乙炔发生工艺流程及原理.精讲

乙炔发生工艺流程及原理.精讲
乙炔发生工艺流程及原理.精讲

乙炔发生工艺流程及注意事项

1.1工艺流程简述

经过工厂初步破碎后的合格电石(粒径≤50mm),由工厂送入原料电石贮槽,经电动振动给料机将电石均匀地送入电石高效细碎机进行电石的再破碎,破碎后的电石自流进入斗式提升机,提升至电石振动筛进行筛分处理,合格粒径的电石进入成品电石贮槽后经螺旋输送机入成品电石提升机,通过斗式提升机送至电石一、二等级加料斗备用。电石振动筛筛分处理的粒径不合格的电石通过输送管进入电石高效细碎机进行再破碎。

来自电石破碎系统经破碎、筛分处理的合格电石进入电石加料斗,通过双螺旋电石给料机将合格电石均匀地送入干式乙炔发生器,双螺旋电石给料机送来的电石从发生器侧面分别进入发生器的一、二层。在发生器搅拌和相应的水喷射作用下,乙炔气体逸出,从发生器下部乙炔气出口排出,进入除尘冷却塔进行除尘和冷却处理。电石进入发生器一、二层后经搅拌从发生器中心孔下落至第三层,再经过搅拌从发生器三层层板的外周下落至发生器第四层层板,在第四层搅拌的作用下,四层层板上的电石从第四层层板中心孔落下至第五层,如此循环运动,最后电石灰渣从第十层中心孔排出,通过渣排出机的作用,电石渣被送入电石渣输送机,通过斗式提升机送入电石渣贮槽。根据工厂电石渣用途,作输送或外运处理。

来自乙炔发生器的乙炔气通过自压进入除尘冷却塔进行除尘和冷却,除尘冷却塔除尘洗涤水是通过喷淋水泵经喷淋水冷却系统冷却后循环进入喷淋冷却塔进行洗涤冷却的,喷淋冷却塔顶部喷淋水可以是来自清净工序的次氯酸钠废水。

出除尘冷却塔的洗涤水,通过自流进入沉降池,清液通过冷却系统冷却后经喷淋水泵进入除尘冷却塔进行除尘和冷却喷淋。沉降池沉积的电石渣送入压滤系统处理,压滤系统所产清液送入清液池。

发生水来自上水,通过发生水贮槽、发生水泵送入发生器。

出除尘冷却塔的乙炔气经冷却后直接进入正水封送往下工序。

出装置区的正、逆水封,由工厂根据乙炔气柜条件进行设置,以保证安全、正常的生产。

1.2控制原理表述

1.2.1电石破碎及输送

加入到原料电石贮槽的电石输送是通过原料电石贮槽料位系统或称重系统给出的上、下限的信号进行自动控制的。原料电石贮槽电石到达上限时自动停止电石的输送,原料电石贮槽电石到达下限时自动开启电石输送。

加入到成品电石贮槽的电石是通过成品电石贮槽料位系统或称重系统给出的上、下限信号进行自动控制的。成品电石贮槽电石达到上限时自动依次停止电石的电机振动给料机、电石高效细碎机及后续的斗式提升机、振动筛。停止动作的间隔时间根据系统测试后确定;成品电石贮槽电石达到下限时,自动依次开启振动筛、斗式提升机、电石高效细碎机和电机振动给料机,开启动作的间隔时间根据系统测试后确定。

加入到电石一级加料斗的电石是通过电石一级加料斗称重系统给出的上、下限信号进行自动控制的。该加料斗要一直保持存料状态,其料位不得低于下限的设定值,以确保电石二级加料斗中的电石是装满贮罐,在发生器中产生的乙炔气即使朝加料斗方向逆行流转,由于加料槽电石料层阻断了压力,并在二级加料斗上封入保证安全用的氮气,才能保证其安全运转。在电石一级加料斗电石到达上限时,自动依次停止螺旋给料机、斗式提升机,反之则依次启动斗式提升机和螺旋给料机,其停止和开启的间隔时间根据系统测试数据确定。

1.2.2电石破碎及输送的安全

为了防止发生器中产生的乙炔气朝着粉料方向逆行流转,在电石二级加料斗的上部必须封入保证安全的氮气,封入氮气的压力为大于发生器操作压力~1.0Kpa。电石破碎和输送的系统必须要保持相应的密封,确保该系统一直处在正压氮气的保护之下,并根据生产地区的空气湿度情况确定电石破碎及输送系统的氮气置换、排放周期。

粉料设备的连接应尽可能选用法兰面直联的形式,振动设备——电机振动给料机、振动筛这样的相对动态设备的联接应选择防止气体逸出的涂层帆布或橡胶软连接进行连接,以减少氮气的耗量。斗式提升机的下部均应配置氮气封入管,以确保系统氮气正压。

1.2.3乙炔干式发生

乙炔干式发生是在发生器内完成的,发生器为圆柱体钢制设备,内有10层层板和带有输送、搅拌功能的搅拌叶和搅拌棒,并在带有减速机的旋转轴作用

下进行运动。在第一段和第二段带有反应水喷射用的喷嘴各6个,在发生器顶部设有防爆安全口连接安全水封,在发生器的侧面设有检修口(搅拌叶、搅拌棒调整口)、温度计和压力计等底座。在发生器第三段带有反应水辅助喷射用的喷嘴共4个。

原料电石在发生器第一段和第二段外侧面投入,经过搅拌叶向中心移动搅拌,与上面呈雾状分布下来的反应水混合,不断产生乙炔气体,从中心部旋转轴周边下落到第三段层板上,经过搅拌叶向旋转轴外周方向移动搅拌,从第三段层板外周下落到第四段层板上、如此反复重复Z 形移动,最后将反应完了的电石渣由第十段中心孔排到渣排出机。

反应水并不仅仅发生乙炔,它会吸收反应热、蒸发,可以达到防止发生器温度上升的目的。

发生器内设置的第一、二段反应水喷射用喷嘴6个,设置为3组,每组2只,按照电石在一、二段旋转移动的方向,先接触电石的2个为第一组,其余依次分为第二组、第三组。第一组喷射水量占总喷射水量的45%,第二组喷射水量占总喷射水量的35%,第三组喷射水量占总喷射水量的20%。喷射水量的多少,最终以控制电石渣含水8±2%为宜。发生器第三段二组共4个喷头的喷水装置是为辅助喷水而设定的。

