
问题一:圆的定义?
问题二:平面直角坐标系中,如何确定一个
化简可得:
圆的标准方程:
圆心C(a,b),半径r

最新人教版高中数学必修2第四章《圆的标准方程》教学设计

最新人教版高中数学必修2第四章《圆的标准方程》教学设计

教学设计4.1.1圆的标准方程整体设计一、教学背景分析1.教材结构分析圆是学生比较熟悉的一类曲线,而且是一种对称、和谐的图形,具有很多优美的几何性质.本节内容首先通过圆的定义,求解圆的标准方程,进而变化出圆的一般方程,其次运用代数的方法探讨直线与圆,圆与圆的位置关系,进一步提高学生对解析几何问题研究方法的深入理解.2.教材地位与作用圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.本节内容安排在学生学习直线方程之后,旨在更加深刻的体会曲线和方程的关系,为后继学习做好准备.同时有关圆的问题,特别是圆和直线的位置关系问题,是解析几何的基本问题.这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.圆的方程也属于解析几何学的基础知识,是研究二次曲线的开始,对后继直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有积极的意义.所以本节内容在解析几何中起着承前启后的作用.3.学情分析学生在初中已经学习了圆的概念和基本性质,在高中又掌握了求直线方程的一般方法,但由于学生以往注重从几何的角度理解圆的性质,而且学习解析几何的时间还不长、学习程度较浅,尚未建立牢固的数形结合的思想,对于解析法运用还不够熟练,在学习过程中难免会出现困难.另外学生在探索问题的能力,合作交流的意识等方面有待加强.4.教学目标(1)知识目标:①在平面直角坐标系中,探索并掌握圆的标准方程;②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.(2)能力目标:①进一步培养学生用解析法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.5.教学重点、难点(1)教学重点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题.二、教法分析高一学生,在教师的引导下,已经具备一定探究与研究问题的能力.所以在设计问题时应考虑全面性和灵活性,采用对比、启发、探究等方式,师生共同探讨,共同参与、共同研究,让学生积极思考,主动学习.在教学过程中采取小组讨论法,向学生提供具备启发性和思考性的问题.因此,要求学生在课堂上小组讨论,然后小组汇报讨论成果,提高学生的探究、推理、想象、表达、分析和总结归纳等方面的能力.因为本节课是在学生对圆的基本性质认识的基础上,再对圆进行代数研究.针对学生的学习过程、认知水平,在遵循参与式教学的基础上,调动全班学生积极参与,认真思考,努力体现学生学习的主体性地位.在学习过程中让学生积极思考,动手计算,不仅在“思维中参与”而且在“行动中参与”,养成主动性的学习习惯.三、学法分析为了重点培养学生分析问题、解决问题的能力.因此,要求学生在学习中遇到问题时,不要急于求成,而是通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过推导圆的标准方程,加深用解析法求轨迹方程的理解.还要会根据问题提供的信息回忆所学知识,采用转化思想、数形结合的思想,选择最佳方案解决.四、教学基本流程及其说明结合教材与新课程标准本节课采用以下流程(一)、教师在理解教材的编写意图的基础上,应发挥主观能动性,对教材资源进行再加工、再创造,这样教学方法更有利于学生的认知结构,也有利于学生从深层次理解和掌握圆的标准方程.(二)、在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机结合起来,教师的每项措施都是力求给学生创造一种思维情境,动手、动脑、动口并且主动参与学习的机会,激发学生求知欲望,促使学生在不知不觉中掌握知识,解决问题.(三)、培养思维,提高能力,激励创新在问题的设计中,利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生注意,使能力与知识的形成相伴而行.五、教学情境设计圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识.另外,为了培养学生的理性思维,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课设计了六个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维、提高了能力、培养了兴趣、增强了信心.。

高中数学 2.2.1 圆的方程2教案 新人教版必修2

高中数学 2.2.1 圆的方程2教案 新人教版必修2

2.2.1 圆的方程(2)教学目标:1.掌握圆的一般方程并由圆的一般方程化成圆的标准方程2.能分析题目的条件选择圆的一般方程或标准方程解题3.解题过程中能分析和运用圆的几何性质教学重点:圆的一般方程的认识和圆的两种方程的选择使用教学难点:圆的一般方程的认识过程和判断二元二次方程是否为圆方程教学过程:1.问题情境(1)情境:方程22(1)(2)4x y -+-=表示怎样的图形?(2)问题:方程22(1)(2)4x y -+-=是几元几次方程?二元二次方程一定表示圆吗?(3)观察方程22(1)(2)4x y -+-=整理后的形式222410x y x y +--+=,得到是关于,x y 的二元二次方程,且22,x y 项的系数相等不为零,不含有xy 项;反过来,像这样的二元二次方程220x y Dx Ey F ++++=一定表示圆吗?2.圆的一般方程将方程220x y Dx Ey F ++++=配方,得22221()()(4)224D E x y D E F +++=+-与圆的标准方程进行比较得到: (1)当2240D E F +->时,方程表示以(,)22D E --为圆心,2为半径的圆; (2)当2240D E F +-=时,方程表示一个点(,)22D E --; (3)当2240D E F +-<时,方程无实数解,即方程不表示任何图形;方程22220(40)x y Dx Ey F D E F ++++=+->叫做圆的一般方程. 3.圆的一般方程的特点当二元二次方程220Ax Bxy Cy Dx Ey F +++++=具有条件:(1)2x 和2y 的系数相同,不等于零,即0A C =≠;(2)没有xy 项,即0B =; (3)2240D E AF +->.它才表示圆.条件(3)通过将方程同除以A 或C 配方不难得出.4.例题讲解例1.求过三点12(0,0),(1,1),(4,2)O M M 的圆的方程;分析:由于12(0,0),(1,1),(4,2)O M M 不在同一条直线上,因此经过12,,O M M 三点有唯一的圆.解:法一:设圆的方程为220x y Dx Ey F ++++=,∵12,,O M M 三点都在圆上,∴12,,O M M 三点坐标都满足所设方程,把12(0,0),(1,1),(4,2)O M M 代入所设方程, 得:02042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩解之得:860D E F =-⎧⎪=⎨⎪=⎩所以,所求圆的方程为22860x y x y +-+=.法二:也可以求1OM 和2OM 中垂线的交点即为圆心,圆心到O 的距离就是半径也可以求的圆的方程:22860x y x y +-+=.法三:也可以设圆的标准方程:222()()x a y b r -+-=将点的坐标代入后解方程组也可以解得22(4)(3)25x y -++=.例2.若方程()22222220x y mx m y m +-+-+=表示一个圆,且该圆的圆心位于第一象限,求实数m 的取值范围.解:将圆方程配方得,()()22112x m y m m -++-=-⎡⎤⎣⎦,则120m ->,12m ∴<. 又圆心(),1m m -在第一象限,00110m m m >⎧∴⇒<<⎨->⎩, 综上:102m <<. 例3.圆C 过点()()1,2,3,4A B ,且在x 轴上截得的弦长为6,求圆C 的方程.解:设所求圆为220x y Dx Ey F ++++=,令0y =得,20x Dx F ++=,则1212,x x D x x F +=-=,由216x x -==得,2436D F -=, 将点()()1,2,3,4A B 代入220x y Dx Ey F ++++=,得25,3425D E F D E F ++=-++=-,解方程组得,12,22,27D E F ==-=或8,2,7D E F =-=-=,则所求圆为221222270x y x y ++-+=或所求圆为228270x y x y +--+=.思考:是否有其他方法?例4.求圆心在直线:0l x y +=上,且过两圆221:210240C x y x y +-+-=和22:C x + 22280y x y ++-=交点的圆的方程.略解:联立两圆方程解得交点为()()4,0,0,2-,从而可求圆方程()()223310x y ++-=. 思考:类似直线系,能否用圆系方程来解?5.课堂小结(1)圆的一般方程220x y Dx Ey F ++++=及其条件2240D E F +->(2)方程思想求圆的一般方程。

人教版高中数学必修2第四章圆与方程-《4.1.1圆的标准方程》教案

人教版高中数学必修2第四章圆与方程-《4.1.1圆的标准方程》教案

4.1.1 圆的标准方程整体设计教学分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.三维目标1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.重点难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.课时安排1课时教学过程导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.推进新课新知探究提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得 |AB|=212)59()62(22=++-,|CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了.⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r,即点M 在圆心为C 的圆上.方程②就是圆心为C(a,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x,y 的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2. 用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外;2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上;3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内.应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25,则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上, 它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a 解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6). ① 同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5). ②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m 需用一个支柱支撑,求支柱A 2P 2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y 轴上,由题意得P(0,4),B(10,0).设圆的方程为x 2+(y-b)2=r 2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(0222222r b r b 解得⎩⎨⎧=-=,5.14,5.1022r b 所以这个圆的方程是x 2+(y+10.5)2=14.52.设点P 2(-2,y 0),由题意y 0>0,代入圆方程得(-2)2+(y 0+10.5)2=14.52,解得y 0=2225.14--10.5≈14.36-10.5=3.86(m).答:支柱A 2P 2的长度约为3.86 m.例2 求与圆x 2+y 2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程.活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r 2.圆x 2+y 2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-∙-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36. 点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上,所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a 所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-, 所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2.(2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.知能训练课本本节练习1、2.拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x1,y1)、B(x2,y2)的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.作业1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.2.预习有关圆的切线方程的求法.3.课本习题4.1 A组第2、3题.。

