2.差分方程及其求解---数字信号处理实验报告
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号实验报告材料 (全)
数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。
2、熟悉 FFT 算法原理和 FFT 子程序的应用。
3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。
二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。
可以根据此时选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
DSP实验四 求解差分方程
数学与软件科学学院实验报告学期:_2016_至_2017_ 第_一_ 学期 2016年10月26日课程名称:_数字信号处理_ 专业:_信息与计算科学_ 实验编号:04实验项目:求解差分方程一、实验目的及要求(1) 了解差分方程的定义;(2) 通过实验求解差分方程;(3) 学会使用filtic()函数。
二、实验内容已知差分方程2y(n)-3y(n-1)+y(n-2)=2x(n),x(n)=(1/4)n u(n),y(-1)=4,y(-2)=0,求y(n)三、实验准备安装MATLAB的计算机系统。
四、实验步骤(该部分不够填写.请填写附页)在MATLAB中,已知差分方程的系数、输入、初始条件,调用filter()函数解差分方程。
调用filter()函数的格式为:y=filter(b,a,x,xic),参数x为输入向量(序列),b,a 分别为差分方程的系数,xic是等效初始状态输入数组(序列)。
确定等效初始状态输入数组xic(n),可使用filtic()函数,调用格式为y=filtic(b,a,y,x)。
其中y=[y(-1),y(-2),…,y(-n)],x=[x(-1),x(-2),…,x(-m)]。
实验程序:>> n=[0:7];>> x=(1/4).^n;>> a=[2,-3,1];>> b=[2];>> y=[4,10];>> xic=filtic(b,a,y)>> y1=filter(b,a,x,xic)>> y2=(1/3)*(1/4).^n+(1/2).^n+(2/3)*ones(1,8)%这是直接将差分方程Z变换后带入X(z)求出Y(z),反变换后求出x(n)实验结果:xic =1 -2y1 =2.0000 1.2500 0.9375 0.7969 0.7305 0.6982 0.6824 0.6745y2 =2.0000 1.2500 0.9375 0.7969 0.7305 0.6982 0.6824 0.6745注:实验成绩等级分为(90-100分)优,(80-89分)良,(70-79分)中,(60-69分)及格,(59分)不及格。
《数字信号处理》实验指导书(2015版)
数字信号处理实验指导书电子信息工程学院2015年4月目录实验一离散信号产生和基本运算 (3)实验二基于MATLAB的离散系统时域分析 (7)实验三基于ICETEK-F2812-A 教学系统软件的离散系统时域分析 (9)实验四基于MATLAB 的FFT 算法的应用 (14)实验五基于ICETEK-F2812-A 的FFT 算法分析 .................................. 错误!未定义书签。
实验六基于ICETEK-F2812-A 的数字滤波器设计 ................................. 错误!未定义书签。
实验七基于ICETEK-F2812-A的交通灯综合控制................................... 错误!未定义书签。
实验八基于BWDSP100的步进电机控制................................................. 错误!未定义书签。
实验一离散信号产生和基本运算一、实验目的1.掌握MATLAB最基本的矩阵运算语句。
2.掌握对常用离散信号的理解与运算实现。
二、实验原理1.向量的生成(1)利用冒号“:”运算生成向量,其语句格式有两种:A=m:nB=m:p:n第一种格式用于生成不长为1的均匀等分向量,m和n分别代表向量的起始值和终止值,n>m 。
第二种格式用于生成步长为p的均匀等分的向量。
(2)利用函数linspace()生成向量,linspace()的调用格式为:A=linspace(m,n)B=linspace(m,n,s)第一种格式生成从起始值m开始到终止值n之间的线性等分的100元素的行向量。
第二种格式生成从起始值m开始到终止值n之间的s个线性等分点的行向量。
2.矩阵的算术运算(1)加法和减法对于同维矩阵指令的A+BA-B对于矩阵和标量(一个数)的加减运算,指令为:A+3A-9(2)乘法和除法运算A*B 是数学中的矩阵乘法,遵循矩阵乘法规则A.*B 是同维矩阵对应位置元素做乘法B=inv(A)是求矩阵的逆A/B 是数学中的矩阵除法,遵循矩阵除法规则A./B 是同维矩阵对应位置元素相除另A’表示矩阵的转置运算3.数组函数下面列举一些基本函数,他们的用法和格式都相同。