喷水量百分比的调节是通过现场金属转子流量计来控制的,每一段(层)的总的喷水量是通过调节阀和电磁流量计设定来完成的。

电石进入发生器的输送量是通过调节电石螺旋给料机的转速来实现的。

1.2.4乙炔气洗涤和冷却

来自乙炔发生器的乙炔气通过两只带式绞龙从除尘冷却塔乙炔气进口进入,除尘冷却塔下部设置的两个带式绞龙是为了防止这一连接段电石灰渣的积聚,并把在这一区域积聚的电石灰渣推回到发生器,同时保证乙炔气通道的畅通。进入除尘冷却塔的乙炔气通过塔中设立的喷头对其乙炔气进行喷淋洗涤。喷头的流量可以从流量计读出,也可以通过手阀进行流量调整。在除尘冷却塔底部设有防止电石渣沉淀的冲水口,进行冲水。除尘冷却塔喷淋洗涤水通过水密封从塔的下部排入洗涤水沉降池经沉降冷却后循环使用。

1.2.5电石渣的排出

渣排出机是电石渣排出的主要机器,该机器采用了反馈式螺旋挤出机为主体

的特殊装置,通过渣排出机将干式乙炔发生器主体与电石渣输送机械及大气间进行了完全的密封。因此可以在乙炔气完全不会泄漏的情况下连续排出电石渣。

渣排出机的主要部分是螺旋挤出机以及在顶端设计的密封回转式阀门。电石渣在两者的缝隙间排出,此缝隙是通过对螺旋顶端电石渣的料封层,自动形成电石渣料封层的压力密闭的构造。通过渣排出机排出的电石渣送入电石渣输送机经斗式提升机送入电石渣贮罐。为防止电石渣中水蒸汽的冷凝板结,在电石渣贮罐底部设有送风装置,电石渣中水蒸汽及热量由送风系统从电石渣贮罐顶部排出。

电石渣根据用途送入下一产品作为生产原料,或通过电石渣增湿排出机增湿后装车外运。

乙炔发生器型式:密闭式圆筒立式多层带搅拌

能力:1200~2600NM3/H

转速:14转/分

尺寸:主体立筒φ3000×5700H

材质:A3,一、二段搅拌叶堆焊耐磨材料

电机:防爆 37kw

主要耗材:搅拌叶、搅拌棒、喷头

保温:底部及侧面防止结露保温δ=50mm。

除尘冷却塔型式:密闭式、圆筒立式型

能力:2600 NM3/H

尺寸:φ1600×1380H

材质:A3 20#

乙炔入口型式:密闭式 2螺旋

转速:10转/分

尺寸:φ~700×全长2200L

材质:A3 20#

电机:防爆 1.1kw×2 电机输出:10rpm

渣排出机型式:密闭,反馈结构

处理量:~20T/H

转速:40转/分

尺寸:φ345×280×1300

材质:A3 20#推进面及螺旋外周堆焊耐磨材料

电机:防爆,30kw 输出:40转/分

主要耗材:耐磨处理螺旋

保温:防止结露保温δ=50mm

乙炔冷却器

乙炔冷却器是为乙炔气二次冷却设置的,为列管式结构,乙炔气冷凝水通过水密封排入除尘冷却喷淋水受槽。

1.3原料规格和装置能力

1.3.1电石原料条件

粒度≤50mm

发气量:20℃ 101.3kpa l/kg ≥285

1.3.2成品电石条件

粒度:0~3mm

粒度分布:0~1mm 50%以上

发气量:20℃ 101.3kpa l/kg ≥285

1.3.3装置生产能力

C2H2发生量:≥2400 Nm3/H·套

所有材料的选用不能有铜、汞、银类金属,因为铜、汞、银等金属与乙炔接触时会生成极易爆炸的乙炔铜、乙炔汞、乙炔银等化合物,故不能使用,包括设备和仪表。

2、正常运转操作指南

2.1电流值的管理

各机器在运转时的电流值实际上是装置在试运行和运行时的值作为标准值参考进行电流值的管理。

a、无负荷电流值(连接机器或所有电机驱动件)。

b、负荷电流值(正常运行时的电流值,负荷差异导致电流值变化)。

2.2、发生器工作压力

电石加料槽:氮气封入压力=发生器压力0.5~1.0Kpa。

发生器:4.0~6.0kpa (参考值,发生器工作压力与工厂乙炔气柜压力相关,

宜尽可能降低发生器工作压力,并据此调整正、逆水封液位)。

2.3、乙炔温度发生器气相温度:87~95度。

脱硫塔出口:45-50度。

发生器层板温度:150度以下。

水温工艺水:25度以下。

循环冷却水:30度以下。

冷冻水:5度以下。

除尘冷却塔排水:80~92度。

2.4、电石渣含水率 8.0%±2%(wt%)。

2.5、乙炔纯度

98%以上(正水封出口)。

95%以上(正水封出口,开车期纯度,但不纯物为N2)。

2.6、供水量

除尘冷却塔工艺水补充量:~10 m3/H(C2H2:2500N m3/H)。

循环冷却水:~500 m3/H(C2H2:2500N m3/H)。

2.7、氮气供应量

正常供应量:80 m3/H·套(C2H2:2500N m3/H)