人教A版高中数学必修2《圆的标准方程》教案

人教A版高中数学必修2《圆的标准方程》教案

【教案设计】课题:《圆的标准方程》教材:普通高中课程标准试验教科书人教A版数学必修2 §4.1.1一、教学目标:(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据不同条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.二、教学重点、难点(1)重点: 圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.三、教学方法与手段1.教学方法采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入.2.教学手段多媒体课件进行辅助教学.四、教学过程整个教学过程是由八个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,根据半圆的对称性建立平面直角坐标系,构建数学模型.把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程求D点的纵坐标来解决.同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.【设计意图】用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心为(,)a b ,半径为时圆的方程又如何呢?这一环节我首先让学生对问题一进行归纳,由勾股定理得到圆心在原点、半径为4的圆的标准方程2224x y +=后,引导学生归纳出圆心在原点、半径为r 的圆的标准方程222x y r +=.然后再让学生对圆心不在原点的情况进行探究.我预设了三种种方法等待着学生的探究结果,分别是:坐标法、勾股定理法、图形变换法.坐标法:引导学生根据圆的定义,圆上的点到圆心的距离等于常数,即两点距离公式推导圆心不在原点的标准方程.推导过程: 圆是这样一些点的集合P={M|︱MC ︱=r }已知圆心C(,)a b 半径r根据两点间的距离公式,圆上任意一点M 的坐标(x, y )r =化简,得到圆的标准方程 ()()222x a y b r -+-=图形变换法:借助多媒体的演示,让学生体会平移的过程,让学生了解利用图像平移的知识也可推导圆心不在坐标原点的标准方程.得出圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节..(三)应用举例——巩固提高I .直接应用 内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点P(5,1),圆心在点C(8,3).2.写出圆22(2)36x y ++=的圆心坐标和半径.我设计了两个比较简单的小问题,可以安排学生口答完成.【设计意图】目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为形成待定系数法求圆的标准方程打下基础,并为后续探究圆的切线问题作准备.II .灵活应用 提升能力问题四 求过原点O 和点P(1,1),且圆心在直线l:2310x y ++=上的圆的标准方程.设计这一题难度明显增大,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆. 教学中应该突出对问题的分析过程,在分析过程中,要强调图形在分析问题中的辅助作用,引导学生根据题意画出图形.根据确定圆的要素-----圆心位置和半径长,借助图形,结合题设条件可以发现关键是找出圆心位置.圆心位置一旦确定,就可以利用距离公式确定半径大小,从而求出圆的标准方程.让学生自主探究出圆心位置,最后可得出:直线l 与线段OP 垂直平分线l '的交点即为圆心位置.解题过程:∵O (0,0),P (1,1)∴线段OP 的中点的坐标为11,22⎛⎫ ⎪⎝⎭直线OP 的斜率10110op k -==- 因此线段OP 的垂直平分线 l ′的方程是111022y x x y ⎛⎫-=--+-= ⎪⎝⎭即 102310x y x y +-=++= 的解 圆心C 的坐标是方程组43x y ==- 所以圆心C 的坐标是(4,3)-解此方程组,得圆C的半径 5r OC === 所求圆的标准方程是()()224325x y -++=【设计意图】有利于培养学生逻辑思维能力和加深对数形结合思想的理解,提高分析问题、解决问题的能力,养成良好的解题习惯,并且对数学思维的严谨性具有良好的效果.再一次为学生的发散思维创设了空间,又一次模拟了真理发现的过程,使探究气氛达到高潮. III .实际应用 回归自然问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m需用一个支柱支撑,求支柱22A P 的长度(精确到0.01m ).由于圆拱是圆的一段弧,引导学生根据对称性建立直角坐标系,构建数学模型,再应用待定系数法求出圆的三个参数a 、b 、r ,继而确定圆的方程,从而求出点2P 的纵坐标.要想求出22A P 的长度,还要求出O 点的纵坐标.这样问题就会迎刃而解.但为使求解过程简单,圆心最好设在坐标原点.解题过程: 由题意建立直角坐标系,设圆心C 在坐标原点,如图所示设圆的半径为r 即CA=r 由已知得AO=10,CO=r-OP=r-4222Rt CA =CO +AO CAO ∆在中,()2222941014.52r r r =-+==即 解得222C 14.5y +=圆的方程x2P 点的横坐标为-2,代入圆C 方程可得2P 点纵坐标为14.36∵CO=14.5-4=10.5 即2A 点的纵坐标为10.5∴ 22A P =14.36-10.5=3.86 所以,支柱22A P 的长度大约为3.86米.【设计意图】问题五同时与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生数学建模的习惯和用数学的意识.在教学中,我力求从生活走进数学,使数学回归生活.(四)反馈训练——形成方法问题六 求以点C(1 ,3)为圆心,并且和直线3470x y --=相切的圆的标准方程.【设计意图】接下来是第四环节——反馈训练.这一环节中,我设计一个小题作为巩固性训练,给学生一块“用武”之地,一个展示自己的舞台.让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.(五)小结反思——拓展引申1.课堂小结问题七 通过本节的学习,你学到了哪些内容?最大的体验是什么?掌握了哪些学习数学的方法?【设计意图】为了发挥学生的主体作用,通过三个小问题让学生从知识、方法、体验三方面,自己对圆的标准方程的形式加以小结,提炼数形结合的思想和待定系数的方法.2.分层作业(A )巩固型作业:教材P120:练习1.(B )思维拓展型作业:已知圆的方程为2225x y +=,求过圆上一点A(4,-3)的切线方程.3.激发新疑问题八 1.把圆的标准方程展开后是什么形式?2.方程2268200x y x y +-++=表示什么图形?【设计意图】在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.(六)板书设计【设计意图】 遵循简洁、明显,突出重点的设计意图,板书演示如下:五、教学反思在教学中尝试采用创设问题情景,以问题驱动、层层铺垫,帮助学生实现从被动接受知识变为主动获取知识;同时也试图改进学生的学习方式,以小组合作的方式展开,在合作中相互配合.灵活融合引导启发、数形结合、激励评价、多媒体辅助等教学方式,更好地实现教学目标.这堂课展示了一个完整的数学探究过程,提出问题、自主探究,让学生经历了知识再发现的过程,促进了个性化学习.在教学过程中,不失时机的进行数学文化渗透,除了能激发学生的学习兴趣、增强学习信心外,更是体现出了数学探索原貌,让学生看到数学探索的艰难和有趣,更客观的认识圆及现实意义,这对接受和理解圆的方程大有裨益!【教案说明】(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心坐标、半径与圆的标准方程之间的关系,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,为此我首先用一道题目简洁、贴近生活的实例进行引入,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我在问题一中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,分层次探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神.本节是一个“动眼观察,动脑思考,动手做题,共同提高”的动态生成过程.对生成性课堂的突出事件,因势利导,随机应变,适当调整教学环节;同时,教学反应性评价与反馈性评价相结合,促进学生的自我评价,勇于贯彻“成功教育,一贯教育”的理念,把握评价时机、评价主体和形式的多样化,从而结合课堂气氛,使课堂教学达到最佳状态.。

人教高中数学 必修二 4.1.1圆的标准方程(公开课教案)

人教高中数学 必修二 4.1.1圆的标准方程(公开课教案)

《4.1.1 圆的标准方程》教案
授课时间:授课地点:授课教师:
一、教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。

对于知识的后续学习,具有相当重要的意义.
二、教学目标:
1、知识与技能:①掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;反之,
会根据圆的标方程,求圆心和半径;
②会判断点和圆的位置关系;
③会用待定系数法和几何法求圆的标准方程;
2、过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思
想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问
题、发现问题和解决问题的能力.
3、情感态度和价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习
数学的热情和兴趣.
三、内容分析:
重点:圆的标准方程的求法及其应用
难点:会根据不同的已知条件求圆的标准方程
四、教具学具的选择:多媒体、圆规、直尺、课件.
五、教学方法:采用“问题-探究”教学法.
六、教学过程:。