数字信号处理实验之离散系统的差分方程、冲激响应和卷积分析
《数字信号处理A》实验报告实验二实验名称:离散系统的差分方程、冲激响应与卷积分析专业及班级:电子131 姓名:XXX 学号:XXXXXX 一、实验目的加深对离散系统的差分方程、冲激响应与卷积分析方法的理解。
二、实验步骤(附源代码及仿真结果图)1、以下程序中分别使用conv与filter函数计算h与x的卷积y与y1,运行程序,并分析y与y1就是否有差别,为什么要使用x[n]补零后的x1来产生y1;具体分析当h[n]有i个值,x[n]有j 个值,使用filter完成卷积功能,需要如何补零?编制程序求解下列两个系统的单位冲激响应与阶跃响应,并绘出其图形。
要求分别用filter、conv、impz三种函数完成。
+nx--=n+nyynynx-]2[[]]1[-125[.0].075[]1给出理论计算结果与程序计算结果并讨论。
a.单位冲激响应:(1)用filter函数a1=[1,0、75,0、125];b1=[1,-1];n=0:20;x1=[1 zeros(1,20)];y1filter=filter(b1,a1,x1);stem(n,y1filter);title('y1filter');xlabel('x');ylabel('y');2468101214161820y1filterxy(2)用conv 函数a1=[1,0、75,0、125]; b1=[1,-1];x1=[1 zeros(1,10)]; [h]=impz(b1,a1,10); y1conv=conv(h,x1); n=0:19;stem(n,y1conv,'filled')2468101214161820a1=[1,0、75,0、125]; b1=[1,-1];impz(b1,a1,21);n (samples)A m p l i t u d eImpulse Responseb. 单位阶跃响应: (1) 用filter 函数 a1=[1,0、75,0、125]; b1=[1,-1]; n=0:20;x2=ones(1,21);y1filter=filter(b1,a1,x2); stem(n,y1filter); title('y1filter_step'); xlabel('x');ylabel('y');y1filter tepxya1=[1,0、75,0、125]; b1=[1,-1]; x2=ones(1,21);[h]=impz(b1,a1,20); y1=conv(h,x2); y1conv=y1(1:21); n1=0:20;stem(n1,y1conv,'filled'); title('y1conv'); xlabel('n'); ylabel('y1[n]');02468101214161820ny 1[n ]2、编制程序求解下列两个系统的单位冲激响应与阶跃响应,并绘出其图形。
2.差分方程及其求解---数字信号处理实验报告
计算机与信息工程学院验证性实验报告一、实验目的1.学习并掌握系统的差分方程表示方法以及差分方程的相关概念。
2.熟练使用filter 函数对差分方程进行数值求解。
3.掌握差分方程的求解及MATLAB 实现方法。
二、实验原理及方法1.一LTI 系统可以用一个线性常系数差分方程表示:()()NMkm k m ay n k b x n m ==-=-∑∑,任意n如果N a ≠0,那么这个差分方程就是N 阶的,已知系统的输入序列,用这个方程可以根据当前输入x(n)和以前M 点的输入x(n-m ),…,x(n-1),以及以前N 点的输出y(n-N),…,y(n -1)来计算当前输出y(n)。
在实际中这个方程在时间上是从n =-∞到n =+∞朝前计算的,因此该方程的另一种形式是:()()()MNm k m k y n b x n m a y n k ===---∑∑方程的解能以下面形式求得:()()()H p y n y n y n =+分别为方程的齐次解跟特解部分。
已知输入和差分方程的稀疏,可用filter 对差分方程进行数值求解。
最简单形式为:y=filter(b,a,x) 其中b=[b0,b1,…,bM];a=[a0,a1,…,aN];2.上面差分方程解的形式为齐次解和特解,另外还可以求零输入解和零状态解理论计算中要用到z 变换,请好好掌握z 变换的内容。
用MATLAB 实现时,若已知初始条件,则应用y=filter(b,a, x, xic)来求完全响应。
这里xic 是初始状态输入数组。
MATLAB 还提供一种filtic 函数来得到xic 。
xic=filtic(b,a,Y,X )其中b 和a 是滤波器系数数组,Y 和X 是分别从y(n)和x(n)的初始条件得来的初始状态数组。
三.实验内容1、已知下面差分方程:()(1)0.9(2)()y n y n y n x n --+-=;任意n要求:a.计算并画出在n=-20,…,100的脉冲响应h(n);b.计算并画出在n=-20,…,100的单位阶跃相应s(n). 2.解以下差分方程:31()(1)(2)(),022y n y n y n x n n --+-=≥ 其中1()()()4n x n u n =,初始条件为y(-1)=4和y(-2)=10。