置换供应量:150 m3/H·套

2.8、氮气管理

a、电石加料斗C2H2浓度管理

C2H2浓度管理范围处理判定1.0%以下正常范围

1.0~

2.0%警界范围1、增加N2封入压力

2、O2分析2%以下安全

b、电石破碎及输送系统O2浓度

电石破碎及输送系统O2浓度3%以下安全。

2.9、工艺控制技术点

指标名称指标检测点检测

方法

检测频率检测者

原料电石品位≥280l/kg 电石料仓化学

分析

1次/天分析工

氮气纯度≥99.0%分配台化学

分析

2次/天分析工

氮气压力0.2~0.3mpa 分配台压力

显示

1次/1小时操作工

发生器压力4~6kpa 发生器压力

显示

1次/0.5小

操作工

加料斗N2封压

发生器压力

+0.5~1.0Kpa

加料斗

压力

显示

1次/0.5小

操作工

发生器乙炔温

度87~95℃发生器

温度

显示

1次/0.5小

操作工

发生器层板温

度≤150℃发生器

温度

显示

1次/0.5小

操作工

除尘排水温度80~92℃喷淋水受槽测量1次/4小时操作工

发生水流量分

配45、35、20%

发生水分配

流量

显示

1次/2小时操作工

发生水流量按发气量计算流量计仪表

显示

1次/0.5小

操作工

喷淋水流量8~10 m3/H·只流量计流量

显示

1次/2小时操作工

乙炔气温度45~50℃脱硫塔进口温度

显示

1次/0.5小

操作工

乙炔气流量按电石加料量脱硫塔出口流量

显示

1次/0.5小

操作工

乙炔气纯度≥98×10-2脱硫塔出口化学

分析

1次/2小时分析工

乙炔气含硫--- 脱硫塔出口化学

分析

1次/2小时分析工

脱硫水N2OH浓

度5~10%脱硫水受槽

化学

分析

1次/4小时分析工

电石渣含水8±2%渣排出口化学

分析

1次/4小时分析工

电石渣含乙炔≤2%渣排出口化学

分析

1次/4小时分析工

电石破碎机电

流按规定范围电流表

仪表

显示

1次/0.5小

操作工

发生器搅拌电

流按规定范围电流表

仪表

显示

1次/0.5小

操作工

加料螺旋电流按规定范围电流表仪表

显示

1次/0.5小

操作工

渣排出机电流按规定范围电流表仪表

显示

1次/0.5小

操作工

2、产品和原料

2.1 产品概述

乙炔俗称电石气,通常由碳化钙(电石)与水作用,发生水解反应制得;也可用石油馏分高温裂解而制得。乙炔可用于金属焊接或切割,夜航标志灯等;大量用作石油化工原料,如:制造聚氯乙烯、氯丁橡胶、醋酸、醋酸乙烯酯等。

2.2 产品及原料的物化性质:

2.2.1 产品(乙炔)的物化性质

乙炔在常温常压下是比空气略轻,稍溶于水和有机溶剂的无色气体,工业生产的乙炔气因含有硫、磷等杂质而带有刺激性臭味。分子式为:C2H2,分子量为:26.038,结构式为:H-CΞC-H,沸点为:-83.6℃,凝固点为;-85℃。由于乙炔分子中的叁键结构的键能很低,致使乙炔气体很活泼,它可以与氢气、氯气、氯化氢、水等进行加成反应,还能在适当条件下发生二聚、三聚和四聚作用。此外更主要的是还能进行乙烯基化反应。

乙炔易燃易爆,性能上和氢气很相似。乙炔在高温、加压或某些物质存在时,具有强烈的爆炸能力。如:压力为1.5Mpa的气体温度超过550℃即产生爆炸。乙炔与空气能在很宽的范围内(2.3-81)×10-2形成爆炸混合物,爆炸迟滞时间只有0.017秒,乙炔极易与氯气反应生成氯乙炔引起爆炸,爆炸产物为氯化氢和碳。乙炔与铜、银、汞极易生成相应的乙炔铜(CuCΞCCu)、乙炔银(AgCΞCAg)、乙炔汞(HgCΞCHg)金属化合物,在干态下受到微小震动即可自行爆炸。

乙炔气中混入一定比例的水蒸气、氮气或二氧化碳都能使其爆炸危险性减小,例如:乙炔:水蒸气=1.15:1(接近发生器内生成的湿乙炔气)通常无爆炸危险,也就是说,乙炔气在一定纯度下、操作压力、温度越高,越容易引起爆炸。

2.2.2 原料的物化性质:

2.2.2.1 电石的物化性质:

纯净的碳化钙几乎是无色透明的结晶体,其分子式为:CaC2,分子量为:64.10。通常说的电石是指工业碳化钙,按其纯度不同有灰色、棕色、黄色、黑色之分,暴露在空气中吸收水分后即失去光泽,变成灰白色粉末,品质降低,最终变质失效。纯净碳化钙密度为 2.22g/cm3(纯度80×10-2的碳化钙密度为 2.324g/cm3),熔点2300℃(纯度80×10-2的碳化钙熔点为2000℃),堆积密度:粒度<80mm为

1.1-1.3t/m3,碳化钙不溶于所有有机溶剂。

碳化钙的化学性质活泼,能与许多气体、液体在适当的温度下发生化学反应。与水反应生成乙炔和氢氧化钙,并放出热量(生成热:△H298=14.1±2千卡/克分子)。含杂质磷化钙过多的碳化钙遇水产生磷化氢,极易爆炸。

2.2.2.2 氢氧化钠的物化性质:

氢氧化钠俗称烧碱、火碱、苛性钠,分子式为:NaOH,分子量为:40,是一种强碱,具有较强的腐蚀性,和酸性物质发生中和反应。其水溶液俗名液碱,为无色透明液体,是一种重要的基本化工原料。

2.3 产品及原料的质量指标:

2.3.1 产品(乙炔)的质量指标:

乙炔纯度:≥98×10-2

2.3.2 原料的质量指标:

项目

指标

优等品一等品合格品

发生量(20℃,1013kpa),(1/kg)粒度

80-200 305 285 255

50-80 315 285 255

5-60 300 280 250

5-50 300 280 250

2.3.2.2 氢化氧钠的质量指标:

溶液浓度:≥30×10-2

2.4 生产工艺原理:

电石加入发生器后和水即反应生成要乙炔气,水解反应方程式如下:CaC2+2H2O →Ca(OH)2+15.2千卡/克分子

CaS+2H2O →Ca(OH)2+H2S↑

Ca3N2+6 H2O →3Ca(OH)2+2NH3↑

Ca3P2+6 H2O →3Ca(OH)2+2PH3↑

Ca2Si+4H2O →2Ca(OH)2+SiH4↑

Ca3As2+6 H2O →3Ca(OH)2+2AsH3↑

因此在发生器内产生的粗乙炔气中,含有上述副反应产生的磷化氢、硫化氢、

氨等杂质气体;由于电石水解生成大量氢氧化钙,形成碱性介质,使生成的磷化氢、硫化氢水解反应不完全,且由于硫化氢在水中溶解度大于磷化氢,因此粗乙炔中含有较多的硫化氢及较少的磷化氢,磷化氢还能以P2H4的形式存在,它们在空气中会自燃。

