防爆说明

防爆说明
防爆说明

保护类型:

1、隔爆:

一种保护类型,其中外壳能够承受爆炸性的混合物在内部爆炸过程中产生的压力,防止爆炸向外壳周围的爆炸性大气环境转移,且能够在不会引起周围的爆炸性气体或蒸汽这样一个外部温度下工作。这种技术类似于北美的隔爆,ICE把它称为Ex d。

2、增安:

一种保护类型,其中各种各样的措施被用来减少在正常工况条件下不会产生的超高温度、以及电弧或火花在电气装置内外部件里出现的可能性。增安可以与隔爆型保护技术一起使用。

IEC把这种保护称为Ex e.

3、本安:

一种保护类型,其中的电气设备在正常或非正常情况下无法释放足够的电能或热能以使得特定的危险性大气混合物在达到其易燃的浓度时点燃。IEC把这种保护称为Ex i。

4、无火花:

一种保护类型,其中的设备在正常情况下无法由于电弧或者热效应而引起规定的易燃气体或蒸汽在空气里的混合物点燃。ICE把它称为Ex n。

对于CENELEC认证,铭牌必须包括下面的符号表示防爆:

E Ex ia Ⅱ C T4

表示CENELEC认证表示危险区域认证保护类型组别温度代号

ia-本安(允许二次故障)

ib-本安(允许一次故障)

d-防火(隔爆)

e-增安

n-无火花(仅SAA)

N-无火花(仅BASEEFA)

组别:

Ⅰ组(采矿):包含甲烷或具有同等危险性的气体或者蒸汽的大气环境。

ⅡA组:包含丙烷或具有同等危险性的气体或者蒸汽的大气环境。

ⅡB组:包含乙烯或具有同等危险性的气体或者蒸汽的大气环境。

ⅡC组:包含乙炔、氢气或具有同等危险性的气体或者蒸汽的大气环境。

ICE温度代号

温度代号最大表面温度

℃℉

T1 450 842

T2 300 572

T3 200 392

T4 135 275

T5 100 212

T6 85 185

爆炸的概念

爆炸是物质从一种状态,经过物理或化学变化,突然变成另一种状态,并放出巨大的能量。急剧速度释放的能量,将使周围的物体遭受到猛烈的冲击和破坏。

爆炸必须具备的三个条件:

1 )爆炸性物质:能与氧气(空气)反应的物质,包括气体、液体和固体。(气体:氢气,乙炔,甲烷等;液体:酒精,汽油;固体:粉尘,纤维粉尘等。)

2 )氧气:空气。

3 )点燃源:包括明火、电气火花、机械火花、静电火花、高温、化学反应、光能等。

为什么要防爆

易爆物质: 很多生产场所都会产生某些可燃性物质。煤矿井下约有三分之二的场所有存在爆炸性物质;化学工业中,约有80% 以上的生产车间区域存在爆炸性物质。氧气: 空气中的氧气是无处不在的。点燃源: 在生产过程中大量使用电气仪表,各种磨擦的电火花, 机械磨损火花、静电火花、高温等不可避免,尤其当仪表、电气发生故障时。

客观上很多工业现场满足爆炸条件。当爆炸性物质与氧气的混合浓度处于爆炸极限范围内时,若存在爆炸源,将会发生爆炸。因此采取防爆就显得很必要了。

仪表防爆的原理

防爆对危险场所的适用性:

爆炸性危险气体分类

根据可能引爆的最小火花能量,我国和欧洲及世界上大部分国家和地区将爆炸性气体分为四个危险等

美国和加拿大首先将散布在空气中的爆炸性物体分成三个CLASS( 类别):CLASS Ⅰ气体和蒸气;

Group( 组) :

仪表的防爆标志

: 注: 该标志中无温度组别项, 说明该仪表不与爆炸性气体直接接触 .

防爆术语:

有关防爆术语及标准

安全栅安全参数定义:

?安全栅最高允许电压:Um

保证安全栅本安端的本安性能,允许非本安端可能输入的最高电压

?安全栅最高开路电压:Uoc

在最高允许电压范围内本安端开路时电压最大值

?安全栅最大短路电流:Isc

在最高允许电压范围内本安端短路时的电流最大值

?安全栅允许分布电容:Ca

保证本质安全性能情况下本安端最大允许外接电容

?安全栅允许分布电感:La

保证本质安全性能情况下本安端最大允许外接电感

防爆标志格式说明:

将工厂或矿区的爆炸危险介质,按其引燃能量,最小点燃温度以及现场爆炸性危险气体存在的时间周期进行科学分类分级,以确定现场防爆设备的防爆标志和防爆形式。

防爆标志格式:

Ex (ia) ⅡC T4

防爆标记防爆等级气体组别温度组别

防爆等级说明:

ia 等级:在正常工作、一个故障和二个故障时均不能点燃爆炸性气体混合物的电气设备。

正常工作时,安全系数为2.0 ;

一个故障时,安全系数为1.5 ;

二个故障时,安全系数为1.0 。

注:有火花的触点须加隔爆外壳、气密外壳或加倍提高安全系数。

ib 等级:

在正常工作和一个故障时不能点燃爆炸性气体混合物的电气设备。

正常工作时,安全系数为2.0 ;一个故障时,安全系数为1.5 。

正常工作时,有火花的触点须加隔爆外壳或气密外壳保护,并且有故障自显示的措施,一个故障时安全系数为1.0 。

隔爆型电气设备结构与原理

(一)防爆原理

隔爆型电气设备的防爆原理是:将电气设备的带电部件放在特制的外壳内,该外壳具有将壳内电气部件产生的火花和电弧与壳外爆炸性混合物隔离开的作用,并能承受进入壳内的爆炸性混合物被壳内电气设备的火花、电弧引爆时所产生的爆炸压力,而外壳不被破坏;同时能防止壳内爆炸生成物向壳外爆炸性混合物传爆,不会引起壳外爆炸性混合物燃烧和爆炸。这种特殊的外壳叫“隔爆外壳”。具有隔爆外壳的电气设备称为“隔爆型电气设备”。隔爆型电气设备具有良好的隔爆和耐爆性能,被广泛用于煤矿井下等爆炸性环境工作场所。隔爆性电气设备的标志为“d”。

隔爆型电气设备除电气部分外,主要结构包括隔爆外壳及一些附在壳上的零部件,如衬垫、透明件、电缆(电线)引入装置及接线盒等。

根据隔爆型电气设备的防爆原理,我们知道隔爆外壳应具有耐爆和隔爆性能。所谓耐爆就是外壳能承受壳内爆炸性混合物爆炸时所产生的爆炸压力,而本身不产生破坏和危险变形的能力。所谓隔爆性能就是外壳内爆炸性混合物爆炸时喷出的火焰,不引起壳外可燃性混合物爆炸的性能。为了实现隔爆外壳耐爆和隔爆性能,对隔爆外壳的形状、材质、容积、结构等均有特殊的要求。

(二)防爆措施

隔爆型电气设备主要在煤矿井下爆炸危险工作场所使用,其使用环境场地狭窄,搬运困难,并有岩石、煤块冒落、撞击的危险,其外壳不仅要具有耐爆性,还应具有足够机械强度,才能保证设备外壳在发生内部爆炸或受到外物撞击时,外壳不发生严重变形或损坏。为此,常在煤矿井下采掘工作面工作的隔爆型电气设备的隔爆外壳必须采用钢板或铸铁构成,但其他零部件或装配后冲击不到的或容积不超过2L的电气设备,可用HT25-47灰铸铁制成。对于I类非采掘工作面用隔爆外壳也可以用HT25-47灰铸铁制成。对于容积不大于2L的外壳,也可以采用工程塑料制成,这种材料具有易成型、易切削加工,比重轻、易于制造等优点,但使用这种材料作隔爆外壳时必须注意到塑料在高温下易发生分解和变形的性质。因此,在具有大量热源和能发生大电弧的电气设备上不宜使用塑料外壳。

隔爆外壳的几何形状是多样的,大量的理论研究和实践证明:在相同容积、不同形状的隔爆外壳中,非球形外壳中的爆炸压力比球形外壳中压力低,即球形外壳的爆炸压力最大,

而长方体外壳爆炸压力最小,外壳内的爆炸压力是随着容器形状的不同而改变。这是因为随着外形散热表面积的增大而降低了爆炸压力。因此,隔爆外壳以采用长方形外形为宜,这样可以提高外壳的耐爆能力。

隔爆外壳的容积也是设计隔爆外壳的关键。理论和实践都证明:在其他条件都一定的情况下,隔爆外壳的容积与外壳内的爆炸压力无关,容积对压力的影响不大。因此在设计制造隔爆外壳时就可以在满足设备技术要求的前提下,尽量减小隔爆外壳的体积,既保证了外壳的耐爆性又减小了