数字信号处理实验实验一
数字信号处理实验报告实验名称:离散时间系统的时域特性分析学生姓名:z学生学号:学生班级:上课时间:周二上午指导老师:一、实验目的线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应序列可以刻画其时域特性。
本实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变特性的理解。
二、实验原理1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。
即:如果系统在x1(n)和x2(n)输入时对应的输出分别为y1(n)和y2(n),当对任意常数a1和a2,式T[a1x1(n)+a2x2(n)]=a1T[x1(n)]+a2[x2(n)]=a1y1(n)+a2y2(n)成立,则该系统是线性系统。
2.时不变系统若输入x(n)的输出为y(n),则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应保持不变。
即:当T[x(n)]=y(n),满足T[x(n-m)]=y(n-m) (m为任意整数)时,则该系统就称为时不变系统。
3.常系数线性差分方程线性时不变离散系统的输入、输出关系可以用以下常系数线性差分描述: y(n)=- ∑aky(n-k)+ ∑brx(n-r)当输入x(n)为单位冲激序列时,输出y(n)即为系统的单位冲击响应h(n)。
三、实验内容考虑如下差分方程描述的两个离散时间系统:系统1:y(n)=0.5x(n)+0.27x(n-1)+0.77x(n-2)系统2:y(n)=0.45x(n)+0.5x(n-1)+0.45x(n-2)+0.53y(n-1)-0.46y(n-2)输入想x(n)=cos(20n/256)+cos(200n/256)(1)编程求上述两个系统的输出,并分别画出系统的输入与输出波形。
(2)编程求上述两个系统的冲激响应序列,并画出其波形。
实验一 数字信号处理 实验报告
1.已知系统的差分方程如下式:y1(n)=0.9y1(n-1)+x(n)程序编写如下:(1)输入信号x(n)=R10 (n),初始条件y1(-1)=1,试用递推法求解输出y1(n);a=0.9; ys=1; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10),定义其宽度为0~9n=1:35; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=sign(sign(10-n)+1);B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,1);stem(n,yn,'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1 ');xlabel('n');ylabel('y(n)')(2) 输入信号x(n)=R10 (n),初始条件y1(-1)=0,试用递推法求解输出y1(n)。
a=0.9; ys=0; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10)B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,2);stem(n,yn, 'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0 ');xlabel('n');ylabel('y(n)') 图形输出如下:-505101502468图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1ny (n )-55101502468图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0ny (n )2. 已知系统差分方程为: y 1(n )=0.9y 1(n -1)+x (n ) 用递推法求解系统的单位脉冲响应h (n ),要求写出h (n )的封闭公式,并打印h (n )~n 曲线。
数字信号处理实验报告
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告
实验一 离散时间信号的产生及信号的卷积和运算实验者: 丁 悦 实验日期:2016年12月02日 学号:142125010035一、 实验目的(简述)数字信号处理系统中的信号都是以离散时间形态存在,所以对离散时间信号的研究是数字信号处理的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
MATLAB 是一套功能强大的工程计算及数据处理软件,广泛应用于工业,电子,医疗和建筑等众多领域。
使用MATLAB 软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大的绘图功能,便于用户直观地输出处理结果。