2P2H4+7O2→2P2O5+4H2O

2PH3+4O2→P2O5+3H2O

85℃反应温度下,由于水的大量汽化,粗乙炔气中夹带大量的水蒸气,一般水蒸气:乙炔达1:1.15

9. 关于安全的资料

9.1 乙炔工厂安全作业规定

9.1.1 乙炔危险物性,氮气所在的地方及其他

a、乙炔

在粉碎,发生的各个装置,充满或蓄压了乙炔,其中的一部分采用了氮气封入或者完全封闭等的安全措施。

粉碎装置中,所有器件都封入了氮气,但并不是各个器件都完全密封,所以存在氧浓度高的地方,因此作为防止爆炸对策需要使用红外线分析仪

时常进行乙炔浓度探测的管理。

发生装置也和粉碎装置一样,需要在电石传输装置及其储槽中封入氮气,通过红外线分析仪时常进行乙炔浓度探测的管理。

此外,除尘冷却塔废弃液体出口,排渣机出口因为不断发生乙炔,所以在它们周围可能会出现乙炔滞留,和空气混合后条件满足就会引发爆

炸。不仅是这些出口周边,在整个乙炔发生设备区域内都要禁止使用明火。

b、危险物

电石是主要原料,使用量大,所以要作为“危险物”处理。在修理,检点,清扫粉碎装置或发生装置时,会产生一些粉电石和扫除灰,在处理

这些垃圾时一定要遵守相关规定。

c、氮气

上述电石粉碎装置及传输装置中,采用封入氮气作为防止爆炸的对策,但是这些氮气有从各个机器中泄漏滞留的危险,从而引起人的窒息,

所以需要通过换气装置强制换气。这点一定要注意。

d、粉尘,噪音

在检点,修理发生装置的排渣机排出口时,粉尘容易飞散,所以一定要佩戴规定的保护用具。

9.2 关于安全的事项

9. 2. 1在系统运行时,要加强电石破碎、输送、加料系统空间乙炔含量的分析监管,

在确保安全的前提下,保持系统N2封微正压即可,系统中C2H2含量达到1.5% 时应及时排气置换以确保系统安全运行。

9.2. 2对不同介质间安装的三阀结构应按规定及时开关,杜绝串气而造成事故。

9.2.3对于没有投入运行的设备要采用水封隔断、物理隔断的方式及时和生产装置断开,防止系统乙炔的积聚、生成、和串气而造成事故。

9.2.4对于停止运行的设备,操作人员更应对其加强监管,对于N2保护、系统隔绝、

压力控制实行指标量化管理。并加强分析和监控。

9.2.5关于检修动火:严格按照工厂检修动火作业规定执行,确保动火设备和系统有可靠隔绝;动火设备经过清洗、置换分析合格;严格焊机地线搭接规定,严禁将地线搭接至系统管线或非动火设备上;做好防止火花飞溅措施和动火现场气体分析和通风。防止因动火检修而发生爆炸事故。

9. 2. 6关于入罐作业和设备检修:严格按照工厂容器、设备内作业安全规定执行:确

保入罐或检修设备和系统有可靠的隔绝;检修设备按程序经过清洗、置换、通风;人孔和通风系统开启;动力电源确保断开;照明设备符合设备内作业的安全要求。防止机械、化学事故的发生。

以上,乙炔发生使用的各个设备,在日本受到高压乙炔管理法及高压乙炔管理施行规则的管束,并制定高压乙炔作业负责人。并且,使用的原料电石要根据“消防法及危险品管理相关法令及总理府令”由危险品处理负责人指定。

9.3 乙炔的特性

a、物理特性

乙炔氨一氧化

碳氯乙烯醋酸乙

润滑油丙烷

燃点℃~17.8 气体气体气体<—

17.8 ~7.8 14.9~

232

气体

起火点℃334.8 651.2 651.2 ————427 260~

371

466.6

暴发界限Vol%~2.3~

72.3

16~

25

12.5~

74

4~22 2.6~

13.4

———

2.2~

9.5

(空气=1)

蒸汽密度0.9 0.58 0.976 2.15 2.97 ———

1.56

沸点℃~83.9 ~

38.3

~192.2 ~13.9 71.6 360 ~42.8 比重0.97 1.06 <1

b、化学特性

乙炔是拥有三键结构的不饱和碳化氢,具有丰富的化学反应性,很容易引起和氢,卤,卤化氢,及其他化学元素的附加反应或聚合。因此,又

成为醋酸,丙酮,合成树脂的原料。并且,通过和金属或金属化合物反应

而生成金属乙炔化物。和铜盐的氨溶液生成乙炔铜(CuCΞCCu),和银盐

氨生成乙炔银(AgCΞCAg)的沉淀,这两者都在干燥状态下容易引发爆炸。

c、乙炔的爆炸性和易燃性

(1)乙炔很容易反应,和空气或氧气混合的话大范围(2.3~81.0%)形成爆发性混合乙炔,有爆炸的危险性。

(2)空气中的燃点比较低,大概为330度。

(3)在压力下处于极不稳定状态,1kg/cm2(表压)以上,会因为火花,加热,摩擦等诱因而导致爆炸性的自我分解。只是,熔解于丙酮的

是稳定的。

(4)乙炔输送最大流速:压力0.0068~0.147mpa时,应不超过8m/s;压力为0.147~2.45mpa时,应不超过4m/s。

9.4 对乙炔人身的影响

1、纯净的乙炔没有毒性。只是单纯的窒息性物质。所以,浓度高时会

有因为氧气不足而窒息的危险。

2、急性作用的情况,20%以上的乙炔存在于呼吸的空气中的话,可利

用的氧气减少,会产生呼吸困难或轻度头疼,40%以上的话会导致

虚脱。没有局部作用。

3、慢性作用的情况,体内持续慢性氧气不足的话会导致慢性内窒息状

态。没有局部作用。

4、乙炔中如果有很多不纯物质的话(特别是磷化氢、硫化氢等),会

加速中毒现象或某些病状的发生。

9.5 卫生上的预防及急救措施

在使用乙炔时要特别注意换气,任何时候都要保证乙炔浓度在 2.3%(Vol)以下。这是防止爆炸所必需的,只要严守这一点就不会危害到健康。

在进入有高浓度乙炔的密闭区时,要采取以下措施,佩戴相应装备。

1、佩戴软面具,强制送风机,自我保护式呼吸工具等装备

2、出现中毒现象时,转移到洁净的空气中,吸入氧气并且进行人工呼吸,同时要立即就医。

乙炔发生工艺流程及原理知识分享

乙炔发生工艺流程及 原理

乙炔发生工艺流程及注意事项 1.1工艺流程简述 经过工厂初步破碎后的合格电石(粒径≤50mm),由工厂送入原料电石贮槽,经电动振动给料机将电石均匀地送入电石高效细碎机进行电石的再破碎,破碎后的电石自流进入斗式提升机,提升至电石振动筛进行筛分处理,合格粒径的电石进入成品电石贮槽后经螺旋输送机入成品电石提升机,通过斗式提升机送至电石一、二等级加料斗备用。电石振动筛筛分处理的粒径不合格的电石通过输送管进入电石高效细碎机进行再破碎。 来自电石破碎系统经破碎、筛分处理的合格电石进入电石加料斗,通过双螺旋电石给料机将合格电石均匀地送入干式乙炔发生器,双螺旋电石给料机送来的电石从发生器侧面分别进入发生器的一、二层。在发生器搅拌和相应的水喷射作用下,乙炔气体逸出,从发生器下部乙炔气出口排出,进入除尘冷却塔进行除尘和冷却处理。电石进入发生器一、二层后经搅拌从发生器中心孔下落至第三层,再经过搅拌从发生器三层层板的外周下落至发生器第四层层板,在第四层搅拌的作用下,四层层板上的电石从第四层层板中心孔落下至第五层,如此循环运动,最后电石灰渣从第十层中心孔排出,通过渣排出机的作用,电石渣被送入电石渣输送机,通过斗式提升机送入电石渣贮槽。根据工厂电石渣用途,作输送或外运处理。 来自乙炔发生器的乙炔气通过自压进入除尘冷却塔进行除尘和冷却,除尘冷却塔除尘洗涤水是通过喷淋水泵经喷淋水冷却系统冷却后循