体积、减轻了重量,更便于在煤矿井下特殊环境中使用。

一般隔爆外壳大都是由两个或两个以上的空腔组成,且空腔间是连通的,因此在外壳内爆炸性混合物发生爆炸时将会产生压力重叠现象,也就是当一个空腔里的爆炸性混合物爆炸时,会使另一个空腔里的爆炸性混合物受到压缩,而使压力增高。如果这个空腔再爆,将会出现过压现象,形成多空腔压力重叠,隔爆外壳的耐爆性将受到威胁。因此,在设计制造隔爆外壳时应尽量避免采用多空腔结构,如果无法避免这种结构则应尽量增大各空腔间联通孔的面积。因为多空腔压力重叠的过压大小与两空腔容积比以及连通孔断面积有关。当两空腔容积比一定时,连通孔断面积越大,过压就愈小,从而增加外壳的耐爆性能。另外,外壳的长、宽、高尺寸之比也不要过大,以免造成外壳内的压力重叠现象。

隔爆型电气设备的隔爆外壳不但具有耐爆性还应具有隔爆性。隔爆外壳如何实现隔爆作用,这是研究隔爆型电气设备的关键。我们知道,由于加工、制造、使用、维修等方面的需要,无论何种形状的隔爆外壳,都不可能是一个“天衣无缝”的整体,而是由几部分和各种零件构成的。各部分以及零件之间都需要联接,而联接的缝隙势必会成为外壳内的爆炸性产物穿过的途径。如果对这些联接的间隙不作特殊规定和技术要求,那么穿过间隙的壳内爆炸产物就要引燃壳外周围爆炸性混合物,其后果不堪设想。为了阻止壳内爆炸性混合物爆炸生成物引燃壳外周围的爆炸性混合物,就必须在外壳的各接合处,也就是联接间隙采取一些特殊有效的措施,实现外壳隔爆性能。通常把互相联接的接合面称为“隔爆接合面”,简称“隔爆面”。而隔爆面之间的间隙称为“隔爆接合面间隙”,简称“隔爆间隙”。隔爆间隙的大小是隔爆外壳能否隔爆的关键。通常隔爆面是采用法兰连接的隔爆保护方式。隔爆结合面间隙有多种结构:平面形结构(开关大盖与壳体、接线盒与壳体),圆筒形结构(电动机端盖与机座、转轴与转孔),平面加圆筒形结构(煤电钻接线盒盖与接线盒),曲路(迷宫)结构(原苏联进口的开关大盖与壳体),螺纹结构,衬垫结构(照明灯罩与金属外壳),叠片结构(老式蓄电池箱上防爆结构),微孔结构(分析仪器传感器用铜基、不锈钢基粉末冶金片,不锈钢球隔爆结构、发泡不锈钢板),金属网隔爆结构(多层铜网、不锈钢网)等,如图1所示。

利用外壳的间隙进行隔爆的理论与金属网对火焰熄灭作用原理相仿。隔爆外壳的隔爆作用是利用外壳的法兰间隙来实现隔爆的。为什么法兰间隙能实现隔爆,现在理论研究上仍有两种观点:一种观点认为,法兰间隙对壳内爆炸生成物(火焰)有熄火作用,火焰在狭窄的法兰间隙中自动熄灭,因此法兰间隙有隔爆作用,另一种观点则认为,法兰间隙不仅能熄灭壳内火焰而且还能降低壳内爆炸生成物的温度,而这些生成物是有传爆危险的,所以法兰间隙能起到隔爆作用。总之,理论的研究和实践都证明了利用隔爆外壳的法兰间隙能起到隔爆作用。既然法兰间隙能起隔爆作用,那么间隙的大小与隔爆作用的大小又存在什么关系呢?研究证明:法兰间隙越大,穿过间隙的爆炸产生物能量就越多,传爆性就越强,隔爆性能就越差。相反,法兰间隙越小,传爆性就越弱,隔爆性能就越好。

法兰隔爆面的长度也和法兰间隙的隔爆性紧密相关。隔爆面越长,传爆的可能性就愈小,隔爆面越短,传爆的可能性就越大。为了能使隔爆外壳具有最佳隔爆性,人们对外壳法兰间隙的大小与隔爆性能进行了试验研究,试验得出:最大不传爆间隙就是最大试验安全间隙,

不同的爆炸性混

合物的最大试验安全间隙不同(当法兰间隙的长度为25mm)。既然法兰最大安全间隙对隔爆有如此重要的作用,那么影响最大安全间隙又有哪些因素呢?研究证明,影响最大试验安全间隙的因素有:1爆炸性混合物的浓度,2隔爆法兰的长度及其表面加工粗糙度;3隔爆外壳的容积;4爆炸混合物的初始压力、温度和湿度;5点火源到隔爆间隙内缘的距离;6爆炸性混合物的流动状态等诸多因素。下面逐一研究这些因素对最大安全间隙影响的程度。

图1 隔爆结合面间隙结构

A.爆炸性混合物浓度的影响。最大安全间隙试验时使用的爆炸性混合物的浓度是最危险的浓度,当这种爆炸性混合物浓度高于或低于最危险浓度时(最大安全间隙试验中所采用的浓度),都会使试验安全间隙增大。爆炸性混合物浓度对最大试验安全间隙的影响是非线性关系变化的。

B.隔爆法兰长度的影响。法兰长度下降;安全间隙下降,法兰长度上升,试验安全间隙增大。当法兰长度从零增加到15mm时,试验安全间隙增长很快。但当法兰长度再度增大时,试验安全间隙只能增大到这种爆炸性混合物的熄火距离。如果再增大法兰面的间隙,爆炸性混合物的爆炸生成物将穿过间隙向壳外周围传播,那么外壳也就失去了隔爆作用。

C.隔爆外壳法兰表面加工粗糙度的影响。法兰表面加工粗糙度只要不影响间隙的宽度,即只要保持法兰表面平整,不会造成间隙宽度畸形,法兰表面略粗糙一些,对隔爆性能没有大的影响。一般认为,隔爆面加工粗糙度达到△3.2就能满足要求,但不能低于△3.2。在保证隔爆面平整的前提下,加工表面略粗糙些,将会降低隔爆壳内爆炸性产物在穿过隔爆间隙时的速度,这对法兰间隙的隔爆作用是有利的,但不能过分粗糙,否则将引起安全间隙下降。

D.隔爆外壳的容积对最大试验安全间隙的影响。在壳内点火源位置一定的前提下,隔爆外壳容积的改变对最大试验安全间隙影响是不大的。

E.爆炸性混合物的压力和温度对最大安全间隙的影响。爆炸性混合物压力提高,最大试验安全间隙将下降;爆炸性混合物温度的提高更易爆炸,将会使试验安全间隙下降。

F.爆炸性混合物湿度的影响。随着爆炸性混合物湿度的提高,间隙的传爆的可能性减小,最大试验安全间隙将随之增大。

G.隔爆外壳内点火源位置对试验安全间隙的影响。对于快速反应的爆炸性混合物,壳内点火源位置对试验安全间隙的影响不大。但对于反应缓慢的爆炸混合物,点火源对最大试验安全间隙有较大影响。点火源位置偏离中心,最大试验安全间隙将随之增大。

(三)技术要求

隔爆型电气设备的技术要求如下:

①.隔爆接合面结构参数应符合表1、表2、表3和表4的要求。

表1 I类隔爆结合面结构参数

表2 ⅡA隔爆结合面结构参数

表3 ⅡB隔爆结合面结构参数

②.在平面对平面的隔爆结构中,当法兰长度确定后,法兰厚度的设计选择要保证在爆炸压力的作用下,法兰的变形程度不能影响隔爆间隙的大小。

③.在加工法兰时,对法兰的隔爆面有严格的技术要求。对于圆筒面对圆筒面的隔爆结

构,在设计和制造时,要保证其同心度,避免发生单边间隙过大或过小的现象。对于圆筒形活动隔爆结构要避免发生摩擦现象。

④.为了确保隔爆面间隙宽度,隔爆面的防腐蚀措施也是十分重要的。一般采用磷化、电镀、涂防锈油等方法,但绝对不能涂油漆,因为油漆的漆膜在高温作用下分解,将会使隔爆间隙宽度变大,影响隔爆性能。

