智能制造和人工智能的场景应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能制造和人工智能的场景应用
制造业中生产过程中每天产生海量的数据,这些数据都存储在数据库里面,而真正能够发挥实际价值的数据却非常少,从而造成数据资源的极大浪费。如何对生产过程中的海量数据进行处理从而发挥数据的价值,将数据不再仅仅是数据,而成为生产的资产是每个制造业管理者都关心的问题。
为了实现对数据的利用,降低生产成本提高生产效率,很多供应商都提出了智能工厂的解决方案。目前社会上提到的智能工厂很多,而真正能够做到智能化的却很少。笔者基于多年在制造业中的工业机理模型经验和在智能技术领域的一些实践,介绍下目前智能技术以及其在制造业场景的应用情况。
一、人工智能、云计算、大数据、物联网的关系是什么?
提到智能技术大家首先联想到的就是人工智能、大数据、云计算、物联网等。而很多人对这些名词间的关系模棱两可。因此有必要首先介绍下其间的联系。为了便于读者理解,这里不引用每个名词的通用定义,而采用通俗易懂的方式进行解释。人工智能从狭义角度讲就是以CNN 卷积神经网络为代表的模型算法,具体的应用图像识别和语音识别。
目前社会上所有提到的人工智能技术包括人脸识别、自动驾驶、语音交互、阿尔法狗、指纹识别等等均是基于CNN 卷积神
经网络为核心算法的应用。因此,人工智能本质就是一种算法。云计算本质是一种从资源到架构的全面弹性,通俗的讲,比如对于一台电脑,有100 个任务,那么电脑在执行这100 个任务时就要有个排队,依次进行,而当数据量很大时,超大的任务量将会造成电脑服务器崩溃。
而云计算就是可以将一台电脑的服务器虚拟成多台电脑,比如我们很多人都用过VMware 的虚拟机软件,该软件可以把我们的PC 机电脑虚拟成拥有不同内存、存储容量和网络的小电脑,这样100 个任务将会同时分解到多台电脑去执行,这就是分布式计算,从而大大提高计算效率。大数据通俗的讲就是海量的数据,具有复杂的数据关系。
物联网通俗讲就是通过网络协议将生产过程中的仪器仪表、视频、语音、文本等数据全部进行连接。
物联网、互联网比喻作为一个人的成长环境,通过在社会、学校、环境中的不断学习,将会收获海量的知识,这些海量的知识就是大数据。要想有效的利用海量知识并发挥其价值需要各种数据模型(包括统计分析、机器学习、人工智能、工艺机理模型)对数据进行训练,这种训练的过程比喻为一个军师(或者老师)对人的指导、培养过程。而数据模型的分析训练需要云计算进行快速高效的迭代,从而形成丰富的知识经验,成为一方领域的高人。而云计算就相当于人类的大脑。
二、数据模型包括哪些?如何对模型进行选择?
由以上分析可知,一方高人的形成包括数据采集层、数据存储层、数据模型层、数据计算层,其中数据采集和数据存储依托于目前的MES 系统已经能够很容易的实现。目前的核心限制环节在于数据模型层,即如何将生产中产生的大数据通过数据模型转换为有价值的信息。因此,笔者在本节着重对数据模型的选择进行介绍。
对于数据模型的分类仁者见仁智者见智,没有统一的定义,笔者结合多年的工作经验,认为主要分为以下四类,包括统计分析、机器学习、深度学习以及工艺模型。
由于篇幅关系,本文将不再具体解释每个模型的具有原理和算法,后续将会详细讨论。数据模型详细具体分类如下图所示,由图可知,统计分析模型主要包括线性回归、多元线性回归、非线性回归、spc 分析、相关性分析等;机器学习模型主要包括逻辑回归、支持向量机、k-means 聚类、神经网络学习、决策树、贝叶斯模型、随机森林等;深度学习(人工智能)主要包括CNN 卷积神经网络网络等;工艺模型主要涉及冶金或者化工行业的物理化学反应,包括热力学和动力学相关理论知识,生物发酵化学反应以及基于边界条件的最优解等问题。
以上介绍了数据模型的分类,那么如何对模型进行选择呢?
由于每个模型有其特殊的需求,本文主要根据数据的类型、数据量以及应用业务场景的不同将其分为分类、回归、聚类、降维、深度学习五大类,如下图所示。通过该图结合生产的数据类型、数据量以及数据实现的目标从而有效的选择需要的数据模型。
三、智能技术在制造业中有哪些应用?
对于智能技术,笔者认为从广义角度讲,凡是能够代替人工操作并能够有效提高工作效率的都可称作为智能技术;从狭义角度讲,智能技术主要是以机器学习、深度学习等复杂算法为核心,并将数据转换为有价值信息的技术。
因此,智能技术在制造业中的应用从广义角度讲可以概括为运营管理、智能模型、智能装备等方面,每个方面包含内容如下图所示。其中运营管理包括财务管理、供应链、资金管理、人力资源、协同办公、智能物流、设备管理、能源管理、安环管理和自动报表等。智能模型主要包括统计分析、机器学习、工艺模型、企业大数据、成分预测、设备预警、智能调度、辅助决策以及人工智能等。智能装备主要包括机器人、自动化装备等。
从狭义角度讲,智能技术在制造业中的应用主要包括以下7 个方面,其中统计分析主要依托于柱状图、饼状图、散点图等实现对生产重要数据的实时展示和辅助决策等;图像智能识别技术主要应用在车牌识别、人脸识别、钢铁企业表面质检检测系统、标记号码自动识别等;语音智能识别技术等成熟产品,实现在局
部区域进行人机对话操作,从而减少人员数量;基于实时数据的智能预测主要基于生产过程实时的工艺数据和检化验数据依托于智能模型对终点成分进行预测判定,以及根据设备重要工艺参数进行智能故障预警等。基于历史数据的智能预测主要是针对无法实时获取生产实时数据的类型,需要根据历史数据通过智能模型对终点成分、温度、压力以及设备故障等进行预测报警,还包括通过历史数据的判定分析,结合智能模型,发现现场操作人员的数据作弊问题。
基于聚类分析的专家系统主要包括通过对历史数据多维度的分析,通过聚类算法实现对产品质量以及新产品性能等进行智能预测。基于边界条件的最有决策问题主要针对于一定限制条件下,对于某个目标通过建立线性方程组实现线性规划求解,从而实现最佳成本优化以及不同价格物料的最优匹配,典型的应用场景为配料过程。