环进入喷淋冷却塔进行洗涤冷却的,喷淋冷却塔顶部喷淋水可以是来自清净工序的次氯酸钠废水。 出除尘冷却塔的洗涤水,通过自流进入沉降池,清液通过冷却系统冷却后经喷淋水泵进入除尘冷却塔进行除尘和冷却喷淋。沉降池沉积的电石渣送入压滤系统处理,压滤系统所产清液送入清液池。 发生水来自上水,通过发生水贮槽、发生水泵送入发生器。 出除尘冷却塔的乙炔气经冷却后直接进入正水封送往下工序。 出装置区的正、逆水封,由工厂根据乙炔气柜条件进行设置,以保证安全、正常的生产。 1.2控制原理表述 1.2.1电石破碎及输送 加入到原料电石贮槽的电石输送是通过原料电石贮槽料位系统或称重系统给出的上、下限的信号进行自动控制的。原料电石贮槽电石到达上限时自动停止电石的输送,原料电石贮槽电石到达下限时自动开启电石输送。 加入到成品电石贮槽的电石是通过成品电石贮槽料位系统或称重系统给出的上、下限信号进行自动控制的。成品电石贮槽电石达到上限时自动依次停止电石的电机振动给料机、电石高效细碎机及后续的斗式提升机、振动筛。停止动作的间隔时间根据系统测试后确定;成品电石贮槽电石达到下限时,自动依次开启振动筛、斗式提升机、电石高效细碎机和电机振动给料机,开启动作的间隔时间根据系统测试后确定。

乙炔生产工艺流程概述

生产工艺流程简述 本项目采用“电石入水法”生产溶解乙炔,其主要原料为电石和水。 (1)电石破碎 人工将电石库内的大块电石破碎成50-200mm的电石。 (2)乙炔发生 将破碎好的电石人工运至发生器间,通过电动葫芦将电石提升至3.5米平台上,采取电石入水的方式进行生产操作。电石和水在乙炔发生器内进行水解反应,生成乙炔气和氢氧化钙(熟石灰)并释放出热量。 粗乙炔气体由发生器顶部逸出,经喷淋预冷器及正、反水封进入乙炔气柜中。电石渣浆流入渣浆槽,发生器的反应过程如下: 主反应: CaC2+2H2O→Ca(OH)2+C2H2+130kJ/mol 副反应: CaO+ H2O→Ca(OH)2 +63.6kJ/mol CaS+ 2H2O→Ca(OH)2 +H2S Ca3P2+ 6H2O→3Ca(OH)2 +2PH3 Ca3N2+ 6H2O→3Ca(OH)2 +2NH3 Ca3Si+ 4H2O→2Ca(OH)2 +SiH4

Ca3As2+ 6H2O→3Ca(OH)2 +2AsH3 (3)乙炔净化、中和、气水分离 从气柜中出来的乙炔气经过一清塔、二清塔,然后进入中和塔。因电石中含有少量的硫、磷,所以粗乙炔气体中含有少量的H2S、PH3,须在装瓶之前进入清净塔加以净化。在清净塔与含有效氯0.085~0.12%的次氯酸钠溶液直接接触反应,以脱除粗乙炔气中的磷、硫杂质。由清净塔顶排出气体进入中和塔与塔顶喷入的 10~15%液碱中和反应后,经气水分离器除去气相中水分,使纯度98.0%以上的精乙炔气送压缩系统。工艺反应式如下: 4NaClO+H2S→H2SO4+4NaCl 4NaClO+PH3→H3PO4+4NaCl 反应生产的酸,再用10~15%的碱液中和,其反应式为: 2NaOH+ H2SO4→Na2SO4+2H2O 3NaOH+ H3PO4→Na3PO4+3H2O 2NaOH+ CO2→Na2CO3+H2O (4)压缩、油水分离、干燥 净化的乙炔气经低压水封进入压缩机,本工段选用2Z-1.5/25型乙炔压缩机,采用分子筛高压干燥装置。压缩至2.4MPa,温度35℃左右,经高压油分离器油水分离后,进入高压干燥器干燥,送乙炔灌瓶架灌装。 (5)灌装

装配式建筑施工工艺流程实例图解

装配式建筑施工工艺流程实例图解 装配式建筑已不在陌生,特别在近几年,3D打印技术的出现之后,装配式建筑将会成为新型建筑主流。作为一名工程人,一定要知道装配式建筑的施工工艺流程。下面我们就一起对比分析装配式与传统建筑的5大优势有哪些? 装配式建筑施工工艺流程工艺流程图解: 1、安装外墙板(三明治夹心保温板) 2、墙板连接件安装、板缝处理。 3、叠合梁安装 4、内墙板安装。 5、柱、剪力墙钢筋绑扎。 6、电梯井道内模板安装。 7、剪力墙 9、墙柱模板拆除、楼板支撑搭设、安装叠合式楼板。 10、吊装楼梯梯段。 11、工作面安装安全防护措施。 12、楼板拼缝处抗裂钢筋安装。 13、楼板内预埋管线安装、面层钢筋绑扎。 14、楼板混凝土浇筑。 15、进入上一层结构施工,拆除栏杆,吊装外墙板。 装配式建筑工艺与传统建筑工艺对比的5大优势: 1、施工现场施工取消外架,取消了室内、外墙抹灰工序,钢筋由工厂统一配送,楼板底模取消,墙体塑料模板取代传统木模板,现场建筑垃圾可大幅减少。

装配式: 传统式: 2、PC构件在工厂预制,构件运输至施工现场后通过大型起重机械吊装就位。操作工人只需进行扶板就位,临时固定等工作,大幅降低操作工人劳动强度。 装配式: 传统式: 3、门窗洞预留尺寸在工厂已完成,尺寸偏差完全可控。室内门需预留的木砖、砼块在工厂也完成,定位精确,现场安装简单,安装质量易保证。 装配式: 传统式: 4、保温板夹在两层混凝土板之间,且每块墙板之间有有效的防火分隔,可以达到系统防火A级,避免大面积火灾隐患。且保温效果好,保温层耐久性好,外墙为混凝土结构,防水抗渗效果好。 装配式: 传统式: 5、取消了内外粉刷,墙面均为混凝土墙面,有效避免开裂,空鼓、裂缝等墙体质量通病,同时平整度良好,可预先涂刷涂料或施工外饰面层或采用艺术混凝土作为饰面层,避免外饰面施工过程中的交叉污损风险。 装配式: 传统式: 工程人,每天学一点儿,进步一点!