表4 ⅡC(不包括乙炔)隔爆结合面结构参数

⑤.对于隔爆接合面所用的紧固件也必须有防锈和防松的措施。只有外壳零件紧固后,才能构成一个完整的隔爆外壳,起到隔爆作用。采用螺纹隔爆结构要符合表5规定。

表5 螺纹隔爆结构螺纹的最少啮合扣数、深度

隔爆型电气设备主要包括壳体与盖,但还有一些附属其壳上的部件,主要有电缆及导线的引入装置、接线盒、透明件、衬垫等。

1.接线盒

隔爆型电气设备的电缆和导线的引入装置包括直接引入和间接引入两种。对于符合下述条件的电气设备可采用直接引入装置;①正常运行时设备不产生火花、电弧和危险温度;②Ⅰ类电气设备,功率不大于250W,电流不大于5A;Ⅱ类电气设备功率不大于1kW。间接引入装置是指电缆或导线通过接线盒或插销与电气设备进行连接。对于不能使用直接引入装置的电气设备必须采用间接引入装置,这样才能保证在隔爆外壳内部发生爆炸时,不会发生由于引入装置的不可*而造成传爆事故。无论采用何种方式的引入装置,都必须符合有关的规定,确保隔爆型电气设备的防爆性能。

接线盒是电气设备间接引入的中间环节。隔爆型电气设备的接线盒可采用隔爆型、增安型或其他防爆型式。无论何种型式的接线盒,都应符合通用要求中对接线盒的有关要求。接线盒的空腔与主腔之间要采用隔爆或胶封结构,对于Ⅱ类电气设备可采用密封结构。接线盒内的电气间隙和爬电距离应符合规定的数值。

2.透明件

透明件主要是指照明灯具的透明罩、仪器窗口和指示灯罩,它们是隔爆外壳的一部分。因此这些透明件必须能承受隔爆型电气设备使用环境的爆炸性混合物爆炸时产生的爆炸压力和温度的作用和使用环境中外界因素的影响,包括机械、化学、热能的作用。因此透明件一般采用玻璃和钢化玻璃制成。透明件必须能承受国家规定的机械冲击和热冲击试验。灯具透明件与外壳之间可以直接胶封。观察窗透明件可采用密封结构,此时密封垫既有密封作用又有隔爆作用,密封垫厚度不小于2mm。为保证密封的可*性,密封垫一般采用硅橡胶或氟橡胶等离火能自动熄灭的材料制成。

3.衬垫

隔爆外壳上有些零件是用塑料玻璃等脆性材料制成的。为了使这些零件与金属零件能够安全接合,实现防潮和防尘的要零,常常需要使用衬垫。衬垫的使用有两种情况:一种是用在设备维修中需要打开的外壳部件上,此时衬垫仅起密封作用,而不能作隔爆措施。因为维修需要打开的部件其衬垫容易丢失。一旦丢失,整个隔爆结构就被破坏了。但观察窗内密封衬垫则例外,它既有密封作用,又有隔爆作用。第二种是衬垫用在设备维修中不经常打开的部件上,此时衬垫可作隔爆措施,但衬垫必须符合以下4点要求:①衬垫必须采用具有一定强度的金属或金属包覆的不燃性材料制成;②衬垫的厚度不能小于2mm;③当外壳净容积不大于0.1L时,衬垫宽度不得小于6mm,当外壳容积大于0.1L时,衬垫宽度不得小于8mm;

④衬垫安装后要保证不脱落,并在外壳产生爆炸压力时也不会被挤出外壳。

4.通气与排液装置

通气与排液装置也是隔爆外壳的一部分。通气排液装置是隔爆外壳内的电气设备或元件在正常运行或停机泄压时向壳外环境通气或排液的重要装置。通气、排液装置要与外壳可*

连接,并要保证良好的隔爆和耐爆性能。由于煤矿井下空气中粉尘多,湿度大、含有腐蚀性气体,因此通气、排液装置要用防腐蚀金属材料制成,并要有防尘措施,以防止通气孔或排液孔被堵塞,失去通气和排液功能。

防爆常识及规范讲解

防爆常识 防爆常识 一、防爆电气设备的防爆型式 1.爆炸性混合物产生爆炸的条件 爆炸是指物质从一种状态,经过物理变化或化学变化,突然变成另一种状态并放出巨大的能量,而产生的光和热或机械功。在此仅谈及爆炸性混合物的爆炸,即所有的可燃性气体、蒸气及粉尘与空气所形成的爆炸性混合物的爆炸。这类爆炸需要同时具备三个条件才可能发生:第一,必须存在爆炸性物质或可燃性物质;第二,要有助燃性物质,主要是空气中的氧气;第三,就是还要存在引燃源(如火花、电弧和危险温度等),它提供点燃混合物所必需的能量。只有这三个条件同时存在,才有发生爆炸的可能性,其中任何一个条件不具备,就不会产生燃烧和爆炸。因此,采取适当的措施,使三个条件不同时具备即可达到防止爆炸的目的。由于爆炸性混合物普遍存在于煤炭、石油、化工、纺织、粮食加工等行业的生产、加工、储运等场所,如发生爆炸则危害极大。于是,人们采取了多种防爆技术方法,防止爆炸危险 2. (1) 隔爆型“d” 隔爆型防爆型式是把设备可能点燃爆炸性气体混合物的部件全部封闭在一个外壳内,其外壳能够承受通过外壳任何接合面或结构间隙,渗透到外壳内部的可燃性混合物在内部爆炸而不损坏,并且不会引起外部由一种、多种气体或蒸气形成的爆炸性环境的点燃(参见GB 38362标准) 把可能产生火花、电弧和危险温度的零部件均放入隔爆外壳内,隔爆外壳使设备内部空间与周围的环境隔开。隔爆外壳存在间隙,因电气设备呼吸作用和气体渗透作用,使内部可能存在爆炸性气体混合物,当其发生爆炸时,外壳可以 承受产生的爆炸压力而不损坏,同时外壳结构间隙可冷却火焰、降低火焰传播速度或终止加速链,使火焰或危险的火焰生成物不能穿越隔爆间隙点燃外部爆炸性环境,从而达到隔爆目的。 隔爆型“d”按其允许使用爆炸性气体环境的种类分为I类和IIA、IIB、IIC 该防爆型式设备适用于1、2 (2) 增安型“e” 增安型防爆型式是一种对在正常运行条件下不会产生电弧、火花的电气设备采取一些附加措施以提高其安全程度,防止其内部和外部部件可能出现危险温度、电弧和火花的可能性的防爆型式。它不包括在正常运行情况下产生火花或电弧的设备(参见GB 38363标准) 在正常运行时不会产生火花、电弧和危险温度的电气设备结构上,通过采取措施降低或控制工作温度、保证电气连接的可靠性、增加绝缘效果以及提高外壳防护等级,以减少由于污垢引起污染的可能性和潮气进入等措施,减少出现可 能引起点燃故障的可能性,提高设备正常运行和规定故障(例如:电动机转子堵转)条件下的安全可靠性。〖JP 该类型设备主要用于2区危险场所,部分种类可以用于1区,例如具有合适保护装置的增安型低压异步电动机、接线 (3) 本质安全型“i” 本质安全型防爆型式是在设备内部的所有电路都是由在标准规定条件(包括正常工作和规定的故障条件)下,产生的任何电火花或任何热效应均不能点燃规定的爆炸性气体环境的本质安全电路。〖HTH〗“iɑ”等级电气设备〖HT〗是正常工作和施加一个故障和任意组合的两个故障条件下,均不能引起点燃的本质安全型电气设备;〖HTH〗“ib”等级电气设备〖HT〗是正常工作和施加一个故障条件下,不能引起点燃的本质安全型电气设备(参见GB 38 364标准) 本质安全型是从限制电路中的能量入手,通过可靠的控制电路参数将潜在的火花能量降低到可点燃规定的气体混合物能量以下,导线及元件表面发热温度限制在规定的气体混合物的点 该防爆型式只能应用于弱电设备中,该类型设备适用于0、1、2区(Exiɑ)或1、2区(Exib) (4) 正压型“p” 电气设备的一种防爆型式。它是一种通过保持设备外壳内部保护气体的压力高于周围爆炸性环境压力的措施来达到安 全的电气设备(参见GB 38365标准)。