人教课标版高中数学必修2《圆的标准方程》教学设计

人教课标版高中数学必修2《圆的标准方程》教学设计

4.1圆的方程4.1.1圆的标准方程一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径12r AB ==圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等. (2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间的距离AB =2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一个圆的最基本的要素就是圆心和半径.【设计意图】通过和直线的类比,引导学生分析出圆的基本要素,为后面圆的定义打基础.•活动② 当圆心位置C 和半径r 的大小确定后,如何定义一个圆?平面上到定点C 的距离等于半径r 的点M 的集合,叫做以C 为圆心,为半r 径的圆.【设计意图】从理性分析到感性认识,得出圆的定义.探究二 圆的标准方程•活动① 如果圆心C 的坐标为(a,b ),半径大小为r ,那么圆的方程是什么?设圆上任意一点M (x,y ),则M 到圆心C 的距离等于半径r ,圆心为C 的集合就是{}P M MC r ==,由两点间的距离公式,点M 适合的条件可以表示为22()()x a y b r -+-=两边平方,得:222()()x a y b r -+-=……………………⑴ 若点M (x,y )在圆上,由上述讨论可知,点M 的坐标适合方程(1);反之,若点M (x,y )的坐标适合方程(1),这说明点M 到圆心C 的距离等于半径r ,即点M 在圆心为C 的圆上.我们就把方程(1)称为圆心为C (a,b ),半径为r 的圆的标准方程.【设计意图】利用两点间的距离公式和圆的定义推导出圆的标准方程,实现从几何到代数的转化.探究三 点和圆的位置关系•活动① 由探究二我们知道,如果点000(,)M x y 在圆222()()x a y b r -+-=上,则满足22200()()x a y b r -+-=.那么点000(,)M x y 在圆222()()x a y b r -+-=内又要满足什么条件呢?在圆222()()x a y b r -+-=外呢?点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上22200()()x a y b r ⇔-+-=;(2)点0M 在圆C 内22200()()x a y b r ⇔-+-<;(3)点0M 在圆C 外22200()()x a y b r ⇔-+->;【设计意图】掌握点与圆的位置关系和刻化方法.巩固基础,检查反馈例1. 圆22(2)(3)2x y ++-=的圆心坐标和半径分别为( )A. (2,3),-B. (2,3),2-C. (2,3),-D. (2,3),2-【知识点】圆的圆心坐标和半径.【解题过程】由圆的标准方程可知圆心坐标为(2,3)-,半径r =【思路点拨】比较该方程与圆的标准方程即可.【答案】A同类训练 圆22(1)(2)5x y -++=的圆心到直线y x =的距离为( )A. B. C. D. 5 【知识点】由圆的方程得圆的圆心坐标以及点到直线距离公式的使用.【解题过程】由圆的方程可知该圆的圆心为(1,2)-,由点到直线的距离公式得所.【思路点拨】比较方程和圆的标准方程得出圆心坐标,再利用点到直线的距离公式即可求解.【答案】C例2.已知点A (0,-1),B (2,1),则以线段AB 为直径的圆的标准方程为( )A.22(1)1x y -+=B.221)1x y ++=(C.221)2x y -+=(D.22(1)2x y ++=【知识点】求出圆心坐标和半径,进而写出圆的标准方程.【解题过程】因为线段AB 为直径,所以圆心坐标为(1,0),半径12r AB ==所以圆的方程为221)2x y -+=( 【思路点拨】找圆心坐标和半径大小是求得方程的关键.【答案】C同类训练 圆心在直线:230l x y --=上,且过点(5,2)(3,2)A B -和的圆的标准方程为( )A.22(2)(1)10x y -+-=B.22(2)(1)x y -+-=C.22(2)(1)10x y +++=D. 22(2)(1)x y +++=【知识点】求出圆心坐标和半径,进而写出圆的标准方程.【解题过程】∵圆过点(5,2)(3,2)A B -和,所以圆心必在线段AB 的垂直平分线上,即在直线:24l x y '+=上. 由条件圆心必为l 与l '的交点,所以由23022401x y x x y y --==⎧⎧⇒⎨⎨+-==⎩⎩,所以圆心为(2,1)C ,半径r AC ==,所以所求圆的方程为22(2)(1)10x y -+-=【思路点拨】如果圆过两个点,那么圆心一定在过这两点的弦的中垂线上.【答案】A强化提升、灵活应用例3、已知圆与x 轴相切,圆心在直线y =2x 上,且被直线x +y -3=0平分周长,求该圆的标准方程.【知识点】由条件确定圆心坐标和半径大小,进而确定圆的方程.【解题过程】∵圆被直线平分周长,∴圆心必在直线x +y -3=0上,所以由条件可知圆心为直线y =2x 和x +y -3=0的交点,即圆心C (1,2);又圆与x 轴相切,所以半径即为圆心纵坐标,即r =2,故圆的标准方程为22(1)(2)4x y -+-=【思路点拨】直线平分圆周长,则圆心必在该直线上.【答案】22(1)(2)4x y -+-=例4. 已知点1)A 在圆22()(1)15x m y m ++-=-的外部,则实数m 的取值范围是( )A.32m -<<-B.23m <<C.32m m <->-或D.1325m m <--<<或 【知识点】圆的标准方程以及点与圆的位置关系. 【解题过程】条件等价于2150715m m m->⎧⎨+>-⎩,解得:1325m m <--<<或 【思路点拨】要注意圆的标准方程中等号后面是半径的平方(容易遗漏)【答案】D同类练习 已知过点(1,2)A 的直线始终与圆222()()2C x a y a a -++=:相交,则实数a 的取值范围是___________.【知识点】点与圆的位置关系.【解题过程】条件等价于点A 在圆C 的内部,所以有222(1)(2)2a a a -++<,解得52a -≤ 【思路点拨】过定点的直线始终与圆相交等价于定点必在圆内部. 【答案】52a -≤ 3.课堂总结知识梳理(1)确定圆的基本要素是圆心和半径;(2)圆心为C (a,b ),半径为r 的圆的标准方程为222()()x a y b r -+-= (3)点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:点0M 在圆C 上22200()()x a y b r ⇔-+-=;点0M 在圆C 内22200()()x a y b r ⇔-+-<;点0M 在圆C 外22200()()x a y b r ⇔-+->重难点归纳(1)圆的标准方程的推导思想和过程;(2)在各种条件下会求圆的圆心坐标和半径大小,进而求出圆的方程.(三)课后作业基础性 自主突破1.经过点(5,1)P ,圆心为(8,3)C -的圆的方程为( )A.22(8)(3)25x y +++=B.22(8)(3)25x y -++=C.22(8)(3)25x y -+-=D.22(8)(3)25x y ++-=【知识点】圆的标准方程【解题过程】有条件知,圆的半径为5r PC ==,所以圆的方程为22(8)(3)25x y -++=【思路点拨】圆上一点到圆心的距离即为半径.【答案】B2.已知圆22(1)(2)5x y -++=,则点(1,0)M 与该圆的位置关系是( )A.M 在圆内B. M 在圆上C. M 在圆外D.以上都不对【知识点】点和圆的位置关系.【解题过程】由于22(11)(02)45-++=<,所以M 在圆内.【思路点拨】点和圆的位置关系由点到圆心的距离和半径的关系决定.【答案】A3.圆22(3)(2)5x y -+-=关于原点(0,0)对称的圆的方程为( )A.22(3)(2)5x y -+-=B.22(3)(2)5x y ++-=C.22(3)(2)5x y +++=D.22(3)(2)5x y -++=【知识点】圆关于点的对称圆.【解题过程】圆22(3)(2)5x y -+-=的圆心(3,2)关于原点(0,0)的对称点(3,2)--即为所求圆的圆心,半径保持不变任为,故所求圆的方程为22(3)(2)5x y +++=【思路点拨】圆关于点的对称圆只是圆心对称,半径不变.【答案】C4.已知点(51,12)A a a +在圆22(1)1x y -+=的内部,则( ) A.1a < B.113a < C.15a < D. 113a < 【知识点】点与圆的位置关系 【解题过程】由点与圆的位置关系可知221(5)(12)113a a a +<⇒< 【思路点拨】点和圆的位置关系由点到圆心的距离和半径的关系决定.【答案】D5.已知圆C 的圆心在直线270x y --=上,且圆C 与y 轴交于两点(04)(02)A B --,、,,则圆C 的标准方程为( )A.22(2)(3)5x y -++=B.22(2)(3)25x y -++=C.22(3)(2)5x y ++-=D.22(3)(2)25x y ++-=【知识点】圆的标准方程【解题过程】∵线段AB 为圆的弦,∴圆心C 在线段AB 的中垂线3y =-上,又圆心C 在直线270x y --=上,∴圆心为(2,3)C -,半径r AC ==,∴圆C 的标准方程为22(2)(3)5x y -++=【思路点拨】求圆的方程就是想办法确定圆心坐标和半径大小.【答案】A6.已知ABC ∆的三个顶点分别为(05),(12),(34)A B C ---,,,,则ABC ∆的外接圆的方程为( )A.22(3)(1)25x y -++=B.22(3)(1)5x y -++=C.22(3)(1)25x y ++-=D.22(3)(1)5x y ++-=【知识点】线段的垂直平分线和圆的标准方程.【解题过程】∵线段AB BC 、为所求圆的两条弦,∴圆心在AB BC 、的垂直平分线的交点,即在直线7100x y -+=和250x y ++=的交点(3,1)M -,半径5r AM ==,所以所求圆的方程为22(3)(1)25x y ++-=【思路点拨】圆的圆心必在弦的垂直平分线上.【答案】C能力型 师生共研7.与圆22(2)(3)16x y -++=有相同的圆心,且过点(11)P -,的圆的标准方程为( )A.22(2)(3)25x y ++-=B.22(2)(3)25x y -++=C.22(2)(3)16x y ++-=D.22(2)(3)16x y -++=【知识点】同心圆问题.【解题过程】由条件知所求圆的圆心为(2,3)C -,半径为5r PC ==另解:由条件设圆的方程为222(2)(3)x y r -++=,将点(11)P -,代入可求得225r = 【思路点拨】同心圆问题可以直接找圆心和半径求解,也可以用同心圆系方程222(2)(3)x y r -++=解决.【答案】B8.圆22:(3)(1)10M x y -++=关于直线20x y -=的对称圆的方程为( )A.22(1)(3)10x y -+-=B.22(1)(3)x y -+-=C.22(1)(3)10x y -++=D.22(1)(3)x y -++=【知识点】圆关于直线的对称圆问题.【解题过程】设对称圆的圆心为(,)a b ,则由条件有31201221323a b a b b a +-⎧-=⎪=⎧⎪⇒⎨⎨+=⎩⎪=-⎪-⎩,【思路点拨】圆关于直线的对称圆,只需将圆心对称,半径不变.【答案】A探究型 多维突破9.已知圆C 过点(12)P ,和(23)Q -,,且圆C 在两坐标轴上的截得的弦长相等,则圆C 的方程为( )A.22(1)(1)5x y ++-=B.22(2)(2)25x y +++=C.22(1)(1)5x y ++-=或22(2)(2)25x y +++=D.22(1)(1)25x y ++-=或22(2)(2)25x y +++=【知识点】圆的标准方程和弦长问题.【解题过程】如图,由于截得的弦长相等,即AD EG =,所以它们的一半也相等,即AB GF =,又AC GC =,所以直角ABC GFC ∆∆≌,BC FC =∴,设圆心(,)C a b ,则a b =……①,又圆心(,)C a b 在线段PQ 的垂直平分线34y x =+上,所以34b a =+……②,联立①②解得:11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩,半径r =或5.【思路点拨】根据几何关系,用待定系数法求圆心坐标是关键.【答案】C10.已知四点(20),(100),(113),(61)M N P Q ,,,,,那么这四点共圆吗?如果共圆,求出圆的方程;如果不共圆,说明理由.【知识点】圆的方程和点共圆问题.【解题过程】设MNP ∆的外接圆的标准方程为222()()x a y b r -+-=,把点,,M N P 的坐标代入得到:222222222(2)()6(10)()3(11)(3)5a b r a a b r b a b r r ⎧-+-==⎧⎪⎪-+-=⇒=⎨⎨⎪⎪-+-==⎩⎩,即外接圆为22(6)(3)25x y -+-=,将(6,1)Q 代入圆的方程得22(66)(13)425-+-=≠,即点Q 不在圆上,故,,,M N P Q 四点不共圆.【思路点拨】多点共圆问题可以先求三点所共的圆的方程,在用点与圆的位置关系判断其他的点在不在圆上.【答案】不共圆自助餐1.已知点(32),(54)A B --,,,则以线段AB 为直径的圆的方程为( ) A.22(1)(1)25x y -++= B.22(1)(1)25x y ++-=C.22(1)(1)100x y -++=D.22(1)(1)100x y ++-=【知识点】圆的标准方程.【解题过程】由于线段AB 为直径,所以圆心为(32),(54)A B --,,的中点即(1,1)-,半径152r AB ==,所以圆的方程为22(1)(1)25x y ++-= 【思路点拨】【答案】B2.过点(11),(11)A B --,,,且圆心在直线20x y +-=上的圆的方程为( ) A.22(3)(1)4x y -++= B.22(3)(1)4x y ++-=C.22(1)(1)4x y -+-=D.22(1)(1)4x y +++=【知识点】圆的标准方程.【解题过程】线段AB 的垂直平分线y x =与直线20x y +-=的交点(1,1)M 即为所求圆的圆心,半径2r AM ==,所以圆的方程为22(1)(1)4x y -+-=【思路点拨】圆的弦的垂直平分线必过圆心.【答案】C3.若点(2,2)在圆22()()16x a y a ++-=的内部,则实数a 的取值范围是( )A.22a -<<B. 02a <<C. 2a <-或2a >D.2a =±【知识点】点与圆的位置关系.【解题过程】由条件有22(2)(2)1622a a a ++-<⇒-<<【思路点拨】点在圆内即点到圆心的距离小于半径.【答案】A4.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.22(2)(2)1x y ++-=B.22(2)(2)1x y -++=C.22(2)(2)1x y +++=D.22(2)(2)1x y -+-=【知识点】圆关于直线的对称圆.【解题过程】设圆2C 的圆心为(,)a b ,则依题意有11102221211a b a b b a -+⎧--=⎪=⎧⎪⇒⎨⎨-=-⎩⎪=-⎪+⎩,对称圆的半径保持不变任为1,故圆2C 的方程为22(2)(2)1x y -++=【思路点拨】圆关于直线的对称圆,即为圆心的对称,半径不变.【答案】B5.设点(00),(11),(42)A B C ,,,,若线段AD 为ABC ∆外接圆的直径,则点D 的坐标为( )A.(8,6)-B. (8,6)-C. (4,6)-D. (4,3)-【知识点】圆的标准方程和点与圆的位置关系.【数学思想】【解题过程】线段AB 的垂直平分线10x y +-=与线段AC 的垂直平分线250x y +-=的交点即为圆心(4,3)-,直径为10,易得点D 的坐标为(8,6)-【思路点拨】圆的弦的垂直平分线一定过圆心.【答案】B6.若圆22()()8x a y a -+-=,则实数a 的取值范围是( )A.(3,1)(1,3)--B.(3,3)-C. [1,1]-D. (3,1][1,3)--【知识点】圆的定义.【解题过程】若0a ≥,由条件可知圆上距原点最近点d <,最远点d <<,∴最近点(2,2)a a --,最远点(2,2)a a ++,<,<<,解得13a <<;同理当0a <时有31a -<<-【思路点拨】根据圆的定义把存在为题转化为距离问题.【答案】A。