通过本实验,将学会如何用MATLAB 产生一些常见的离散时间信号,实现信号的卷积和运算,并通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
二、实验原理(一)常见的离散时间信号:1. 单位抽样序列,或称为离散时间冲激,单位冲激:⎩⎨⎧=01)(n δ 00≠=n n如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n k n2.单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n如果)(n u 在时间轴上延迟了k 个单位,得到)(k n u -即:⎩⎨⎧=-01)(k n u k n kn <≥3.正弦序列)cos()(0φω+=n A n x这里,,,0ωA 和φ都是实数,它们分别称为正弦信号()x n 的振幅,角频率和初始相位。
πω200=f 为频率。
4.复正弦序列n j e n x ω=)(5.实指数序列n A n x α=)((二)、信号的卷积和运算)(*)()()()(n h n x m n h m x n y m =-=∑+∞-∞=三、实验内容及实验结果分析(一)实验内容:编制程序产生前5种信号(长度可输入确定),并利用MATLAB 中的基本图形函数绘出其图形。
实现正弦序列和实指数序列的卷积和运算,并绘出其图形。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理实验报告——离散系统的差分方程、冲激响应和卷积分析
实验2 离散系统的差分方程、冲激响应和卷积分析实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。
实验原理:离散系统其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 0][][输入信号分解为冲激信号,∑-=∞-∞=m m n m x n x ][][][δ。
记系统单位冲激响应][][n h n →δ,则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y ][][][][][当Nk d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。
在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。
实验内容:编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。
[]0.6[1]0.08[2][][1]y n y n y n x n x n +-+-=--[]0.2{[1][2][3][4][5][6]}y n x n x n x n x n x n x n =-+-+-+-+-+-实验要求:给出理论计算结果和程序计算结果并讨论。
实验过程:[]0.6[1]0.08[2][][1] +-+-=--y n y n y n x n x n (1)单位冲激响应:>> a=[1,0.6,0.08];>> b=[1,-1];>> N=20;>> x=[1,zeros(1,N)];>> y=filter(b,a,x);>> stem(y);>> xlabel('时间序列n');>> ylabel('信号幅度');>> title('单位冲激响应h(n)');>>(2)单位阶跃响应:>> a=[1,0.6,0.08];>> b=[1,-1];>> N=20;>> x=[ ones(1,N)];>> y=filter(b,a,x);>> stem(y);>> xlabel('时间序号');>> ylabel('信号幅度');>> title('单位阶跃响应h (n )'); >>理论分析:由差分方程得系统函数为:1121()10.60.08zH z zz----=++利用分部分式法可得:1176()10.410.2H z zz--=-++,z 反变换得:()[7(0.4)6(0.2)nnh n u n =⋅--⋅- h(n)即为单位冲击响应。
数字信号处理实验报告
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告
x= randn (size(1 : n));
plot(x);
运行结果:
四、习题
1.设某旋转构件的故障信号是一个正弦信号,一般情况下,这只是机构的安装有偏心误差,但信号s(n)很弱,在强噪声干扰下,想在一个周期的测量信号x(n)看上去到故障信号s(n)的形状是不可能的,已知该构件的转动周期为T=10(10个采样周期),用时间平均法检测,取测量信号x(n)长度为M个转动周期,经过时间平均后,噪声逐渐减弱,信号突出来,M分别为10、50、100、500和1000的时间平均后的结果,信噪比提高到8.73、13.7、24.62和30.62dB。
matlab代码:
1.
dalta=zeros(1,5);
dalta(1)=1;
x=[1,2,1,3];
conv(x,dalta)
运行结果:
ans =1 2 1 3 0 0 0 0
2.