防爆标志讲解

一、防爆标志的含义及防爆电器应该注意的细则 一般在可燃性气体环境中,使用电气产品时必须使用防爆型产品。防爆型产品的外壳上一般有以下标志,具体含义如下: Ex d Ⅱ C T6 ①②③④⑤ ①、中国及国际电工委员会防爆标志 ②、隔爆型 ③、除煤矿、井下用之外的电气设备 ④、按爆炸性气体环境的最大实验安全间隙或最小点燃电流分为ABC三级 ⑤、按设备最高表面温度分为T1至T6六个组 第①位编码: Ex——中国及国际电工委员会防爆标志;EEx——表示欧共体;AD——意大利; MS、AE——法国;FLP——英国;UL、FM——美国;E—— 德国\IEC 第②位编码 代号防爆型式国家标准防爆措施适用区域 d 隔爆型隔离存在的点火源 Zone1,Zone2 e 增安型设法防止产生点火源 Zone1,Zone2 ia 本安型限制点火源的能量 Zone0-2 ib 本安型限制点火源的能量 Zone1,Zone2 p 正压型危险物质与点火源隔开 Zone1,Zone2 o 充油型危险物质与点火源隔开 Zone1,Zone2 q 充砂型危险物质与点火源隔开 Zone1,Zone2 n 无火花型设法防止产生点火源 Zone2 m 浇封型设法防止产生点火源 Zone1,Zone2 h 气密型设法防止产生点火源 Zone1,Zone2 s 特殊型 DIP 粉尘防爆型用于爆炸性粉尘环境,其前面无需加EX或EEX等标志 危险场所危险性划分: 爆炸性物质区域定义中国标准北美标准 气体(CLASS Ⅰ) 在正常情况下 , 爆炸性气体混合物连续或长时间存在的场所 Zone 0(0 区) 在正常情况下爆炸性气体混合物有可能出现的场所 1 区 在正常情况下爆炸性气体混合物不可能出现 , 仅仅在不正常情况下 , 偶尔或短时间出现的场所 2 区 粉尘或纤维(CLASS Ⅱ/Ⅲ)在正常情况下 , 爆炸性粉尘或可燃纤维与空气的混合物可能连续 , 短时间频繁地出现或长时间存在的场所 10 区 在正常情况下 , 爆炸性粉尘或可燃纤维与空气的混合物不能出现 , 仅仅在不正常情况下 , 偶尔或短时间出现的场所 11 区 第③位编码 Ⅰ——煤矿、井下用电气设备 Ⅱ——工厂用电气设备 第④位编码 Ⅱ类爆炸性气体环境的分级 工况类别级别代表性气体最小引爆火花能量最大实验安全间隙MESG(mm) 最小点燃电流比MICR 矿井下Ⅰ甲烷 矿井外的工厂ⅡA 丙烷MESG≥ MICR> ⅡB 乙烯>MESG>≥MICR≥ ⅡC 氢气≥MESG >MICR

防火防爆设计的基本内容(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 防火防爆设计的基本内容(最新 版)

防火防爆设计的基本内容(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 防火防爆设计的基本内容包括以下几个方面: 1考虑总体布局、厂址选择和厂区总平面的配置对限制灾害的要求;包括:厂址选择;总平面布置;防火间距等。 2建筑防火防爆的设计;包括:生产及储存的火灾危险性分类;建筑物的耐火等级;厂房的耐火等级;层数和占地面积;厂房建筑的防爆设计。 3消防扑救设施的设置。 下面是一个具体的实例分析:甲醇罐区的火灾爆炸危险性分析及防火防爆设计 王允升(四川大学化工学院) 摘要:根据甲醇的物化性质及储存过程特点,对甲醇罐区潜在的火灾爆炸危险性进行分析,提出设计中应采取的防火防爆措施以及设计审核时需着重检查的项目和内容。 关键词:甲醇罐区危险性防火防爆设计

1概述:甲醇(CH3OH)是重要的基本有机化工原料,具有剧毒、易燃烧性,其蒸气与空气在一定范围内可形成爆炸性混合物。同时也是一种清洁、高效的液体燃料,在国民经济中占有十分重要的地位。由于甲醇的易燃性及其蒸气与空气在一定浓度区间内混合物的爆炸性,因此,如何安全、有效地储存和使用是非常重要的。 2火灾、爆炸危险性:由于甲醇的物理化学性质及储存的条件和周围环境等因素所致,甲醇储存的火灾、爆炸危险性主要体现在以下几个方面。 21挥发性:甲醇在常态下为液体,沸点64.5℃,20℃时的饱和蒸气压为12.8kPa(96mmHg),温度愈高,蒸气压愈高,挥发性越强。以地面固定顶罐储存甲醇为例,夏季昼夜温差按10℃考虑,则1台装料系数为85%的5000m3储罐挥发损失达77.2kg/d。由此可见,甲醇的挥发性较强,储罐的“小呼吸”损失十分明显。 22流动/扩散性:甲醇的粘度0.5945mPa.s(20℃),并随温度升高而降低,有较强的流动性。同时由于甲醇蒸气的密度比空气密度略大(~10%),有风时会随风飘散,即使无风时,也能沿着地面向外扩散, 并易积聚在地势低洼地带。因此,在甲醇储存过程中,如发生溢流、泄漏等现象,物料就会很快向四周扩散,特别是甲醇储罐一旦破裂,又突

防爆设计要求

在工业厂房建筑的设计中,不同生产工艺对建筑物有不同的要求。精密仪器仪表的生产厂房要求恒温、恒湿、洁净等;而一些热车间、有粉尘的车间要求有良好的通风和除尘设施;对于化工、医药、石油化工等工业企业的厂房,由于生产过程中有爆炸的危险,因此在厂房设计时,除满足生产工艺要求外,必须认真考虑防止爆炸问题,一旦发生爆炸事故,尽可能使生命财产的损失减少到最小程度。现就工业厂房防爆的设计问题谈一些看法。? 爆炸是在瞬间发生的,人在爆炸的当时是来不及采取任何措施的,因此工业厂房防爆设计应该贯彻“安全第一,预防为主”的方针。设计中一定要严格执行国家现行有关规定、法规,采取有效的防爆措施、合理的抗爆结构,解决处理好泄压设施等。通过技术手段,保障安生生产,防止发生爆炸和燃烧事故。? 1设计中防爆的基本技术措施? (1)对整个厂区都存在有爆炸危险的工厂(如乳化炸药厂),在整体规划设计时,要根据建筑物内危险品的生产工序、生产品种、生产特征、危险程度等因素,确定建筑物的危险等级后进行分区规划,危险品生产区内的建筑物与其周围村庄、公路、铁路、城镇和本厂生活设施等的距离,都应分别根据建筑物的危险等级和存药量计算后,按规范要求取其最大值。当相互间距离因厂地限制不能满足要求时,要做防护屏障,如采用防护堤、钢筋混凝土墙等形式。对A级建筑物必须设置防护屏障。要根据实际情况,因地制宜,充分利用地形地貌,以达最佳合理布局。? ?(2)对于一般工业厂区内有生产和使用爆炸物品的厂房和车间,应尽量集中布置在同一个区域内,与一般厂房、车间的距离要满足安全距离的要求,这样便于对防火墙等防爆建筑结构的统一处理。? (3)有爆炸危险的车间,应布置在单层厂房内,如因工艺需要厂房为多层时,则应放在最上一层。? (4)在一般厂房、车间内设有局部防爆房间时,应将此房间尽量*外墙设置,采用特制的易于向外开启的窗,这样泄压面积容易解决,也便于灭火。? (5)在厂房中,危险性大的车间和危险性小的车间,同样应该用坚固的防火墙隔开(砖墙或钢筋混凝土墙)。宜在外墙上开门,利用外廊或阳台进行车间相互间的工作联系;或在防火墙上作双门斗,尽量使两个门错开,用门斗来减弱爆炸冲击波的威力,缩小爆炸影响范围。?

防爆区划分

危险场所区域划分 一、危险场所区域划分 危险场所区域的含义,是对该地区实际存在危险可能性的量度,由此规定其可适用的防爆型式。国际电工委员会/欧洲电工委员会划分的防爆区域为: 0区:连续地存在危险性大于1000小时/每年的区域; 1区:断续地存在危险性10~1000小时/每年的区域; 2区:事故状态下存在的危险性0.1~10小时/每年的区域; 中国划分的有效区域和以上相同。 二、防爆标志解析 ①气体组别 典型的 危险性 气体欧洲电工 标准化委员会 EN50014EC 北美 NEC500条款 CLASS1表气中国

GB-3836-1 最小点燃能量 (微焦) 乙炔ⅡC A ⅡC 20 氢气ⅡC A ⅡC 20 乙烯ⅡB C ⅡB 60 丙烷ⅡA D ⅡA 180 注:中国GB3836标准规定ⅡC级最小点燃能量为19微焦耳,ⅡA级最小点燃能量为200微焦 耳。 气体分组和点燃温度,在一定环境温度和压力下与可燃性气体和空气的混合浓度有关。 ②温度组别(T组) 这是与气体点燃温度有关的电气设备(假定环境温度为40℃时)的最高表面温度,点燃能量与点燃温度无关。在标准BS5345第一部分中列出了所有可燃性气体和其组别。 最高表面温度(℃)温度组别 IEC79-8 GB3836-1 450℃T1 T1 300℃T2 T2 200℃T3 T3 135℃T4 T4 100℃T5 T5 85℃T6 T6