人教版高中必修2《圆的方程》教学设计

人教版高中必修2《圆的方程》教学设计

人教版高中必修2《圆的方程》教学设计《人教版高中必修2《圆的方程》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教材分析1.教学内容普通高中课程标准实验教科书《数学》必修2第二章平面解析几何初步中2﹒2节圆与方程。

本节主要研究圆的方程,直线与圆的位置关系,圆与圆的位置关系,以及他们在生活中的简单运用。

2.教材的地位与作用圆是最简单的曲线之一,这节教材安排在学习了直线之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论为后继学习作好准备。

同时有关圆的问题,特别是直线与圆的位置问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。

应此教学中应加强练习,使学生确实掌握这单元的知识和方法。

初中教材中对圆的内容降低最低要求。

本课是单元的第一课,和直线方程一样,教学中先设计一个问题情景,让学生讨论,并引导学生观察圆上点在运动时,不变的是什么,抓住圆的本质,突破难点。

3.三维目标(1)知识与技能A.掌握圆的标准方程,并根据方程写出圆的坐标和圆的半径。

B.会选择适当的坐标系来解决与圆有关的实际问题。

(2)过程与方法A.实际问题引入,师生共同探讨。

B.探究曲线方程的基本方法。

(3)情感态度与价值观培养用坐标法研究几何问题的兴趣。

4.教学重点圆的标准方程及运用5.教学难点求圆的标准方程的条件的确定。

二.教法分析高一学生,在老师的引导下,已经具备一定探究与研究问题的能力。

所以在设计问题时应考虑周全和灵活性,采用启发式探索式教学,师生共同探讨,共同研究,让学生积极思考,主动学习。

在教学过程中采用讨论法,向学生提供具备启发式和思考性的问题。

因此,要求学生在课上讨论,提高学生的探索,推理,想象,分析和总结归纳等方面的能力。

三.学法分析从高考发展的趋势看,高考越来重视学生的分析问题解决问题的能力。

因此,要求学生在学习中遇到问题时,不要急于求成,而要根据问题提供的信息回忆所学知识,采用转化思想,数形结合的思想,选择最佳方案加以解决“瞎撞,乱撞”的不良思想。

最新人教版高中数学必修2第四章《圆的标准方程》教案4

最新人教版高中数学必修2第四章《圆的标准方程》教案4

《圆的标准方程》教案教学目标:1.掌握圆的标准方程特征;会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;利用圆的标准方程解决简单的实际问题;2.进一步培养学生用代数方法研究几何问题的能力;加深对数形结合思想的理解,加强对待定系数法的运用;增强学生应用数学知识的意识;3.培养学生主动探究知识、合作交流的意识;在体验数学美的过程中激发学生的学习兴趣.教学重点难点:1.重点:圆的标准方程的求法及其应用.2.难点:根据不同的已知条件求圆的标准方程;选择恰当的坐标系解决与圆有关的实际问题.教法与学法:1.教法选择:以数学活动为主线,以学生参与为核心,以“自主-合作-探究”为主要学习方式.2.学法指导:通过推导圆的标准方程,求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过圆的标准方程的应用,使学生认识到数学在实际问题中的作用.教学过程:一、设置情境,激发学生探索的兴趣这就是我们今天要研究的问题.二、方法总结,变式演练方法总结1.求圆的方程的方法(1)待定系数法,确定a,b,r;(2)轨迹法,求曲线方程的一般方法.2.点与圆的位置关系设点到圆心的距离为d,圆半径为r:(1)点在圆上d=r;(2)点在圆外d>r;(3)点在圆内d<r.3.圆的切线的求法总结,加深知识的理解和记忆.例3.已知圆心为C的圆,L:x-y+1=0经过点A(1,1)和B(2,-2),且圆心在L上,求圆心为C的圆的标准方程.本题的教学要突出对问题的分析过程,在分析过程中,要强调图形在分析问题中的作用.在解题结束后,可让学生尝试画出框图,以明晰思路,渗透算法思想.分析:如图,确定一个圆关键是圆心和半径.圆经过A、B两点,由于圆心C与A、B两点距离相等,所以圆心C在线段AB的垂直平分线m上,又圆心在直线l上,因此,圆心C是直线l与直线m的交点,半径长等于CA或CB.程这一数学方法及过程.思想表现在由数到形和由形到面.将数学问题转化为数学图形,体现了由数到形的转化;借助图形求解圆方程的问题有利于学生分析问题,解决问题.三、技能训练,课堂交流四、归纳小结,课堂延展延展作业:1.把圆的标准方程展开后是什么形式?2.方程2268200+-++=表示什么x y x y图形?教学设计说明1.教材地位分析:圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后面的直线与圆的位置关系、圆锥曲线等内容,都做了很好的铺垫,所以本节内容在整个解析几何中起着承前启后的作用.2.学生现实状况分析:圆的方程是学生在认识了圆的几何知识后,又在上一章学习了直线与方程,初步认识坐标法的基础上进行研究的.但由于学生学习解析几何的时间还不长、认识程度较浅,对坐标法的运用还不够熟练,在学习过程中难免会出现困难.3.新课标理念倡导“以人为本”,强调“以学生发展为核心”,因此在教学过程应增加学生自主参与,合作交流的机会,教给学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;为了调动学生的积极性与学习数学的兴趣,在教学中增加了与现实生活的联系,如引入摩天轮等生活中常见的实体,以便让学生体会数学知识与实际的联系,从而激发学生学习数学的兴趣.4.教学的难点是解决实际应用问题,因为实际应用问题的信息较多或题目冗长,学生很难根据问题情境构建数学模型,缺乏解决问题的信心,从而导致学生不会解和抵触心理.为此,在教学中,应该从简单的生活实例入手,激发学生的求知欲,同时可以用多媒体进行演示,增强学生的学习兴趣,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强信心.。

新人教版必修二高中数学4.1.1圆的标准方程教案

新人教版必修二高中数学4.1.1圆的标准方程教案

4.1.1 圆的标准方程大家好!我今天说课的题目是《圆的标准方程》,选自人教版高中数学必修二4.1.1. 下面我将以教什么、怎么教、为什么这样教为思路从说教材、说学法、说教法、教学过程设计、板书设计、教学反思六方面来阐述我对本节课的认识和理解。

一、说教材(一)本节课在教材中的地位和作用圆的标准方程是本章的重点内容。

它是在学生学习了直线与直线方程之后,安排的一节继续深入学习的内容,进一步运用坐标法解决二次曲线问题,为后面学习直线与圆的位置关系、椭圆、双曲线、抛物线等提供了基本模式和理论基础,起着承前启后的重要作用。

大纲明确提出掌握确定圆的几何要素,掌握圆的标准方程,初步了解用代数方法处理几何问题的思想。

高考它多数作为容易题出现,或在解答题中作为中间步骤出现。

所以,本节课非常重要,需要学生熟练地掌握。

根据高一教材结构和新课程标准,我确定本节课的教学目标如下:(二)教学目标知识与技能(1)掌握圆的标准方程及其推导过程;(2)掌握点与圆的位置关系的判定方法;(3)会根据已知条件写出圆的标准方程;过程与方法(1)体会数形结合思想,初步形成代数方法处理几何问题能力;(2)加强对待定系数法的运用,培养学生自主探究的能力;情感态度与价值观(1) 培养学生积极思考、自主构建知识体系的学习态度;(2) 让学生感受数学的现实美、抽象美,体会圆的标准方程形成过程的严谨美.(三)教学重难点教学重点:圆的标准方程及其运用;教学难点: ①会根据不同的已知条件求圆的方程;解决方法:我将充分利用课本提供的两个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法,突出重点,突破难点。

二、说学法(一)学情分析1、学生特点本节课将在华侨中学高一一个平行班讲授,该班学生基础知识较好,接受能力强,求知欲强,这为本节课圆的标准方程的探索提供了情感保障。

2、知识能力基础学生在上一章已经学习了直线与直线的方程, 对方程有了初步了解,能接受用坐标、方程知识来刻画直线、圆等图形,具备一定的观察分析、解决问题能力,圆基于初中的知识,又是初中知识的加深,这为探究圆的标准方程提供了一定的认知基础。

人教版高中数学必修二《圆的标准方程》教案

人教版高中数学必修二《圆的标准方程》教案

教案说明圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。

一、设计理念设计的根本出发点是促进学生的发展。

教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。

二、设计思路(1)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。

在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。

(2)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。

从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。

另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。

在一个个问题的驱动下,高效的完成本节的学习任务。

三、媒体设计本节采用powerpoint媒体,知识容量大,同时又有图形。

为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。

同时动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

4.1.1圆的标准方程教材:普通高中课程标准实验教科书(人教A版)数学(必修2)第四章第一节一、教学目标1、知识目标(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