dalta=zeros(1,5);
dalta(4)=1;
x=[1,2,1,3];
conv(x,dalta)
运行结果:
ans =0 0 0 1 2 1 3 0
运行结果:
结果分析:先求差分方程的z变换:
0.75Y(z) +0.125Y(z) =X(z)-X(z)
H(z)= = ,将指数转化为正值:H(z)= .然后再利用residuez()函数求 = 的展开式,matlab代码如下:
A=[0.75,0.125];
B=[1,-1];
[r,p,k]=residue(B,A)
学生实验心得
通过这次的数字信号处理实验,我学到了如何用matlab求两离散时间序列的卷积以及利用matlab提供的randn()函数产生随机数据,仿真白噪声,还学会了用时间平均法突出信号,减弱噪声、求由差分方程给出系统的单位冲激响应与单位阶跃响应。其中,在进行时间平均法使信号突出时,改正了代码中的错误,将subplot(322),plot(k,x)改成subplot(322),plot(k,s(1:n)),计算出的信噪比与题目中给出的大致相同,可能是MATLAB版本不同产生的差异,同时,从计算处理后的信噪比可以看出随着时间平均次数增多,信号逐渐被突出。
数字信号处理(实验一)
电子科技大学中山学院电子工程系 《数字信号处理》实验报告姓名: 成绩: 学号: 专业: 实验一:离散时间信号与系统的傅里叶分析 一、 实验目的及意义用傅立叶变换对离散时间信号和系统进行频域分析二、 实验原理对信号进行频域分析就是对信号进行傅立叶变换。
对系统进行频域分析即对它的单位脉冲响应进行傅立叶变换,得到系统的传输函数;也可以由差分方程经过傅立叶变换直接求它的传输函数;传输函数代表的就是系统的频率响应特性。
但传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,因此得到传输函数以后,应该在π2~0之间取许多点,计算这些点的传输函数的值,并取它们的包络,该包络才是需要的频率特性。
当然,点数取得多一些,该包络才能接近真正的频率特性。
注意:非周期信号的频率特性是w 的连续函数,而周期信号的频率特性是离散谱,它们的计算公式不一样,响应的波形也不一样。
三、 实验内容及步骤1.已知系统用下面差分方程描述:)1()()(-+=n ay n x n y试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。
要求写出系统的传输函数,并打印w e H jw ~)(曲线。
2.已知两系统分别用下面差分方程描述:)1()()(1-+=n x n x n y )1()()(2--=n x n x n y试分别写出它们的传输函数,并分别打印w e H jw ~)(曲线。
3. 已知信号)()(3n R n x =,试分析它的频域特性,要求打印w e H jw ~)(曲线。
4. 假设)()(n n x δ=,将)(n x 以2为周期进行延拓,得到)(~n x ,试分析它的频率特性,并画出它的幅频特性。
下面对实验用的MATLAB 函数进行介绍。
1.abs功能:求绝对值(复数的模)。
y=abs(x):计算实数x 的绝对值。
当x 为复数时得到x 的模(幅度值)。
当x 为向量时,计算其每个元素的模,返回模向量y 。
数字信号处理课程实验报告带代码实验结果
课程: 数字信号处理实验报告系专业班级姓名学号指导教师学年学期2018-2019-1年月日实验一报告开课实验室:通信实验室实验二报告开课实验室:通信实验室实验三报告开课实验室:通信实验室%频域采样理论验证程序exp2b.mM=27;N=32;n=0:M-1;%产生M长三角波序列x(n)xa=1:floor(M/2)+1; xb= ceil(M/2)-1:-1:1; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的FTX32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)subplot(2,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024; %subplot(2,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N-1;subplot(2,2,3);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(2,2,4);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])%频域采样理论验证程序exp2b.mM=27;N=16;n=0:M-1;%产生M长三角波序列x(n)xa=1:floor(M/2)+1; xb= ceil(M/2)-1:-1:1; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的FTX16k=fft(xn,16) ;%16点FFT[x(n)]x16n=ifft(X16k); %16点IFFT[X16(k)]得到x16(n)subplot(2,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024; %subplot(2,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N-1;subplot(2,2,3);stem(k,abs(X16k),'.');box ontitle('(e) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,16,0,200])n1=0:N-1;subplot(2,2,4);stem(n1,x16n,'.');box ontitle('(f) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,16,0,20])实验一报告开课实验室:通信实验室。