③防爆标志 以下以CENELEC氢气防爆标志为例:E Ex ia ⅡC T4 E:按CENELEC标志认可Ex:防爆公用标志 ia:防爆型式(本质安全)Ⅱ:设备组别 C:气体组别T4:温度组别 ④名词解释 隔爆型电气设备(d):是指把能点燃爆炸性混合物的部件封闭在一个外壳内,该外壳能承受内部爆炸性混合物的爆炸压力并阻止和周围的爆炸性混合物传爆的电气设备。 增安型电气设备(e):正常运行条件下,不会产生点燃爆炸性混合物的火花或危险温度,并在结构上采取措施,提高其安全程度,以避免在正常和规定过载条件下出现点燃现象的电气设备。 本质安全型电气设备(i):在正常运行或在标准试验条件下所产生的火花或热效应均不能点燃爆炸性混合物的电气设备。 无火花型电气设备(n):在正常运行条件下不产生电弧或火花,也不产生能够点燃周围爆炸性混合物的高温表面或灼热点,且一般不会发生有点燃作用的故障的电气设备。

建筑防爆及建筑防爆设计基本要求

建筑防爆及建筑防爆设计基本要求 安全工作规范、标准、《建筑防爆及建筑防爆设计基本要求》 建筑防爆 一、爆炸定义 所谓爆炸是大量能量在瞬间迅速释放或急剧转化成功和光、热等能量形态的现象。二、爆炸分类 (一)物理性爆炸:爆炸前后没有新物质产生。 (二)化学性爆炸:由于物质急剧氧化、分解反应产生高温、高压形成的爆炸现象。 1、简单分解爆炸:能量由自身提供,性质不稳定,如雷管、导爆索等。 2、复杂分解爆炸:氧由本身分解提供,如大多数火炸药都属于这一类。 3、爆炸性混合物爆炸:即由各种可燃气体、蒸汽及粉尘与空气组成的爆炸性混合物的爆炸。 (1)混合气体爆炸 (2)蒸汽爆炸 (3)粉尘爆炸:可燃粉尘与空气混合形成的爆炸性混合物,可燃粉尘爆炸在一 定浓度范围内,而且与粒径有关。粒径>0.5mm很难爆炸;粒径v 0.1mm很容易 爆炸。 与气体爆炸的区别: ①燃烧不完全; ②产生二次爆炸; ③感应期长,可达数十秒,为气体数十倍; ④点火起始能量大,可达10mJ,为气体近百倍。 (三)原子爆炸:如原子弹、氢弹的爆炸。 三、爆炸极限 (一)定义:即可燃气体、蒸汽或粉尘与空气混合后遇点火源能发生爆炸的最低、最高浓度。 (二)单位 可燃气体、蒸汽:体积百分比(m3/m3 可燃粉尘:单位体积的重量(g/m3) (三)影响因素 1、引起气体爆炸极限变化的因素

(1)温度:T下限J上限T极限范围T (2)压力:T上限T (3)含氧量:T上限T范围T (4)容器直径:/上限J范围J (5)热源:能量T范围T (6)惰性物质:T范围J 2、引起粉尘爆炸极限变化的因素 (1)粒径:J范围T (2)挥发成分:T范围T ( 3)水分:有钝化作用 (4)灰分:T范围J (5)点火源:能量T下限J 四、爆炸的破坏作用 (一)爆炸压力 爆炸压力是爆炸反应产生的机械效应,是爆炸事故杀伤、破坏的主要因素。建筑防爆设计基本要求一 一、建筑防爆设计的基本要求 1 、有爆炸危险的甲、乙类生产厂房,宜采用一、二级耐火等级建筑; 2、有爆炸危险的厂房、库房,宜采用单层建筑( 6 点); 3、有爆炸危险的生产或储存,不应设在建筑物的地下室或半地下室内 ( 5 点); 4、有爆炸危险的厂房、库房,宜采用敞开或半敞开建筑; 5、有爆炸危险的甲、乙类生产厂房和库房,其防火墙间的占地面积不宜过大; 6、有爆炸危险的甲、乙类生产厂房和库房,宜采用钢筋砼框架或排架结构; 7、有爆炸危险的甲、乙类生产厂房,应设置必要的泄压设施。 二、甲、乙类生产厂房的平面、空间设计 ( 1 )双斗门的几种形式 ( 2)有爆炸危险生产部位布置方式 单层: 多层:顶层或一侧 归纳六个字:敞、侧、单、顶、通、能。 第四节防爆及泄压设施 一、防爆墙 定义:防爆墙指的是耐爆炸压力较强的墙,也称耐爆墙、抗爆墙。多设在有爆炸危

防爆 防护等级划分

防爆、防护等级划分 1、爆炸必须具备的三个条件: (1)爆炸性物质(flammable air flammable dust):能与氧气(空气)反应的物质,包括气体、液体和固体。(气体:氢气,乙炔,甲烷等;液体:酒精,汽油;固体:粉尘,纤维粉尘等。) (2)空气或氧气(air or oxygen)。 (3)点燃源(source of ignition):包括明火、电气火花、机械火花、静电火花、高温、化学反应、光能等。 易爆物质:很多生产场所都会产生某些可燃性物质。煤矿井下约有三分之二的场所有存在爆炸性物质;化学工业中,约有80%以上的生产车间区域存在爆炸性物质。 氧气:空气中的氧气是无处不在的。 点燃源:在生产过程中大量使用电气仪表,各种磨擦的电火花、机械磨损火花、静电火花、高温等不可避免,尤其当仪表、电气发生故障时。 客观上很多工业现场满足爆炸条件。当爆炸性物质与氧气的混合浓度处于爆炸极限范围内时,若存在爆炸源,将会发生爆炸。因此采取防爆就显得很必要了。 2、防爆:防止爆炸的产生必从三个必要条件来考虑,限制了其中的一个必要条件,就限制了爆炸的产生。 在工业过程中,通常从下述三个方面着手对易燃易爆场合进行处理: (1)预防或最大限度地降低易燃物质泄漏的可能性; (2)不用或尽量少用易产生电火花的电所元件; (3)采取充氮气之类的方法维持惰性状态。 [编辑本段] 危险区域的等级分类 危险场所区域的含义,是对该地区实际存在危险可能性的量度,由此规定其可适用的防爆型式。 1、国际电工委员会/欧洲电工委员会划分的危险区域的等级分类 0区(Zone 0):易爆气体始终或长时间存在;连续地存在危险性大于1 000小时/每年的区域; 1区(Zone 1):易燃气体在仪表的正当工作过程中有可能发生或存在;断续地存在危险性10~1000小时/每年的区域;

防爆设计的通用要求

1.防爆外壳材料 1.1 金属材料 常用的有铸钢、铸铁、焊接钢板、铸铝合金、不锈钢等材料。如采用铸铝合金时,对Ⅰ类电气设备外壳,铝、钛和镁的总含量不允许大于15%(质量比),且钛和镁的总含量不允许超过6%;对Ⅱ类电气设备外壳,含镁量不允许超过6%(质量比)。金属外壳的厚度:对隔爆型外壳,应能承受内部爆压和外部冲击能量的考核;对其它防爆类型外壳,应能承受外部冲击能量的考核。 1.2 塑料材料 塑料外壳在增安型电气设备和本质安全型电气设备用的较多。主要考虑结构轻便,抗环境化学腐蚀能力优的特点。但材料的老化和变形是塑料制品的关键缺陷。某些塑料能克服以上的缺点,如DMC、SMC 塑料制品已大量在防爆电气产品的外壳中使用。选用塑料牌号时要考虑材料的热稳定性至少比设备产生表面温度高20K;低温特性至少比设备使用环境温度下限低5-10K的条件下能耐规定的冲击或跌落试验不损坏。对移动电气设备及可能被摩擦或擦拭的塑料表面要考虑静电荷的影响,这可按表2的要求来进行设计。 2、紧固件 2.1 设计原则 2.1.1 紧固件的尺寸和材料要满足防爆类型的结构要求,如隔爆型设备紧固件的抗拉强度要承受爆炸压力;增安型和其它设备的紧固件应保证外壳充分压紧,达到规定的防护等级。 2.1.2 铝合金和塑料外壳的紧固件如采用轻金属或塑料制的螺栓,则螺栓的材料和螺纹形状要满足紧固要求就可使用。 2.1.3紧固件的紧固应保证只能用专用工具才能开启的结构。 2.2 特殊紧固件按GB3836.1-2000第9.1条规定。