高中数学圆的标准方程教案新人教版必修2

高中数学圆的标准方程教案新人教版必修2
解: 〔待定系数法〕设圆的方程为 ,由题意得: ,故圆的方程为 。
〔用垂径定理〕线段AB的垂直平分线方程为 ,由 ,得圆心 的坐标为 ,所以所求圆的半径 ,故圆的方程为 .
4、求圆心在直线 上,且与 轴相切于点 的圆的标准方程。
解:由题意可得:圆心为 ,半径为 ,故圆的方程为
变:圆心在直线 上,且与直线 切于点 ,求圆的标准方程。
解:可由待定系数法得 即为所求圆的方程。
选练:〔1〕两条直线 与 的交点 在圆 上,求常数 的值。
解:1或
〔2〕点 在圆 的内部,那么实数 的取值X围是
四、回顾反思:
圆的标准方程〔x―a)2+(y―b)2=r2
教学反思
二次备课
3、情感问题的兴趣。
教学重点圆的标准方程的理解、掌握。
教学难点圆的标准方程的应用。
教学准备预习书P96-97
教学过程
一、问题情境:
1、某某省赵县的赵州桥是世界上历史最悠久的石拱桥,如果知道赵州桥的跨度和圆拱高度,如何写出这个圆拱所在的圆的方程?
练:〔1〕设圆方程 ,那么圆心,半径
〔2〕求以下圆的方程
①圆心在原点,半径为
②圆心在 ,半径为
三、数学应用:
1、P97例1
2、隧道的截面是半径为 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为 ,高为 的货车能不能驶入这个隧道?
变:假设货车的最大宽度为 ,那么货车要驶入该隧道,限高为多少?
解:
3、求过点 ,且圆心 在直线 上的圆的方程。
圆的标准方程
教学目标
1、知识技能目标:掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;
会选择适当的坐标系解决与圆有关的实际问题;