(安全生产)溶解乙炔厂(站)设计的安全要求

溶解乙炔厂(站)设计的安全要求 溶解乙炔厂的主要危险源(1) 溶解乙炔厂(站)所涉及的原材料、中间品和最终产品均有不同程度的危害性。为保证溶解乙炔厂的安全生产,确保生产中职工的劳动安全卫生,在溶解乙炔厂(站)设计时应以人为本重点考虑劳动、安全、卫生方面的内容。因此,首先必须对危害因素进行分析,并对厂(站)设计的合理性、生产装置的安全性以及在异常情况下所必须采取的紧急措施给予确定。 1.乙炔 乙炔分子量26,熔点-80.5℃,沸点-84℃,气体密度1.1767g/L(标准状态),是一种易燃易爆有毒的气体,毒性程度Ⅲ级(中度危害),浓度约在10%时就有轻微中毒感,随着浓度增大毒性亦增大。乙炔与空气混合时爆炸范围为2.5%~82%(V/V),当乙炔气与空气混合达到爆炸范围时,只要碰到火星就会发生爆炸事故。它与氢气、甲烷、丙烷、乙烷、丁烷、乙烯、丙烯等相比,具有更大的危险性。 (1)自燃点 乙炔自燃点比较低,在空气中305℃,在氧气中为296℃,它比一般易燃气体的自燃点低100~200℃。当乙炔中含有PH3,其自燃点还会更低,当PH3量达200ppm时,它在空气中的自燃点可降低至200℃以下。 根据《爆炸和危险环境电力装置设计规范》(GB50058-92),易燃气体按引燃温度高低分为6组,乙炔属于第2组。 (2)最小点火能 可燃气体在空气中,给一定的能量,即可点火燃烧,能引起点火的最小点火能量称为最小点火能。乙炔的最小点火能只有0.019mJ,与氢气相同,约为一般易燃气体的1/10,按最小点燃电流大小(MIR)分缴,可分为3级,乙炔为3级。 (3)爆炸范围

乙炔的爆炸范围:在空气中为2.5%~82%(V/V),在氧气中为2.8%~100%,在一般的易燃易爆气体中,乙炔的爆炸范围最大,爆炸下限也是最低。纯乙炔也能够爆炸,是一种分解爆炸。纯乙炔在压力0.15MPa、温度达到580℃就开始分解爆炸。乙炔加压后更容易引起分解爆炸。乙炔分解爆炸的最小点火能随压力增高而下降,所以高压乙炔的爆炸危险性更大。当压力为0.981MPa,乙炔的最小分解点火能为2.9mJ,如当压力增加到2.45MPa,则最小分解点火能量降低,仅为0.2mJ。这个能量相当于一般易燃气体在空气中的最小点火能量,所以高压乙炔气是非常危险的。 常用下式作为易燃易爆气体的危险度: 式中,H为危险度,爆上为爆炸上限,爆下为爆炸下限、乙炔危险度 (4)传爆能力 传爆能力是指爆炸性混合气体传播爆炸的能力。传爆能力按最大试验安全间隙(MESG)来衡量。传爆间隙是通过长25mm的间隙连通爆炸性混合气体,当一侧燃爆时能引起另一侧燃爆的最大间隙。爆炸性混合气体的传爆能力分为3级,乙炔为3级。所以,乙炔的传播火炮和传爆能力是很强的。 2.电石 电石遇水会产生乙炔气体,对人体有害,同时,当气体浓度达到爆炸下限时遇火花会发生爆炸。电石粉尘会影响操作人员的身心健康。 3.丙酮 丙酮分子量58,无色,略带刺激性的液体,具有芳香气味,熔点-94.6℃,沸点56.5℃,密度0.7898g/L,燃点18℃,自燃点603℃,闪点-20℃,在空气中的爆炸极限2.15%~13%。 丙酮毒性程度Ⅳ级(轻度危害),轻度中毒对眼睛及上呼吸道粘膜有刺激作用,吸入蒸气后可引起头痛、头晕等衰弱症状;重度中毒有昏厥、痉挛、尿中出现蛋白和红细胞症状。 4.电器设施 高速运转的机器部件及温度较高的发生器等设备,可能对人体造成烫伤或其他伤害。

年产5万吨乙炔发生工段工艺流程设计

5万吨/年PVC车间乙炔发生工段工艺流程设计 目录 前言 (1) 一、设计背景 (1) (一)乙炔概述 (1) 1、乙炔在水中的溶解度 (2) 2、原料特性 (2) 3、化学性质 (3) 4、产品的主要用途 (3) 二、设计内容 (4) (一)设计思路 (4) (二)工艺流程选择 (4) 1、湿法乙炔发生 (4) 2、干法乙炔发生 (5) 3、工艺方案的选择 (5) 4、湿法乙炔生产原理及工艺流程设计 (5) (五)工艺流程图 (6) (三)生产流程说明 (7) 1、发生 (7) 2、冷却与调节 (7) 3、次氯酸钠的配制 (8) 4、清净 (8) 5、碱洗和干燥 (8) (四)乙炔发生工段工艺计算 (8) 1、物料衡算 (8) (六)三废处理 (12) 1、废渣 (12) 2、废气 (12)

3、废水 (13) 三、设计总结 (13) 参考文献 (14)

前言 聚氯乙烯PVC是由氯乙烯单体VC均聚或与其他多种单体共聚而制得的合成树脂聚氯乙烯再配以增塑剂稳定剂高分子改性剂填料偶联剂和加工助剂经过提炼塑化成型加工成各种材料当前PVC生产面临着严重的挑战比如生态环境的保护潜在替代品的市场竞争资源的进一步优化配置能量的合理充分利用生产过程的优化和高效率化生产和使用效率的提高应用技术和市场开拓等都在不同程度上影响着PVC的进一步发展在上述问题上仍有大量工作要做对生态环境安全的配套助剂环境保护技术包括PVC废弃物的回收再利用和处理等方面更需要花大力气加以研究。 一、设计背景 (一)乙炔概述 (1)产品名称:乙炔 (2)分子式:C2H2,分子量26.04 (3)产品说明:工业电石乙炔中因含有杂质磷化氢等而有特殊臭味。在温度-836℃和0.1MPa压力下,乙炔变为无色易流动的液体。当温度继续下降即成为白雪状物质;在0℃和01MPa压力下1L液态时,乙炔可得3825L气态。 (4)物理性质 ①在标准大气压下乙炔密度 表1 在不同温度下乙炔的密度 表2 不同温度下乙炔热熔粘度导热系数