3、粘接材料 防爆电气部件之间需用树脂复合物进行粘接来达到规定的接合强度时,应考虑复合物的配方和工艺,并应考虑粘接材料的极限温度至少应比设备表面温度高20K。 4、电气连接件和接线空腔 防爆电气设备外部电缆或导管的引入,除用*电缆方法引入外,绝大部分在接线腔内进行的。设计接线空腔时,应保证有足够的尺寸,便于导线可靠连接。外壳的防爆型式要符合使用的爆炸性危险环境。接线腔内设置的接线端子,其导电螺栓的规格应有余量。 5、连接件 防爆电气设备金属外壳上应设置内、外接地连接件。外接地连接件应尽量靠近电缆引入装置处,内接地连接件应在接线腔内。连接件的尺寸应能至少和4mm2以上的保护线可靠连接,并应有防松措施保证可靠压紧,在接地连接件处应设置接地符号,以示正确连接。有双重绝缘和加强绝缘的电气设备;有金属导管连接的电气设备,可不必设置接地连接件。 6、电缆和导管引入装置 电缆和导管引入装置可以和防爆外壳制成一体,也可制成防爆部件(Ex元件)固定在防爆外壳上。关于电缆和导管引入装置的技术要求见GB3836.1-2000 附录D。电气设备上不装电缆和导管的通孔须用封堵件封堵。 7. Ex元件 防爆外壳、接线端子、电流表、小型开关、小型按钮、指示灯、仪表显示器引入装置、等部件,如制成Ex元件,就可方便的安装在增安型外壳内,达到结构轻巧,安装维护方便的目的。

防爆标志

防爆标志 防爆电气设备按GB 3836 标准要求,防爆电气设备的防爆标志内容包括: 防爆型式+设备类别+(气体组别)+温度组别 1 防爆型式 根据所采取的防爆措施,可把防爆电气设备分为隔爆型、增安型、本质安全型、正压型、 油浸型、充砂型、浇封型、n 型、特殊型、粉尘防爆型等。它们的标识如表1 所示。 表1 防爆基本类型 2 设备类别 爆炸性气体环境用电气设备分为: I 类:煤矿井下用电气设备; II 类:除煤矿外的其他爆炸性气体环境用电气设备。 II 类隔爆型“d”和本质安全型“i”电气设备又分为IIA、IIB、和IIC 类。 可燃性粉尘环境用电气设备分为: A 型尘密设备; B 型尘密设备; A 型防尘设备; B 型防尘设备。 3 气体组别 爆炸性气体混合物的传爆能力,标志着其爆炸危险程度的高低,爆炸性混合物的传爆能力越大,其危险性越高。爆炸性混合物的传爆能力可用最大试验安全间隙表示。同时,爆炸性气体、液体蒸气、薄雾被点燃的难易程度也标志着其爆炸危险程度的高低,它用最小点燃电流比表示。II 类隔爆型电气设备或本质安全型电气设备,按其适用于爆炸性气体混合物的最大试验安全间隙或最小点燃电流比,进一步分为IIA、IIB 和IIC 类。 如表2 所示。 表2 爆炸性气体混合物的组别与最大试验安全间隙或最小点燃电流比之间的关系 4 温度组别 爆炸性气体混合物的引燃温度是能被点燃的温度极限值。 电气设备按其最高表面温度分为T1~T6 组,使得对应的T1~T6 组的电气设备的最高表面温度不能超过对应的温度组别的允许值。温度组别、设备表面温度和可燃性气体或蒸气的引燃温度之间的关系如表3 所示。 表3 温度组别、设备表面温度和可燃性气体或蒸气的引燃温度之间的关系

防爆视频监控设计与技术要求

. 安防系统设计及技术要求 总则 1. 设计中选用的监控系统设备必须符合国家有关标准和行业标准要求,通 过国家指定检验机构审查和检验合格,防爆设备应具有防爆合格证。 2. 系统的设计应在满足防爆要求的前提下, 注重安全性、 可靠性和稳定性, 做到功能先进,易于管理、易于维护,可扩充性强。 3. 本技术要求提供的配置清单为最低配置,若变更产品,其防爆等级、技 术 参数、功能要求不得低于本技术要求的配置。 4. 操作应简单实用,利用控制键盘可将系统中的任意一路图像在电视墙上 进行放大显示,对前端设备(视频采集、报警信号、数据采集、现场开 关、防爆 LED 显示屏等)进行遥控。 5. 在系统授权的情况下能通过网络终端随时察看各个部位的生产情况,能 进行回放和下载历史记录。 6. 系统的设计、选型、安装应符合下列标准,如有新的标准,则应执行新 的 或更高的技术标准: ? 防爆标准要求 ? 安全防范系统通用图形符号 ? 安全防范工程程序与要求 ? 安全防范工程技术规范 ? 民用建筑电气设计规范 ? 电视监控工程程序与要求 ? 工业电视系统工程设计规范 ? 电器安装工程施工及验收规范 ? 计算机网络规范 ? 民用闭路监视电视系统工程技术规范 GB50198-2001 *系统主要功能要求 GB3836·1;.2-2000 GA/T74-2001 GA/T75-2001 GB 50348-2004 JGT/T16-92 GA/T 75-94 GBJ115 -98 GBJ232-92 ? 安全防范系统验收规则 GA/T308-2001 ? 智能建筑设计标准 GB/T50314-2000

防爆知识以及防爆标志中的各个组成部分的含义

一、防爆基本知识 1、爆炸的危险性场所有哪些? (1)爆炸性环境:可能发生爆炸的环境(气体和粉尘)。凡涉及爆炸性物质生产、加工、处理、储存、运输的场所都可能形成爆炸性环境。 (2)危险场所:爆炸性环境大量出现或预期出现的数量足以要求对电气设备的结构、安装和使用采取专门预防措施的区域。 (3)在石油、化工、煤炭等生产领域将不可避免地产生爆炸性物质的泄漏,并与空气形成爆炸性危险场所。据资料: A、在煤矿井下,2/3的场所属于爆炸性危险场所; B、在石油开产现场和精炼厂约有60-80%属爆炸性危险场所; C、在化学工业中,约有80%以上的生产车间属爆炸性危险场所。 2、防爆基本原理 (1)爆炸的基本条件 A、可燃性物质(氢气、甲烷等) B、助燃剂(氧气、空气等) C、点火源(明火、火花、高温等) (2)爆炸极限与范围 爆炸极限是指可燃性气体(蒸气)与空气形成的混合物,能引起爆炸的最低浓度(爆炸下限)或最高浓度(爆炸上限),介与爆炸下限和上限中间的浓度范围称爆炸范围。

表1:几种常见的可燃性气体或者蒸气的爆炸界限 表2:几种常见的可燃性气体或者蒸气的引燃温度 (3)防爆的基本原理 A、避免形成爆炸性环境 B、消除可能的点火源 3、爆炸性危险物质分类 (1)中国将爆炸性物质分为三类: Ⅰ类:矿井甲烷 Ⅱ类:爆炸性气体混合物 Ⅲ类:爆炸性粉尘和纤维 (2)北美将爆炸性物质分为三类: ClassⅠ:爆炸性气体

ClassⅡ:爆炸性粉尘 ClassⅢ:纤维 4、爆炸性危险区域划分 (1)爆炸危险区域划分的主要标准依据 A、GB50058-1992 爆炸和火灾危险环境电力装置设计规范 B、GB3836.14-2000 爆炸性气体环境用电气设备第14部分危险场所分 C、GB12476.3-2007 可燃性粉尘环境用电气设备第3部分存在或可能存在可燃性粉尘的场所分类 D、中华人民共和国爆炸危险场所电气安全规程(试行) , 1987年 (2)爆炸性危险区域主要以爆炸性危险物质出现的频繁程度和持续时间为划分依据的 (3)我国对于爆炸性气体危险场所划分为3个区域:0区、1区和2区 A、0区:在正常情况下,爆炸性气体混合物连续地或长时期存在的场所。 B、1区:在正常情况下,爆炸性气体混合物有可能出现的场所。 C、2区:在正常情况下,爆炸性气体混合物不可能出现,或即使出现也只是短时间存在的场所。(4)我国对于爆炸性粉尘危险场所划分为3个区域:20区、21区和22区 A、20区:在这个区域中,易燃性粉尘在空气中形成云状物,并且连续存在,或长时间或频繁存在 B、21区:在这个区域中,一般条件下,易燃性粉尘偶尔会形成云状物 C、22区:在这个区域中,一般条件下,易燃性粉尘形成的云状物一般不会发生,即使发生,也是 短时行为。 二、防爆基本型式 1、目前常用的电气防爆技术/型式: (1)隔爆型(Ex d) (2)增安型(Ex e) (3)本安型(Ex ia/ib)