人教新课标版数学高一-高中数学必修2教案 第四章 圆与方程

人教新课标版数学高一-高中数学必修2教案 第四章 圆与方程

4.1圆的方程4.1.1圆的标准方程圆的标准方程[导入新知]圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的要素是圆心和半径.(3)圆的标准方程:如右图所示,圆心为C(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以原点为圆心、半径为r的圆.[化解疑难]1.由圆的标准方程,可直接得到圆的圆心坐标和半径大小;反过来说,给出了圆的圆心和半径,即可直接写出圆的标准方程,这一点体现了圆的标准方程的直观性,为其优点.2.几种特殊位置的圆的标准方程:条件圆的标准方程过原点(x-a)2+(y-b)2=a2+b2(a2+b2>0)圆心在x轴上(x-a)2+y2=r2(r≠0)圆心在y轴上x2+(y-b)2=r2(r≠0)圆心在x轴上且过原点(x-a)2+y2=a2(a≠0)圆心在y轴上且过原点x2+(y-b)2=b2(b≠0)与x轴相切(x-a)2+(y-b)2=b2(b≠0)与y轴相切(x-a)2+(y-b)2=a2(a≠0)点与圆的位置关系[导入新知]点与圆的位置关系圆的标准方程为(x-a)2+(y-b)2=r2,圆心C(a,b),半径为r.设所给点为M(x0,y0),则位置关系判断方法几何法代数法点在圆上│MC│=r⇔点M在圆C上点M(x0,y0)在圆上⇔(x0-a)2+(y0-b)2=r2点在圆内│MC│<r⇔点M在圆C内点M(x0,y0)在圆内⇔(x0-a)2+(y0-b)2<r2点在圆外│MC│>r⇔点M在圆C外点M(x0,y0)在圆外⇔(x0-a)2+(y0-b)2>r21.点与圆的位置关系有3种:点在圆内,点在圆上,点在圆外.2.判断点与圆的位置关系常用几何法和代数法.求圆的标准方程[例1]过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是() A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4[答案] C[类题通法]确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,建立关于a,b,r的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.[活学活用]求下列圆的标准方程:(1)圆心是(4,-1),且过点(5,2);(2)圆心在y 轴上,半径长为5,且过点(3,-4);(3)求过两点C (-1,1)和D (1,3),圆心在x 轴上的圆的标准方程. 解:(1)圆的半径长r =(5-4)2+(2+1)2=10,故圆的标准方程为(x -4)2+(y +1)2=10.(2)设圆心为C (0,b ),则(3-0)2+(-4-b )2=52, 解得b =0或b =-8,则圆心为(0,0)或(0,-8). 又∵半径r =5,∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. (3)直线CD 的斜率k CD =3-11+1=1,线段CD 中点E 的坐标为(0,2),故线段CD 的垂直平分线的方程为y -2=-x , 即y =-x +2,令y =0,得x =2, 即圆心为(2,0).由两点间的距离公式, 得r =(2-1)2+(0-3)2=10.所以所求圆的标准方程为(x -2)2+y 2=10.点与圆的位置关系[例2] 如右图所示,已知两点P 1(4,9)和P 2(6,3).(1)求以P 1P 2为直径的圆的方程;(2)试判断点M (6,9),N (3,3),Q (5,3)是在圆上,在圆内,还是在圆外.[解] (1)设圆心C (a ,b ),半径长为r ,则由C 为P 1P 2的中点,得a =4+62=5,b =9+32=6.又由两点间的距离公式得r=|CP1|=(4-5)2+(9-6)2=10,故所求圆的方程为(x-5)2+(y-6)2=10.(2)由(1)知,圆心C(5,6),则分别计算点到圆心的距离:|CM|=(6-5)2+(9-6)2=10,|CN|=(3-5)2+(3-6)2=13>10,|CQ|=(5-5)2+(3-6)2=3<10.因此,点M在圆上,点N在圆外,点Q在圆内.[类题通法]1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断.2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.[活学活用]若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.{a|-1<a<1}B.{a|0<a<1}C.{a|a>1或a>-1} D.{a|a=±1}答案:A10.求解圆的方程中漏解[典例]已知某圆圆心在x轴上,半径长为5,且截y轴所得线段长为8,求该圆的标准方程.[解]法一:如右图所示,由题设|AC|=r=5,|AB|=8,∴|AO|=4.在Rt△AOC中,|OC|=|AC|2-|AO|2=52-42=3.设点C坐标为(a,0),则|OC|=|a|=3,∴a=±3.∴所求圆的方程为(x+3)2+y2=25,或(x-3)2+y2=25.法二:由题意设所求圆的方程为(x-a)2+y2=25.∵圆截y轴线段长为8,∴圆过点A(0,4).代入方程得a2+16=25,∴a=±3.∴所求圆的方程为(x+3)2+y2=25,或(x-3)2+y2=25.[易错防范]1.若解题分析只画一种图形,而忽略两种情况,考虑问题不全面,漏掉圆心在x轴负半轴的情况而导致出错.2.借助图形解决数学问题,只能是定性分析,而不能定量研究,要定量研究问题,就要考虑到几何图形的各种情况.[成功破障]圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的标准方程为________.答案:(x-2)2+(y+3)2=5一、选择题1.已知点P(3,2)和圆的方程(x-2)2+(y-3)2=4,则它们的位置关系为()A.在圆心B.在圆上C.在圆内D.在圆外答案:C2.以P(-2,3)为圆心,且与y轴相切的圆的方程是()A.(x-2)2+(y+3)2=4 B.(x+2)2+(y-3)2=4C.(x-2)2+(y+3)2=9 D.(x+2)2+(y-3)2=9答案:B3.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1答案:A4.已知圆C经过点P(-2,4)和点Q(4,4),直径为210,则圆C的标准方程为() A.(x-1)2+(y-3)2=10B.(x+1)2+(y-5)2=10C.(x+1)2+(y-3)2=10或(x-1)2+(y-5)2=10D.(x-1)2+(y-3)2=10或(x-1)2+(y-5)2=10答案:D5.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,5为半径的圆的方程为()A.(x-1)2+(y+2)2=5 B.(x+1)2+(y+2)2=5C.(x+1)2+(y-2)2=5 D.(x-1)2+(y-2)2=5答案:C二、填空题6.圆心为直线x-y+2=0与直线2x+y-8=0的交点,且经过原点的圆的标准方程是__________________.答案:(x-2)2+(y-4)2=207.点(5a+1,a)在圆(x-1)2+y2=26的内部,则a的取值范围是________.答案:[0,1)8.若圆心在x轴上,半径为5的圆C位于y轴左侧,且与直线x+2y=0相切,则圆C 的方程是________.答案:(x+5)2+y2=5三、解答题9.求经过点A(-1,4),B(3,2)两点且圆心在y轴上的圆的方程.解:法一:设圆心坐标为(a,b).∵圆心在y 轴上,∴a =0.设圆的标准方程为x 2+(y -b )2=r 2. ∵该圆过A ,B 两点,∴⎩⎪⎨⎪⎧ (-1)2+(4-b )2=r 2,32+(2-b )2=r 2.解得⎩⎪⎨⎪⎧b =1,r 2=10.∴所求圆的方程为x 2+(y -1)2=10.法二:∵线段AB 的中点坐标为(1,3),k AB =2-43-(-1)=-12,∴弦AB 的垂直平分线方程为y -3=2(x -1),即y =2x +1.由⎩⎪⎨⎪⎧ y =2x +1,x =0,解得⎩⎪⎨⎪⎧x =0,y =1.∴点(0,1)为所求圆的圆心. 由两点间的距离公式,得圆的半径r =10, ∴所求圆的方程为x 2+(y -1)2=10.10.求过点A (1,2)和B (1,10)且与直线x -2y -1=0相切的圆的方程.解:圆心在线段AB 的垂直平分线y =6上,设圆心为(a,6),半径为r ,则圆的方程为(x -a )2+(y -6)2=r 2.将点(1,10)代入得(1-a )2+(10-6)2=r 2,①而r =|a -13|5,代入①,得(a -1)2+16=(a -13)25,解得a =3,r =25,或a =-7,r =4 5.故所求圆为(x -3)2+(y -6)2=20,或(x +7)2+(y -6)2=80.4.1.2 圆的一般方程[导入新知]1.圆的一般方程的概念当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程. 2.圆的一般方程对应的圆心和半径圆的一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的圆的圆心为⎝⎛⎭⎫-D 2,-E2,半径长为12D2+E2-4F.[化解疑难]1.圆的一般方程体现了圆的方程形式上的特点:(1)x2,y2的系数相等且不为0;(2)没有xy项.2.对方程x2+y2+Dx+Ey+F=0的说明.方程条件图形x2+y2+Dx+Ey+F=0D2+E2-4F<0不表示任何图形D2+E2-4F=0表示一个点⎝⎛⎭⎫-D2,-E2D2+E2-4F>0表示以⎝⎛⎭⎫-D2,-E2为圆心,以12D2+E2-4F为半径的圆圆的一般方程的概念辨析[例1]若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:(1)实数m的取值范围;(2)圆心坐标和半径.[解](1)据题意知D2+E2-4F=(2m)2+(-2)2-4(m2+5m)>0,即4m2+4-4m2-20m>0,解得m<15,故m的取值范围为⎝⎛⎭⎫-∞,15.(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准方程为(x+m)2+(y-1)2=1-5m,故圆心坐标为(-m,1),半径r=1-5m.[类题通法]形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时可有如下两种方法:(1)由圆的一般方程的定义令D2+E2-4F>0,成立则表示圆,否则不表示圆;(2)将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x2+y2+Dx+Ey+F=0这种标准形式,若不是,则要化为这种形式再求解.[活学活用]下列方程各表示什么图形?若表示圆,求其圆心和半径.(1)x2+y2+x+1=0;(2)x2+y2+2ax+a2=0(a≠0);(3)2x2+2y2+2ax-2ay=0(a≠0).解:(1)∵D=1,E=0,F=1,∴D2+E2-4F=1-4=-3<0,∴方程不表示任何图形.(2)∵D=2a,E=0,F=a2,∴D2+E2-4F=4a2-4a2=0,∴方程表示点(-a,0).(3)两边同除以2,得x2+y2+ax-ay=0,D=a,E=-a,F=0,∴D2+E2-4F=2a2>0,∴方程表示圆,它的圆心为⎝⎛⎭⎫-a2,a2,半径r=12D2+E2-4F=22|a|.圆的一般方程的求法[例2]已知△ABC的3个顶点为A(1,4),B(-2,3),C(4,-5),求△ABC的外接圆方程、外心坐标和外接圆半径.[解]法一:设△ABC的外接圆方程为x2+y2+Dx+Ey+F=0,∵A,B,C在圆上,∴⎩⎪⎨⎪⎧1+16+D+4E+F=0,4+9-2D+3E+F=0,16+25+4D-5E+F=0,∴⎩⎪⎨⎪⎧D=-2,E=2,F=-23,∴△ABC的外接圆方程为x2+y2-2x+2y-23=0,即(x-1)2+(y+1)2=25.∴外心坐标为(1,-1),外接圆半径为5.法二:∵k AB =4-31+2=13,k AC =4+51-4=-3,∴k AB ·k AC =-1,∴AB ⊥AC .∴△ABC 是以角A 为直角的直角三角形, ∴外心是线段BC 的中点, 坐标为(1,-1),r =12|BC |=5.∴外接圆方程为(x -1)2+(y +1)2=25. [类题通法]应用待定系数法求圆的方程时的两个注意点(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D ,E ,F .[活学活用]求经过点A (-2,-4)且与直线x +3y -26=0相切于点B (8,6)的圆的方程. 解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 则圆心坐标为⎝⎛⎭⎫-D 2,-E 2. ∵圆与x +3y -26=0相切, ∴6+E28+D 2·⎝⎛⎭⎫-13=-1,即E -3D -36=0.① ∵(-2,-4),(8,6)在圆上, ∴2D +4E -F -20=0,② 8D +6E +F +100=0.③联立①②③,解得D =-11,E =3,F =-30,故所求圆的方程为x 2+y 2-11x +3y -30=0.代入法求轨迹方程[例3]已知△ABC的边AB长为4,若BC边上的中线为定长3,求顶点C的轨迹方程.[解]以直线AB为x轴,AB的垂直平分线为y轴建立坐标系(如右图),则A(-2,0),B(2,0),设C(x,y),BC中点D(x0,y0).∴⎩⎪⎨⎪⎧2+x2=x0,0+y2=y0.①∵|AD|=3,∴(x0+2)2+y20=9. ②将①代入②,整理得(x+6)2+y2=36.∵点C不能在x轴上,∴y≠0.综上,点C的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点.轨迹方程为(x+6)2+y2=36(y≠0).[类题通法]用代入法求轨迹方程的一般步骤[活学活用]过点A(8,0)的直线与圆x2+y2=4交于点B,则AB中点P的轨迹方程为________________.答案:(x-4)2+y2=110.与圆有关的轨迹(轨迹方程)问题[典例](12分)已知圆O的方程为x2+y2=9,求经过点A(1,2)的圆的弦的中点P的轨迹.[解题流程][活学活用]一动点M到点A(-4,0)的距离是到点B(2,0)的距离的2倍,求动点的轨迹.解:设动点M的坐标为(x,y),则|MA|=2|MB|,即(x+4)2+y2=2(x-2)2+y2,整理得x2+y2-8x=0,即所求动点的轨迹方程为x2+y2-8x=0.一、选择题1.圆的方程是x2+y2+kx+2y+k2=0,当圆的面积最大时,圆心的坐标是()A.(-1,1)B.(1,-1)C.(-1,0) D.(0,-1)答案:D2.已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍,那么点M的轨迹方程是()A.x2+y2=32B.x2+y2=16C.(x-1)2+y2=16D.x2+(y-1)2=16答案:B3.当a取不同的实数时,由方程x2+y2+2ax+2ay-1=0可以得到不同的圆,则() A.