乙炔发生工艺流程及原理

乙炔发生工艺流程及注意事项 1.1工艺流程简述 经过工厂初步破碎后的合格电石(粒径≤50mm),由工厂送入原料电石贮槽,经电动振动给料机将电石均匀地送入电石高效细碎机进行电石的再破碎,破碎后的电石自流进入斗式提升机,提升至电石振动筛进行筛分处理,合格粒径的电石进入成品电石贮槽后经螺旋输送机入成品电石提升机,通过斗式提升机送至电石 一、二等级加料斗备用。电石振动筛筛分处理的粒径不合格的电石通过输送管进 入电石高效细碎机进行再破碎。 来自电石破碎系统经破碎、筛分处理的合格电石进入电石加料斗,通过双螺旋电石给料机将合格电石均匀地送入干式乙炔发生器,双螺旋电石给料机送来的电石从发生器侧面分别进入发生器的一、二层。在发生器搅拌和相应的水喷射作用下,乙炔气体逸出,从发生器下部乙炔气出口排出,进入除尘冷却塔进行除尘和冷却处理。电石进入发生器一、二层后经搅拌从发生器中心孔下落至第三层,再经过搅拌从发生器三层层板的外周下落至发生器第四层层板,在第四层搅拌的作用下,四层层板上的电石从第四层层板中心孔落下至第五层,如此循环运动,最后电石灰渣从第十层中心孔排出,通过渣排出机的作用,电石渣被送入电石渣输送机,通过斗式提升机送入电石渣贮槽。根据工厂电石渣用途,作输送或外运处理。 来自乙炔发生器的乙炔气通过自压进入除尘冷却塔进行除尘和冷却,除尘冷却塔除尘洗涤水是通过喷淋水泵经喷淋水冷却系统冷却后循环进入喷淋冷却塔进行洗涤冷却的,喷淋冷却塔顶部喷淋水可以是来自清净工序的次氯酸钠废水。 出除尘冷却塔的洗涤水,通过自流进入沉降池,清液通过冷却系统冷却后经喷淋水泵进入除尘冷却塔进行除尘和冷却喷淋。沉降池沉积的电石渣送入压滤系统处理,压滤系统所产清液送入清液池。 发生水来自上水,通过发生水贮槽、发生水泵送入发生器。 出除尘冷却塔的乙炔气经冷却后直接进入正水封送往下工序。

电石法氯乙烯乙炔生产工艺

电石法氯乙烯乙炔生产工艺(全版) 生产原理 电石水解反应原理 CaC2+2H2O→Ca(OH)2+C2H2+130KJ/mol(31kcal/mol) 由于工业电石含有大量杂质,CaC2在水解反应的同时,还进行一些副反应,生成相应的杂质气体,其反应式如下: CaO+2H2O→Ca(OH)2+63.6kJ/mol CaS+2H2O→Ca(OH)2+H2S↑ Ca3P2+6H2O→3Ca(OH)2+2PH3↑ Ca3N2+6H2O→3Ca(OH)2+2NH3↑ Ca2Si+4H2O→2Ca(OH)2+SiH4↑ Ca3As2+6H2O→3Ca(OH)2+2AsH3↑ 清净原理: 上述水解反应中,生成的粗乙炔气中含有硫化氢、磷化氢等杂质气体,在清净时主要进行如下 化反应. H2S+4NaClO→H2SO4+4NaCl PH3+4NaClO→H3PO4+4NaCl SiH4+4NaClO→SiO2+2H2O+4NaCl AsH3+4NaClO→H3AsO4+4NaCl 上述反应生成的H2SO4 、H3PO4等酸类物质,部份夹带于气体中,进入中和塔,在塔内与氢氧化钠进行中和反应,主要的反应式如下: H3PO4+3Na OH→Na3PO4+3H2O H2SO4+2NaOH→Na2SO4+2H2O 生成的盐类物质溶解于液相中,通过排碱时排放。 工序任务 将破碎好的电石加入发生器内与水发生水解反应,按生产需要,调节电磁振荡器电流,维持气柜高度,生成的粗乙炔气进行冷却、压缩、清净(除去粗乙炔气中的H2S、PH3等杂质),使其纯度达到98%以上,满足合成工序流量要求。 工序岗位职责 熟悉本工序工艺流程,设备结构,物料性能,掌握操作法及基本生产原理,以及安全、消防环境保护要求。严格遵守岗位操作规程、交接班制度、安全生产制度、巡回检查制度、设备维护保养制度。 严格控制各项工艺控制指标,准确及时填写原始记录,做到无漏项,无涂改,无污迹,字体工整(要求用仿宋体)。 八小时工作负责处理和排除各种生产故障,保证实现优质、高产低消耗,同时保证设备卫生清洁和环境卫生。遵守劳动纪律、不串岗、不睡岗、不擅自离岗,有事离岗必须向班长请假。 服从班组长、工段长的领导和分厂、生产调度的指挥,接受安全巡岗检查。 工序原料质量要求 电石 电石质量应符合(表1)要求。 表1电石质量标准 GB/T10655-89 指标名称指标 优级品一级品二级品三级品 发气量,L/Kg