数字信号处理实验报告(全)
实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。
数字信号处理实验1
1.已知长度外为N的序列
则其离散傅立叶变换为
2.时间抽取基-2FFT算法原理
设序列长度N是2的整数幂次方,N=2M。这样我们首先将序列分成两组:偶数项一组,奇数项一组,得到2个N/2的子序列,即
,
对两个子序列分别进行DFT,可得
对于原序列 有
,
由 的性质可得
,
由于 仍然是偶数,可类似地将N/2点序列再分解为两个N/4点的序列,… …,继续这样的分解过程,直到最后是2点序列的DFT。
xlabel('frequency in pi units')
axis([0,1000,0,1000])
tf=etime(clock,t0)
运行结果:
tf =
0.1100
例2:已知信号
求DFT,对其结果进行IDFT,并将IDFT的结果和原信号进行比较。
程序如下:
clf
fs=100;
N=128;
n=0:N-1;
subplot(2,1,1);plot(n,x);title('signal x(n),0<=n<=999');xlabel('n')
axis([0,1000,-2.5,2.5])
Xk=dft(x,N);magX=abs(Xk);phaX=angle(Xk);
k=0:length(magX)-1;
subplot(2,1,2);plot(k,magX);title('DTFT Magnitude');
pause
figure(2)
w=[0:1:500]*pi/500;
freqz(b,a,w);
pause
figure(3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机与信息工程学院验证性实验报告
一、实验目的
1.学习并掌握系统的差分方程表示方法以及差分方程的相关概念。
2.熟练使用filter 函数对差分方程进行数值求解。
3.掌握差分方程的求解及MATLAB 实现方法。
二、实验原理及方法
1.一LTI 系统可以用一个线性常系数差分方程表示:
00()()N M
k m k m a
y n k b x n m ==-=-∑∑,任意n 如果N a ≠0,那么这个差分方程就是N 阶的,已知系统的输入序列,用这个方程可以根据当前输入x(n)和以前M 点的输入x(n-m ),…,x(n-1),以及以前N 点的输出y(n-N),…,y(n -1)来计算当前输出y(n)。
在实际中这个方程在时间上是从n =-∞到n =+∞朝前计算的,因此该方程的另一种形式是:
00()()()M N
m k m k y n b x n m a y n k ===---∑∑
方程的解能以下面形式求得:()()()H p y n y n y n =+分别为方程的齐次解跟特解部分。
已知输入和差分方程的稀疏,可用filter 对差分方程进行数值求解。
最简单形式为:y=filter(b,a,x) 其中b=[b0,b1,…,bM];a=[a0,a1,…,aN];
2.上面差分方程解的形式为齐次解和特解,另外还可以求零输入解和零状态解理论计算中要用到z 变换,请好好掌握z 变换的内容。
用MATLAB 实现时,若已知初始条件,则应用y=filter(b,a, x, xic)来求完全响应。
这里xic 是初始状态输入数组。
MATLAB 还提供一种filtic 函数来得到xic 。
xic=filtic(b,a,Y,X )其中b 和a 是滤波器系数数组,Y 和X 是分别从y(n)和x(n)的初始条件得来的初始状态数组。
三.实验内容
1、已知下面差分方程:
()(1)0.9(2)()y n y n y n x n --+-=;任意n
要求:
a.计算并画出在n=-20,…,100的脉冲响应h(n);
b.计算并画出在n=-20,…,100的单位阶跃相应s(n).
2.解以下差分方程:
31()(1)(2)(),022
y n y n y n x n n --+-=≥ 其中1()()()4
n x n u n =,初始条件为y(-1)=4和y(-2)=10。
要求先用理论计算,再用MATLAB 编程实现,并对比两个结果。
参考流程图:
实验内容1.
实验内容2.
四、实验报告要求
1.总结差分方程的性质及应用.
2.写出实验程序.记录实验数据并与理论计算作比较,总结结果。
五、实验程序及结果
针对问题一:
问题a的程序如下:
先建立一个生成单位抽样序列的M文件
function [x,n]=impseq(n0,n1,n2)
if((n0<n1)|(n0>n2)|(n1>n2))
error('参数必须满足n1<=n0<=n2')
end
n=n1:n2;
x=[(n-n0)==0];
主程序如下:
clc;clear all
b=1;a=[1 -1 0.9];
[x,n]=impseq(0,-20,100);
y=filter(b,a,x);
plot(n,y)。