这些圆的圆心都在直线y=x上B.这些圆的圆心都在直线y=-x上C.这些圆的圆心都在直线y=x或直线y=-x上D.这些圆的圆心不在同一条直线上答案:A4.如果圆x2+y2+ax+by+c=0(a,b,c不全为零)与y轴相切于原点,那么() A.a=0,b≠0,c≠0 B.b=c=0,a≠0C.a=c=0,b≠0 D.a=b=0,c≠0答案:B5.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A.πB.4πC.8πD.9π答案:B二、填空题6.已知圆C:x2+y2-2x+2y-3=0,AB为圆C的一条直径,若点A的坐标为(0,1),则点B的坐标为________.答案:(2,-3)7.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C 上,则a =________.答案:-28.已知A ,B 是圆O :x 2+y 2=16上的两点,且│AB │=6,若以AB 为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是____________________.答案:(x -1)2+(y +1)2=9 三、解答题9.已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径长为2,求圆的一般方程.解:圆心C ⎝⎛⎭⎫-D 2,-E 2,∵圆心在直线x +y -1=0上,∴-D 2-E2-1=0,即D +E =-2.①又∵半径长r =D 2+E 2-122=2,∴D 2+E 2=20.②由①②可得⎩⎪⎨⎪⎧ D =2,E =-4或⎩⎪⎨⎪⎧D =-4,E =2.又∵圆心在第二象限,∴-D 2<0即D >0,-E2>0即E <0.则⎩⎪⎨⎪⎧D =2,E =-4.故圆的一般方程为x 2+y 2+2x -4y +3=0.10.设△ABC 顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点,请说明理由. 解:(1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0. 因为圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),所以⎩⎪⎨⎪⎧a 2+aE +F =0,3a +3aD +F =0,3a -3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a .所以圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2)圆M的方程可化为(3+y)a-(x2+y2+3y)=0.由⎩⎪⎨⎪⎧3+y=0,x2+y2+3y=0.解得x=0,y=-3.所以圆M过定点(0,-3).4.2直线、圆的位置关系4.2.1直线与圆的位置关系第一课时直线与圆的位置关系直线与圆的位置关系[导入新知]1.直线与圆有3种位置关系位置关系交点个数相交有两个公共点相切只有一个公共点相离没有公共点2.直线Ax+By+C=0位置关系相交相切相离公共点个数两个一个零个判定方法几何法:设圆心到直线的距离d=|Aa+Bb+C|A2+B2d<r d=r d>r代数法:由⎩⎪⎨⎪⎧Ax+By+C=0,(x-a)2+(y-b)2=r2消元得到一元二次方程的判别式ΔΔ>0Δ=0Δ<0 [判断直线与圆的位置关系,一般常用几何法.因为代数法计算烦琐,书写量大,易出错,几何法则较简洁,但是在判断直线与其他二次曲线的位置关系时,常用代数法.直线与圆位置关系的判断[例1] 若直线4x -3y +a =0与圆x 2+y 2=100有如下关系:①相交;②相切;③相离,试分别求实数a 的取值范围.[解] 法一:(代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8ax +a 2-900=0.Δ=(8a )2-4×25(a 2-900)=-36a 2+90 000.①当直线和圆相交时,Δ>0,即-36a 2+90 000>0,-50<a <50; ②当直线和圆相切时,Δ=0,即a =50或a =-50; ③当直线和圆相离时,Δ<0,即a <-50或a >50. 法二:(几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10, 则圆心到直线的距离d =|a |32+42=|a |5. ①当直线和圆相交时,d <r ,即|a |5<10,-50<a <50;②当直线和圆相切时,d =r ,即|a |5=10,a =50或a =-50;③当直线和圆相离时,d >r ,即|a |5>10,a <-50或a >50.[类题通法]直线与圆位置关系判断的3种方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系.[活学活用]1.直线x -ky +1=0与圆x 2+y 2=1的位置关系是( ) A .相交 B .相离 C .相交或相切D .相切答案:C2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案:C切线问题[例2] 过点A (-1,4)作圆(x -2)2+(y -3)2=1的切线l ,求切线l 的方程. [解] ∵(-1-2)2+(4-3)2=10>1, ∴点A 在圆外.法一:当直线l 的斜率不存在时,l 的方程是x =-1, 不满足题意.设直线l 的斜率为k ,则方程为y -4=k (x +1), 即kx -y +4+k =0.圆心(2,3)到切线l 的距离为|2k -3+4+k |k 2+1=1,解得k =0或k =-34,因此,所求直线l 的方程y =4或3x +4y -13=0. 法二:由于直线l 与圆相切,所以方程组⎩⎪⎨⎪⎧y -4=k (x +1),(x -2)2+(y -3)2=1只有1个解. 消去y ,得到关于x 的一元二次方程(1+k 2)x 2+(2k 2+2k -4)x +k 2+2k +4=0, 则Δ=(2k 2+2k -4)2-4(1+k 2)(k 2+2k +4)=0, 解得8k 2+6k =0,即k =0或k =-34,因此,所求直线l 的方程为y =4或3x +4y -13=0. [类题通法]1.过圆上一点(x 0,y 0)的圆的切线方程的求法.先求切点与圆心连线的斜率k,再由垂直关系得切线的斜率为-1,由点斜式可得切线k方程.如果斜率为零或不存在,则由图形可直接得切线方程y=y0或x=x0.2.过圆外一点(x0,y0)的切线方程的求法.设切线方程为y-y0=k(x-x0),由圆心到直线的距离等于半径建立方程,可求得k,也就得切线方程.当用此法只求出一个方程时,另一个方程应为x=x0,因为在上面解法中不包括斜率不存在的情况,而过圆外一点的切线有两条.一般不用联立方程组的方法求解.[活学活用]1.直线x+y+m=0与圆x2+y2=m相切,则m的值为()A.0或2 B.2C. 2 D.无解答案:B2.圆x2+y2-4x=0在点P(1,3)处的切线方程为()A.x+3y-2=0 B.x+3y-4=0C.x-3y+4=0 D.x-3y+2=0答案:D弦长问题[例3]已知圆的方程为x2+y2=8,圆内有一点P(-1,2),AB为过点P且倾斜角为α的弦.(1)当α=135°时,求AB的长;(2)当弦AB被点P平分时,写出直线AB的方程.解:(1)法一:(几何法)如右图所示,过点O作OC⊥AB.由已知条件得直线的斜率为k=tan 135°=-1,∴直线AB的方程为y-2=-(x+1),即x+y-1=0.∵圆心为(0,0),∴|OC |=|-1|2=22.∵r =22,∴|BC |=8-⎝⎛⎭⎫222=302,∴|AB |=2|BC |=30. 法二:(代数法)当α=135°时,直线AB 的方程为y -2=-(x +1),即y =-x +1,代入x 2+y 2=8, 得2x 2-2x -7=0. ∴x 1+x 2=1,x 1x 2=-72,∴|AB |=1+k 2|x 1-x 2|=(1+1)[(x 1+x 2)2-4x 1x 2]=30.(2)如右图所示,当弦AB 被点P 平分时,OP ⊥AB .∵k OP =-2,∴k AB =12,∴直线AB 的方程为y -2=12(x +1),即x -2y +5=0.[类题通法]求直线与圆相交时弦长的两种方法(1)几何法:如图①,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝⎛⎭⎫|AB |22+d 2=r 2,即|AB |=2r 2-d 2.(2)代数法:如图②所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2·|x 1-x 2|=1+1k2|y 1-y 2|(直线l 的斜率k 存在).[活学活用]求经过点P ⎝⎛⎭⎫-3,-32且被定圆x 2+y 2=25截得的弦长为8的直线的方程. 解:当直线的斜率不存在时,过点P 的直线方程为x =-3,代入x 2+y 2=25,得y 1=4,y 2=-4,所以弦长为|y 1-y 2|=8,符合题意.当直线的斜率存在时,设所求直线的方程为y +32=k (x +3),即kx -y +3k -32=0.由已知,得弦心距为52-42=3, 所以⎪⎪⎪⎪k ·0-0+3k -32k 2+1=3,解得k =-34,所以此直线的方程为y +32=-34(x +3),即3x +4y +15=0.综上所述,所求直线的方程为x +3=0或3x +4y +15=0.11.过一点求圆的切线方程的解题误区[典例] 过点A (3,1)和圆(x -2)2+y 2=1相切的直线方程是( ) A .y =1 B .x =3 C .x =3或y =1D .不确定[解析] 由题意知,点A 在圆外,故过点A 的切线应有两条.当所求直线斜率存在时,设其为k ,则直线方程为y -1=k (x -3),即kx -y +1-3k =0.由于直线与圆相切,所以d =|2k -0+1-3k |1+k 2=1,解得k =0,所以切线方程为y =1.当所求直线斜率不存在时,x =3也符合条件.综上所述,所求切线方程为x =3或y =1.[答案] C [易错防范]1.解题时只考虑所求直线的斜率存在的情况,而忽视了斜率不存在的情况,而错误地选A ;若只考虑斜率不存在的情形,而忽视了斜率存在的情况,而错误地选B.2.过一点求圆的切线时,首先要判断点与圆的位置关系,以此来确定切线的条数,经过圆外一点可以作圆的两条切线,求解中若只求出一个斜率,则另一条必然斜率不存在.[成功破障]已知圆C :(x -1)2+(y -2)2=4,则过点(3,5)并与圆C 相切的切线方程为________. 答案:5x -12y +45=0或x =3一、选择题1.(陕西高考)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定答案:B2.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( ) A. 3 B .2 C. 6 D .2 3答案:D3.(安徽高考) 过点P (-3,-1)的直线l 与圆 x 2+y 2=1有公共点,则直线 l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6 B .⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D .⎣⎡⎦⎤0,π3 答案:D4.由直线y =x +1上的点向圆C :x 2+y 2-6x +8=0引切线,则切线长的最小值为( ) A .1 B .2 2 C.7 D .3答案:C5.已知圆的方程为x 2+y 2-6x -8y =0,设该圆过点P (3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6答案:B二、填空题6.(山东高考)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为23,则圆C的标准方程为__________________.答案:(x-2)2+(y-1)2=47.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为____________________.答案:(x+1)2+y2=28.已知圆C过点(1,0),且圆心在x轴的正半轴上.直线l:y=x-1被圆C所截得的弦长为22,则过圆心且与直线l垂直的直线的方程为____________________________.答案:x+y-3=0三、解答题9.已知圆C和y轴相切,圆心C在直线x-3y=0上,且被直线y=x截得的弦长为27,求圆C的方程.解:设圆心坐标为(3m,m).∵圆C和y轴相切,得圆的半径为3|m|,∴圆心到直线y=x的距离为|2m|2=2|m|.由半径、弦心距、半弦长的关系得9m2=7+2m2,∴m=±1,∴所求圆C的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.10.已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为A,B.(1)求直线PA,PB的方程;(2)求过P点的圆C的切线长.解:(1)由题意知,切线的斜率存在,设切线方程为y+1=k(x-2),即kx-y-2k-1=0.圆心到直线的距离等于2,即|-k-3|k2+1=2,∴k2-6k-7=0,解得k=7或k=-1,故所求的切线方程为y+1=7(x-2)或y+1=-(x-2),即7x-y-15=0或x+y-1=0.(2)在Rt △PAC 中,PA 2=PC 2-AC 2 =(2-1)2+(-1-2)2-2=8, ∴过P 点的圆C 的切线长为2 2.第二课时 直线与圆的位置关系(习题课)1.直线与圆的位置关系有哪几种? 答案:略2.如何用几何法和代数法判断直线与圆的位置关系? 答案:略3.如何求过某点的圆的切线方程? 答案:略4.如何求圆的弦长? 答案:略与圆有关的切线问题[例1] 自点P (-6,7)发出的光线l 射到x 轴上的点A 处,被x 轴反射,其反射光线所在直线与圆x 2+y 2-8x -6y +21=0相切于点Q .求光线l 所在直线方程.[解] 如右图所示,作圆x 2+y 2-8x -6y +21=0关于x 轴的对称圆x 2+y 2-8x +6y +21=0,由几何光学原理,知直线l 与圆x 2+y 2-8x +6y +21=0相切.由于l 的斜率必存在,故可设直线l :y -7=k (x +6),即kx -y +6k +7=0.由圆x 2+y 2-8x +6y +21=0的圆心(4,-3)到直线l 的距离等于半径,知|4k +3+6k +7|k 2+1=10|k +1|k 2+1=2,解得k =-34或k =-43,故光线l 所在直线的方程为3x +4y -10=0或4x +3y +3=0. [类题通法]过已知圆外一点求切线的方程一般有3种方法: (1)设切线斜率,用判别式法;(2)设切线斜率,用圆心到直线的距离等于半径长; (3)设切点(x 0,y 0),用切线公式法. [活学活用]已知圆C :(x -2)2+(y -1)2=1.求: (1)过A (3,4)的圆C 的切线方程;(2)在两坐标轴上的截距相等的圆C 的切线方程.[解] (1)当所求直线的斜率存在时,设过A (3,4)的直线方程为y -4=k (x -3),即kx -y +4-3k =0,由|2k -1+4-3k |1+k 2=1,得k =43.