防爆对讲机基本知识

智慧科技智掌全局https://www.360docs.net/doc/a818865806.html, 防爆对讲机知识小课堂 一、防爆对讲机基本知识 一般的爆炸性环境是指可能发生爆炸的环境。 爆炸性气体环境:大气条件下,气体、蒸气或雾状的可燃物质与空气构成的混合物,在该混合物中点燃后,燃烧将传遍整个未燃混合物的环境。 工作温度:防爆对讲机在额定运行时所达到的温度。最高表面温度:防爆对讲机在允许的最不利条件下运行时,其表面或任一部分可能达到的并有可能引然周围爆炸性环境的最高温度。 防爆型式:为防止防爆对讲机设备引起周围爆炸性气体环境引燃而采取的特定措施。

智慧科技智掌全局https://www.360docs.net/doc/a818865806.html, 1、防爆类型(北峰TD510/TD511防爆对讲机属于本安型) 防爆型式防爆型式标志防爆型式防爆型式标志 隔爆型Exd充砂型Ex q 增安型Exe浇封型Ex m 正压型Expn型Ex n 本安型Exia / Exib特殊型Ex s 油浸型Exo粉尘防爆型DIP A / DIP B 2、防爆对讲机类别:

智慧科技智掌全局https://www.360docs.net/doc/a818865806.html, Ⅰ类:煤矿瓦斯气体用对讲机。 Ⅱ类:除煤矿瓦斯气体之外的其他爆炸性环境用对讲机 Ⅱ类(隔爆型“d"和本质安全型”I")对讲机设备可按爆炸性气体的特性于再分类:ⅡA类、ⅡB类、ⅡC类北峰TD510/TD511防爆对讲机属于 II 类电气设备,可以使用在除煤矿以外的其他爆炸性气体环境。)注:标志ⅡB的设备可适用于ⅡA设备的使用条件,标志ⅡC类的设备可适用于ⅡA和ⅡB设备的使用条件。 3、防爆对讲机气体组别 爆炸性气体混合物的传爆能力,标志着其爆炸危险程度的高低,爆炸性混合物的传爆能力越大,其危险性越高。爆炸性混合物的传爆能力可用最大试验安全间隙表示。同时,爆炸性气体、液体蒸汽、薄雾被点燃 IIB 最大试验安全间隙 MESG (mm)最小点燃电流比 MICR 组,使得对应的T1 超过对应的温度组别的允许值。温度组别、设备表面温度和可燃性气体或蒸汽的引燃温度之间的关系如下

粉尘防爆电气设备的防爆设计要求

粉尘爆炸是粉尘在爆炸极限范围内,遇到热源(明火或温度),火焰瞬间传播到整个混合粉尘空间,化学反应速度极快,同时释放大量的热,形成很高的温度和很大的压力,系统的能量转化为机械功以及光和热的辐射,破坏力极强。 现代工业生产中,随着粉体加工业的发展,粉尘大量产生,粉尘爆炸以及污染对人们的人身财产安全和健康带来的现实和潜在威胁显著增加。广泛存在于煤炭、石油、化工、纺织、粮食加工等行业的生产、加工、储运等场所的爆炸性混合物,一旦发生爆炸后果不堪设想。为防止粉尘爆炸,人们采取了多种防爆技术措施,以防止爆炸危险性环境的形成及爆炸的发生。 那么,粉尘防爆对电气产品的设计一般有哪些要求呢?具体来讲,有以下几点: 一、设备材料选择方面的要求 电气设备外壳材料应热稳定性好,具有足够高的强度,能承受爆炸压力而不致损坏和变形,其隔爆接合面应能承受爆炸而不传爆。 二、设备最高表面温度方面的要求 限制粉尘外壳最高表面温度的形成是防止粉尘点燃的主要因素之一。一方面,由于电气元件不可避免的会出现发热,所以要保证安全,限制电气设备最高表面温度值范围就显得格外必要。另一方面,由于不同的物质具有不同的点燃温度,所以,电气设备最高表面温度的范围也应有所不同。气体电气设备的最高表面温度与粉尘电气设备最高表面温度一致。 三、非金属部件方面的要求 设备的非金属部件,也应能够满足相关标准的耐热、耐寒要求。

四、IP防护方面的要求 根据国家标准GB12476.1的要求,粉尘防爆电气设备的外壳还需满足以下2个条件: 1、防尘外壳:虽不能完全防止粉尘的进入,但进入量尚不足以影响到电气设备的正常运行,外壳防外物能力为5级; 2、尘密外壳:外壳的结构设计成隔尘结构,粉尘不能进入,外壳防外物能力为6级。 近几年来,随着人们对粉尘防爆意识的加强,要求产品进行粉尘防爆认证的厂家也越来越多,尤其是国外知名品牌厂家,其产品一般都经过粉尘防爆认证。 由于对粉尘防爆认识不够,国内还有相当一部分厂家的产品在设计之初并没有做粉尘防爆方面的设计,更没有进行粉尘防爆方面的认证,这无疑为粉尘爆炸事故的发生留下了安全隐患,进而造成不必要的人身伤亡和财产损失。 深圳中诺检测技术有限公司立足于华南地区,是一家专注防爆认证和煤安认证的第三方检测机构,业务涵盖防爆3C认证、防爆合格证、防爆检测、ATEX认证、IECEx认证、防爆设计、现场防爆检查、防爆工程、防腐等级测试、煤安&矿安认证、KY认证、防爆培训、SIL认证等。为客户提供从防爆设计、检测、认证、安装、检修、现场检查、防爆施工、防爆改造等一站式防爆技术咨询和服务。

关于燃气表阀门防爆标志的说明

关于燃气表阀门防爆标志的说明 ⅡC防爆证防爆标志如:ExibⅡCT4Gb,其代表意义如下: Ex:防爆标记 ib:防爆等级 ⅡC:气体组别 T4:温度组别 Gb:设备保护级别,爆炸性气体环境用设备,具有"高"的保护级别,在正常运行或预期故障条件下不是点燃源。 1、防爆等级详述 i:代表本质安全型,其意义为将设备内部和暴露于潜在爆炸性环境连接导线可能产生的电火花或热效应能量限制在不能产生点燃的水平。 ib:代表可以适用于1区及2区,其级别高于ic(仅适用于2区),低于ia(可适用于0、1、2区)。 注:爆炸性气体环境的危险区域划分为0、1、2三个区。 0区:连续出现或长期出现爆炸性气体混合物的环境。 1区:在正常运行时可能出现爆炸性气体混合物的环境。 2区:在正常运行时不可能出现爆炸性气体混合物的环境或即使出现也仅是短时存在的爆炸性气体混合物的环境。 以目前市场上所有的燃气表阀门为例,全部取证均为ib或ic等级,暂时未见有ia等级的燃气表阀门。 2、气体组别详述 Ⅱ:Ⅱ类电气设备用于除煤矿瓦斯气体之外的其他爆炸性气体环境,又可分为三类。 ⅡA :代表性气体是丙烷,含甲烷、乙烷、氨、苯等,0.8<MICR<1 ⅡB :代表性气体是乙稀,含丙炔、环丙烷、二甲醚等,0.45≤MICR≤0.8

ⅡC :代表性气体是氢气,含乙炔、二硫化碳、硝酸乙酯等,MICR≤0.45 MICR :可燃性气体混合物最小燃点电流与甲烷最小燃点电流的比值。 等级越高,引爆火花能量越小,越容易爆炸,保护级别越严,以目前市场燃气成分来看,仍以甲烷居绝大多数,ⅡB等级防爆足够。当然,若以氢气作为燃料,则必须达到ⅡC等级。 3、温度组别详述 T1:设备最高表面温度不允许超过450℃。 T2:设备最高表面温度不允许超过300℃。 T3:设备最高表面温度不允许超过200℃。 T4:设备最高表面温度不允许超过135℃。 T5:设备最高表面温度不允许超过100℃。 T6:设备最高表面温度不允许超过85℃。 等级越高,设备表面温度允许值越小,对安装环境要求越高,氢气对温度要求不高,T3温度等能就可满足要求,当然阀门取T4温渡等级也可以。