所以切线方程为y -4=43(x -3),即4x -3y =0.当所求直线的斜率不存在时,直线方程为x =3,也符合题意. 故所求直线方程为4x -3y =0或x =3.(2)设在两坐标轴上的截距相等的直线方程为x a +ya =1或y =kx ,于是由圆心(2,1)到切线距离为1,得|3-a |2=1或|2k -1|1+k 2=1.解得a =3±2,k =0或k =43.故所求切线方程为x +y =3±2或y =0或y =43x .与圆有关的参数问题 [例2] 已知直线l :y =-33x +m 与圆x 2+y 2=1在第一象限内有两个不同的交点,求m 的取值范围.[解] ∵l :y =-33x +m ,圆x 2+y 2=1, ∴l 可变形为3x +3y -3m =0,圆的圆心为(0,0),半径长r =1. 当直线和该圆相切时,应满足d =|-3m |3+9=1,解得m =±233.在平面直角坐标系中作出图象,如右图所示,其中l 2:y =-33x +233,l 3:y =-33x -233. 过原点作直线l 0:y =-33x ,m 0:y =-x . ∵直线l 的斜率k =-33,直线AB 的斜率k =-1, ∴只有当直线l 在移动到过A (0,1)后才开始与圆在第一象限内有两个交点,此时对应的直线l 1:y =-33x +1.要使直线与圆在第一象限内有两个不同交点,直线l 只有在直线l 1和直线l 2之间运动才可,此时相应的m ∈⎝⎛⎭⎫1,233.∴m 的取值范围是⎝⎛⎭⎫1,233.[类题通法]解决与圆有关的参数问题,有时直接求解比较困难,可根据题意先画出图象,利用数形结合的方法,可以很容易得出答案.[活学活用]在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,直线l :12x -5y +c =0(其中c 为常数).下列有关直线l 与圆O 的命题:①当c =0时,圆O 上有四个不同的点到直线l 的距离为1; ②若圆O 上有四个不同的点到直线l 的距离为1,则-13<c <13; ③若圆O 上恰有三个不同的点到直线l 的距离为1,则c =13; ④若圆O 上恰有两个不同的点到直线l 的距离为1,则13<c <39; ⑤当c =±39时,圆O 上只有一个点到直线l 的距离为1. 其中正确命题的序号是________.答案:①②⑤直线与圆的综合问题[例3] 已知圆x 2+y 2+x -6y +m =0与直线x +2y -3=0相交于P ,Q 两点,O 为原点,且OP ⊥OQ ,求实数m 的值.[解] 由⎩⎪⎨⎪⎧x +2y -3=0x 2+y 2+x -6y +m =0消去y ,得5x 2+10x +4m -27=0,设P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧Δ=100-20(4m -27)>0, ①x 1+x 2=-2,x 1x 2=4m -275.又OP ⊥OQ ,∴k OP ·k OQ =-1,即x 1x 2+y 1y 2=0. ∴x 1·x 2+12(3-x 1)·12(3-x 2)=0,整理得5x 1x 2-3(x 1+x 2)+9=0, ∴5×4m -275-3×(-2)+9=0.解得m =3满足① ∴实数m 的值为3. [类题通法]此题设出P ,Q 两点的坐标,但在求解过程中又不能刻意地求出来,只将它作为一个转化过程中的桥梁,这种“设而不求”的解题方法在解析几何中很常见,要注意认真体会并掌握.[活学活用]自原点O 作圆(x -1)2+y 2=1的不重合两弦OA ,OB ,若|OA |·|OB |=k (定值),证明不论A ,B 两点位置怎样,直线AB 恒切于一个定圆,并求出定圆的方程.解:设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2), 则|OA |·|OB |=x 21+y 21·x 22+y 22=x 21+[1-(x 1-1)2]·x 22+[1-(x 2-1)2]=4x 1x 2=k . ∴x 1x 2=k 24.设直线AB 的方程为y =mx +b , 代入已知圆的方程并整理,得 (1+m 2)x 2+2(mb -1)x +b 2=0, 由根与系数的关系,得x 1x 2=b 21+m 2.∴b 21+m 2=k 24. ∵原点O 到直线mx -y +b =0的距离为|b |1+m 2,∴所求定圆的半径r 满足 r 2=b 21+m 2=k 24(定值). ∴直线AB 恒切于定圆x 2+y 2=k 24.4.利用数形结合思想探究与圆有关的最值问题[典例] 设点P (x ,y )在圆x 2+(y -1)2=1上,求(x -2)2+y 2的最值. [解](x -2)2+y 2的几何意义是圆上的点与定点(2,0)的距离.因为圆心(0,1)与定点的距离是(2-0)2+(0-1)2=5,圆的半径是1,所以(x -2)2+y 2的最小值是5-1,最大值是5+1.[多维探究] 1.化为求斜率问题 求y +2x +1的最小值. 解:法一:令y +2x +1=t ,则方程组⎩⎪⎨⎪⎧y +2=t (x +1),x 2+(y -1)2=1一定有解.消去y ,整理得(1+t 2)x 2+2(t 2-3t )x +(t 2-6t +8)=0有解.所以Δ=4(t 2-3t )2-4(1+t 2)(t 2-6t +8)≥0, 即6t -8≥0,解得t ≥43.故y +2x +1的最小值是43.法二:令y +2x +1=k ,则k 表示圆上任一点与点(-1,-2)连线的斜率, ∴kx -y +k -2=0, 由|0-1+k -2|k 2+1≤1,得k ≥43.∴y +2x +1的最小值为43.2.化为求圆心到直线距离问题求直线x -y -2=0上的点到圆的距离的最值.解:圆心为(0,1),到直线x -y -2=0的距离为|-1-2|2=322,因此直线上的点和圆上的点的最大距离为322+1,最小距离为322-1.3.化为求圆心到直线距离问题若圆上有且只有四个点到直线3x -4y +C =0的距离为12,求C 的取值范围.解:由题意,圆心(0,1)到直线的距离小于12即可,则|-4+C |32+42<12, 解得32<C <132.所以C 的取值范围为⎝⎛⎭⎫32,132. [方法感悟]解与圆有关的最值问题,要明确其几何意义:(1)k =y -b x -a 表示圆上的点(x ,y )与定点(a ,b )连线的斜率,直线方程可与圆的方程联立得到关于x 的一元二次方程,利用Δ≥0求k 的最值;也可用圆心到直线的距离d ≤r ,求k 的最值.(2)直线与圆相离时,直线上的点到圆的距离的最大值为d +r ,最小值为d -r .一、选择题1.若直线x +y +m =0与圆x 2+y 2=m 相切,则m 的值为( ) A .0或2 B .0或4 C .2 D .4答案:C2.过点(1,1)的直线与圆(x -2)2+(y -3)2=9相交于A ,B 两点,则|AB |的最小值为( ) A .2 3 B .4 C .2 5 D .5答案:B3.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A .k =12,b =-4B .k =-12,b =4C .k =12,b =4D .k =-12,b =-4答案:A4.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1 答案:B5.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0答案:A 二、填空题6.已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.答案:0或67.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 的面积最小值是____________.答案:3- 28.已知圆的方程为x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为________. 答案:14+6 5 三、解答题9.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对任意m ∈R ,直线l 与圆C 总有两个不同的交点; (2)设l 与圆C 交于A ,B 两点,若|AB |=17,求l 的倾斜角; (3)求弦AB 的中点M 的轨迹方程.解:(1)证明:由已知直线l :y -1=m (x -1),知直线l 恒过定点P (1,1). ∵12=1<5,∴P 点在圆C 内,所以直线l 与圆C 总有两个不同的交点. (2)设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧x 2+(y -1)2=5,mx -y +1-m =0,消去y 得(m 2+1)x 2-2m 2x +m 2-5=0, x 1,x 2是一元二次方程的两个实根, ∵|AB |=1+m 2|x 1-x 2|, ∴17=1+m 2·16m 2+201+m 2,∴m 2=3,m =±3, ∴l 的倾斜角为π3或2π3.(3)设M (x ,y ),∵C (0,1),P (1,1),当M 与P 不重合时,|CM |2+|PM |2=|CP |2,∴x 2+(y -1)2+(x -1)2+(y -1)2=1.整理得轨迹方程为x 2+y 2-x -2y +1=0(x ≠1). 当M 与P 重合时,M (1,1)满足上式, 故M 的轨迹方程为x 2+y 2-x -2y +1=0.10.已知⊙O :x 2+y 2=1和定点A (2,1),由⊙O 外一点P (a ,b )向⊙O 引切线PQ ,切点为Q ,且满足|PQ |=|PA |.(1)求实数a ,b 间满足的等量关系; (2)求线段PQ 的最小值.解:(1)连接OP ,∵Q 为切点, ∴PQ ⊥OQ ,由勾股定理有 |PQ |2=|OP |2-|OQ |2. 又∵|PQ |=|PA |, ∴|PQ |2=|PA |2,即a 2+b 2-1=(a -2)2+(b -1)2,整理,得2a +b -3=0.(2)由2a +b -3=0得b =-2a +3, ∴|PQ |=a 2+b 2-1=a 2+(-2a +3)2-1 =5a 2-12a +8=5⎝⎛⎭⎫a -652+45, ∴当a =65时,|PQ |min =255,即线段PQ 的最小值为255.4.2.2 & 4.2.3 圆与圆的位置关系 直线与圆的方程的应用圆与圆的位置关系 [导入新知]1.圆与圆的位置关系圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含. 2.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系的判断方法如下表所示:位置关系 外离外切相交内切内含图示d 与r 1,r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0), 联立方程组得⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系相交内切或外切外离或内含[几何法是利用两圆半径的和或差与圆心距作比较得到两圆的位置关系,代数法则是把两圆位置关系的判定完全转化为代数问题,即方程组的解的个数问题,但这种代数判定方法只能判断出不相交、相交、相切三种位置关系,而不能像几何判定方法一样,能判定出外离、外切、相交、内切、内含五种位置关系,因此一般情况下,使用几何法判定两圆的位置关系问题.判断两圆的位置关系[例1] 当实数k 为何值时,两圆C 1:x 2+y 2+4x -6y +12=0,C 2:x 2+y 2-2x -14y +k =0相交、相切、相离?[解]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径长r1=1;圆C2的圆心为C2(1,7),半径长r2=50-k(k<50),从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,即k=34时,两圆外切.当|50-k-1|=5,即50-k=6,即k=14时,两圆内切.当|50-k-1|<5<1+50-k,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即k<14或34<k<50时,两圆相离.[类题通法]1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d与r1+r2,|r1-r2|的大小关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.[活学活用]1.两圆C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0的位置关系是()A.相离B.相切C.相交D.内含答案:C2.(湖南高考)若圆C1:x2+y2=1 与圆C2:x2+y2-6x-8y+m=0外切,则m=() A.21 B.19C.9 D.-11答案:C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.1圆的标准方程
【教学目标】
(一)知识与技能
(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.
(2)会用待定系数法求圆的标准方程.
(二)过程与方法
进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力.
(三)情感态度与价值观
通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.
【教学重点】 圆的标准方程.
【教学难点】 会根据不同的已知条件,利用待定系数法求圆的标准方程.
【教学方法】 启发、引导、讨论.
【教学过程】
一、新课引入
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?
二、讲授新课
确定圆的基本条件为圆心和半径,设圆的圆心坐标为(,)A a b ,半径为r (其中a 、b 、r 都是常数,0r ).设(,)M x y 为这个圆上任意一点,那么点M 满
足的条件是(引导学生自己列出){}P M MA r ==,由两点间的距离公式让学生
写出点M 适合的条件r =①
化简可得:222()()x a y b r -+-= ②
引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论.
若点(,)M x y 在圆上,由上述讨论可知,点M 的坐标适用方程②,说明点M 与圆心A 的距离为r ,即点M 在圆心为A 的圆上.
所以方程②就是圆心为(,)A a b ,半径为r 的圆的方程,我们把它叫做圆的标准方程.
三、例题解析
例1:写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点
1(5,7)
M -,2(1)M -是否在这个圆上. 分析:可以从计算点到圆心的距离入手.
点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:
(1)22200()()x a y b r -+->,点在圆外
(2)22200()()x a y b r -+-=,点在圆上
(3)22200()()x a y b r -+-<,点在圆内
解:圆心是(2,3)A -半径长等于5的圆的标准方程是
22
(2)(3)25x y -++=.。

相关文档
最新文档