-防爆墙设计要求

防爆墙、泄压墙体设计要求 1.防爆墙的设计,应符合下列要求: (1)防爆墙体应采用非燃烧材料,且不宜作为承重墙,其耐火极限不应低于4h.; (2)防爆墙可采用配筋砖墙。当相邻房间生产人员较多或设备较贵重时,宜采用现浇钢筋混凝土墙; (3)配筋砖墙厚度应由结构计算确定,但不应小于240mm,砖强度不应低于MU7.5,砂浆强度不应低于M 5。构造配 构造配筋:沿墙身高度方向每隔500mm配置3Φ6—10通长水平钢筋,其两端应与钢筋混凝土框架或排架柱予埋插筋绑扎或焊接。当砖墙长度、高度大于6m时,应设钢筋混凝土中间柱及横梁,并按构造配筋。混凝土强度等级不应低于C15,其端部应与屋面梁及框、排架柱连接; (4)钢筋混凝土防爆墙厚度不应小于180mm,混凝土强度等级不应小于C20,钢筋截面面积由结构计算确定; (5)防爆墙上不宜开孔留洞。当工艺管道、电缆等必须穿过时,孔洞不应大于Φ200mm,孔洞周边应配置补强钢筋,孔洞应填封密实。 2.泄压墙体的设计,应符合下列要求: (1)泄压墙体的材料面积密度不宜大于60㎏/㎡。当所用材料为难燃烧体时,其耐火等级不应低于0.5h,当所用材料为非燃烧体时,其耐火等级不应低于0.25h; (2)无保温要求的轻质墙体,宜采用纤维水泥中波瓦、阻燃型玻纤增强聚酯波形瓦或压型板、聚氯乙烯波形瓦或压型板、轻质GRC板等,可采用金属波形瓦或矢高不大于35mm的金属压型板; (3)有保温要求的轻质墙体,其所用的保温材料宜选用不燃的珍珠岩板、岩棉板、超细玻璃棉板等;亦可采用自熄型聚苯乙烯泡沫塑料、硬质聚氨酯泡沫塑料等。当采用复合墙体时,可采用以金属波形板、压型板双面复合的夹芯板材;(4)当采用金属波形板、压型板作为墙体材料时,其与型钢龙骨的连接应采取易摧毁、易脱落的构造措施。 摘自石油代工生产建筑设计规范(SH 3017—1999)

防爆等级符号的含义

防爆等级符号的含义 将工厂或矿区的爆炸危险介质,按其引燃能量,最小点燃温度及现场爆炸性危险气体存在的时间周期进行科学分类分级,以确定现场防爆设备的防爆标志和防爆形式。 ◆防爆标志格式: Ex:防爆标记 (ia):防爆等级 ⅡC:气体组别 T4:温度组别 ◆防爆等级说明: ia 等级: 在正常工作时一个故障和二个故障均不能点燃爆炸性气体混合物的电气设备。正常工作时,安全系数为2.0;一个故障时,安全系数为1.5;正常工作时,有火花的触点须加隔爆外壳、气密外壳或加倍提高安全系数。 ib 等级: 在正常工作和一个故障时均不能点燃爆炸性气体混合物的电气设备。正常工作时,安全系数为2.0;一个故障时,安全系数为1.5;正常工作时,有火花的触点须加隔爆外壳或气密外壳保护,并且有故障自显示的措施。 ◆爆炸性气体分组对照表: ◆温度组别对照表: ◆电气设备类型: ◆防爆等级: 按其使用于爆炸性气体混合物最大安全间隙分为A 、B 、C三级。

一、外壳防护等级 外壳防护等级(IP代码),指电气设备(额定电压≤72.5kV)的外壳,对下述内容的防护能力: ◆防止人体接近壳内危险部件; ◆防止固体异物进入壳内设备; ◆防止由于水进入壳内对设备造成有害影响; IP(国际防护International Protection)代码由第一位特征数字(I)、第二位特征数字(P)、附加字母、补充字母组成。不要求规定特征数字时,该处有字母X代替,附加字母和补充字母可省略,不需代替。 一、IP代码的组成及含义 ◆防外物等级: ◆防水进入外壳的等级: ※代号举例:IP44 此代号指外壳能防止大于1mm的固体进入内部,并且防止任何的方向溅水。

2021新版电气防爆基本常识

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021新版电气防爆基本常识

2021新版电气防爆基本常识导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 一、危险场所区域划分 危险场所区域的含义,是对该地区实际存在危险可能性的量度,由此规定其可适用的防爆型式。国际电工委员会/欧洲电工委员会划分的防爆区域为: 1.爆炸性气体环境危险场所区域划分: 0区:爆炸性气体环境出现或长时间存在的场所; (也可以说:连续地存在危险性大于1000小时/每年的区域;)1区:在正常运行时,可能出现炸性气体环境的场所; (也可以说:断续地存在危险性10~1000小时/每年的区域;) 2区:在正常运行时,不可能出现炸性气体环境;如果出现也是偶尔发生并且也是短时间存在的场所。 (也可以说:事故状态下存在的危险性0.1~10小时/每年的区域;)中国划分的有效区域和以上相同。 2.可燃性粉尘环境危险场所区域划分:

防爆标志详细介绍

防爆标志详细介绍 防爆电气设备按GB 3836标准要求,防爆电气设备的防爆标志内容包括: 防爆型式+设备类别+(气体组别)+温度组别 1 防爆型式 根据所采取的防爆措施,可把防爆电气设备分为隔爆型、增安型、本质安全型、正压型、油浸型、充砂型、浇封型、n 型、特殊型、粉尘防爆型等。它们的标识如表1所示。 表1 防爆基本类型 2 设备类别 爆炸性气体环境用电气设备分为: I类:煤矿井下用电气设备; II类:除煤矿外的其他爆炸性气体环境用电气设备。 II类隔爆型“d”和本质安全型“i”电气设备又分为IIA、IIB、和IIC类。 可燃性粉尘环境用电气设备分为: A型尘密设备;B型尘密设备; A型防尘设备;B型防尘设备。 3 气体组别 爆炸性气体混合物的传爆能力,标志着其爆炸危险程度的高低,爆炸性混合物的传爆能力越大,其危险性越高。爆炸性混合物的传爆能力可用最大试验安全间隙表示。同时,爆炸性气体、液体蒸气、薄雾被点燃的难易程度也标志着其爆炸危险程度的高低,它用最小点燃电流比表示。II类隔爆型电气设备或本质安全型电气设备,按其适用于爆炸性气体混合物的最大试验安全间隙或最小点燃电流比,进一步分为IIA、IIB和IIC类。 如表2所示。 表2 爆炸性气体混合物的组别与最大试验安全间隙或最小点燃电流比之间的关系

4 温度组别 爆炸性气体混合物的引燃温度是能被点燃的温度极限值。 电气设备按其最高表面温度分为T1~T6组,使得对应的T1~T6组的电气设备的最高表面温度不能超过对应的温度组别的允许值。温度组别、设备表面温度和可燃性气体或蒸气的引燃温度之间的关系如表3所示。 表3 温度组别、设备表面温度和可燃性气体或蒸气的引燃温度之间的关系 5 防爆标志举例说明 为了更进一步地明确防爆标志的表示方法,对气体防爆电气设备举例如下: 如电气设备为I类隔爆型:防爆标志为ExdI 如电气设备为II类隔爆型,气体组别为B组,温度组别为T3,则防爆标志为:ExdIIBT3。如电气设备为II类本质安全型ia,气体组别为A组,温度组别为T5,则防爆标志为:ExiaIIA T5。 对I类特殊型:ExsI。 对使用于矿井中除沼气外,正常情况下还有II类气体组别为B组,温度组别为T3的可燃性气体的隔爆型电气设备,则防爆标志为:ExdI/IIBT3。 另外,对下列特殊情况,防爆标志内容可适当进行调整: (1) 如果电气设备采用一种以上的复合型式,则应先标出主体防爆型式,后标出其他的防爆型式。如:II类B组主体隔爆型并有增安型接线盒T4组的电动机,其防爆标志为:ExdeIIBT4 。 〖JP3〗 (2) 如果只允许使用在一种可燃性气体或蒸气环境中的电气设备,其标志可用该气体或蒸气的化学分子式或名称表示,这时,可不必注明气体的组别和温度组别。如:II类用于氨气环境的隔爆型的电气设备,其防爆标志为:ExdII(NH3)或ExdII(氨)。 反过来,利用表2,制造厂可以按照防爆电气产品的使用环境决定产品的温度组别,按照温度组别设计电气设备的外壳表面温度或内部温度。防爆电气设备的用户可以根据场所中可能出现的爆炸性气体或蒸气的种类,方便地选用防爆电气产品的温度组别。例如,已知环境中存在异丁烷(引燃温度460 ℃),则可选择T1组别的防爆电气产品;如果环境中存在丁烷(引燃温度160 ℃),则须选择T4组的防爆电气产品。 对于粉尘防爆电气设备: 如可用于21区的A型设备,最高表面温度 T A为170 ℃,其防爆标志为:DIP A21 TA170 ℃或者DIP A21TA, T 3;

相关文档
最新文档