乙炔生产工艺流程简述

生产工艺流程简述: 本项目采用“电石入水法”生产溶解乙炔,其主要原料为电石和水。 (1)电石破碎 人工将电石库内的大块电石破碎成50-200mm的电石。 (2)乙炔发生 将破碎好的电石人工运至发生器间,通过电动葫芦将电石提升至3.5米平台上,采取电石入水的方式进行生产操作。电石和水在乙炔发生器内进行水解反应,生成乙炔气和氢氧化钙(熟石灰)并释放出热量。 粗乙炔气体由发生器顶部逸出,经喷淋预冷器及正、反水封进入乙炔气柜中。电石渣浆流入渣浆槽,发生器的反应过程如下: 主反应: CaC2+2H2O→Ca(OH)2+C2H2+130kJ/mol 副反应: CaO+ H2O→Ca(OH)2 +63.6kJ/mol CaS+ 2H2O→Ca(OH)2 +H2S Ca3P2+ 6H2O→3Ca(OH)2 +2PH3 Ca3N2+ 6H2O→3Ca(OH)2 +2NH3 Ca3Si+ 4H2O→2Ca(OH)2 +SiH4 Ca3As2+ 6H2O→3Ca(OH)2 +2AsH3 (3)乙炔净化、中和、气水分离 从气柜中出来的乙炔气经过一清塔、二清塔,然后进入中和塔。因电石中含有少量的硫、磷,所以粗乙炔气体中含有少量的H2S、PH3,须在装瓶之前进入清净塔加以净化。在清净塔与含有效氯0.085~0.12%的次氯酸钠溶液直接接触反应,以脱除粗乙炔气中的磷、硫杂质。由清净塔顶排出气体进入中和塔与塔顶喷入的10~15%液碱中和反应后,经气水分离器除去气相中水分,使纯度98.0%以上的精乙炔气送压缩系统。工艺反应式如下:

4NaClO+H2S→H2SO4+4NaCl 4NaClO+PH3→H3PO4+4NaCl 反应生产的酸,再用10~15%的碱液中和,其反应式为: 2NaOH+ H2SO4→Na2SO4+2H2O 3NaOH+ H3PO4→Na3PO4+3H2O 2NaOH+ CO2→Na2CO3+H2O (4)压缩、油水分离、干燥 净化的乙炔气经低压水封进入压缩机,本工段选用2Z-1.5/25型乙炔压缩机,采用分子筛高压干燥装置。压缩至2.4MPa,温度35℃左右,经高压油分离器油水分离后,进入高压干燥器干燥,送乙炔灌瓶架灌装。 (5)灌装 将压缩后的乙炔气装入有丙酮的乙炔气瓶中,充气速度一次充气<0.6m3/h,二次充气<0.8m3/h,气瓶温度控制在40℃以下,充气重量5-7公斤。充灌时应以冷却水喷淋瓶壁,以移走溶解热。

乙炔制备生产工艺流程[1]

乙炔制备生产工艺流程 一、电石破碎系统 散装电石由轮式破碎机(02L0101abc)把粒度小于150mm电石加入电石料斗(02L0102ab)料斗上有160 ×160mm网栅清除大块电石。料斗锥体处有分压装置,减压锥防止料块堆积。电石经振动给料机(02L0103ab)振动落入1#电石带式输送机(02L0104ab)经双轨组合行走架(02L01026ab)上安装的永磁除铁器(02L0105ab)除去矽铁等铁杂质后,进入鄂式破碎机(02L0106ab)把电石块破碎到粒度50-80mm后,再经2#带式输送机(02L0107)送至3#带式输送机(02L0108 ),再经电动双轨组合行走架(02L01027a)上安装的永磁除铁器(02L0209a),进一步除铁后,进入4#电石输送机(02L0110)通过电子皮带称(02L0129a )计量后,由带式输送机卸料小车(02L0111 )并经筒仓进料切断阀(02L0112abcdef )拉进电石筒仓(02L0113abc)。 二、电石上料系统 进入筒仓的电石经筒仓减压锥(02L0114a-abcd,b-abcd,c-abcd)减轻压力后,打开筒仓出料切断阀(02L0115a-abcd,b-abcd,c-abcd)进入电机自动给料机(02L0116,a-abcd,b-abcd,c-abcd)落入5#电石带式输送机(02L0117ab)输送至6#电石带式输送机(02L0118),经双轨组合行走架(02L0127b)安装的永磁除铁器(02L0109b)进一步除铁后,送至7#带

式输送机(02L0119)再经电子皮带秆(02L0129b)检斤后经7#电石带式输送机卸料小车卸料到电石加料斗(02L0121abcdef)中. 三、乙炔发生系统 电石加料斗内电石,经斗内减压锥(02 L012abcdef)及电石加料斗出料切断阀(02L0123abcdef)经电机振动加料机(02L0124abcdef)及电机称量胶带给料机(02L0125abcdef)过称,落入乙炔加料斗(02V0201abcdef)内,打开经过N2置换后的二贮斗活门(02X0201abcdef)的把料加入上贮斗(02V0202abcdef),再经N2置换后,关闭上贮斗排空阀(0204abcdef)及上料斗充N2阀(0201 abcdef)打开下贮斗活门(02X02018hsmlj )把料拉至下贮斗(02V0203abcdef )开动电磁振动加料机(02L0201abcdef)连续把电石加入乙炔发生器(02R0201 abcdef )内,电石在发生器内与水发生反应,生成乙炔气(ACE)经洗泥器(02V0204abcdef)进入正水封(02V0206abcdef)由正水封出来的气体进入冷却塔(02T0201)降温,预清净,进一步脱渣泥后,少部分经(02V0209)阻火器,分离器(02V0210)进入气柜(02V0211)贮存,以备发生系统出现意外,通过逆水封(02V0207abcdef)来维持发生器压力。 四、乙炔清净系统 大部分乙炔气经升压机(02C0301abc)升压后,进入气水分离器(02V0301abc),分离出来的水经过水冷却器(02E0301abc)用循环水 (CWS)冷却后回到乙炔升压机循环使用。从汽水分离器出来的气

乙炔发生工艺流程及原理

乙炔发生工艺流程及注意事项 1.1 工艺流程简述 经过工厂初步破碎后的合格电石(粒径≤50mm),由工厂送入原料电石贮槽,经电动振动给料机将电石均匀地送入电石高效细碎机进行电石的再破碎,破碎后的电石自流进入斗式提升机,提升至电石振动筛进行筛分处理,合格粒径的电石进入成品电石贮槽后经螺旋输送机入成品电石提升机,通过斗式提升机送至电石一、二等级加料斗备用。电石振动筛筛分处理的粒径不合格的电石通过输送管进入电石高效细碎机进行再破碎。 来自电石破碎系统经破碎、筛分处理的合格电石进入电石加料斗,通过双螺旋电石给料机将合格电石均匀地送入干式乙炔发生器,双螺旋电石给料机送来的电石从发生器侧面分别进入发生器的一、二层。在发生器搅拌和相应的水喷射作用下,乙炔气体逸出,从发生器下部乙炔气出口排出,进入除尘冷却塔进行除尘和冷却处理。电石进入发生器一、二层后经搅拌从发生器中心孔下落至第三层,再经过搅拌从发生器三层层板的外周下落至发生器第四层层板,在第四层搅拌的作用下,四层层板上的电石从第四层层板中心孔落下至第五层,如此循环运动,最后电石灰渣从第十层中心孔排出,通过渣排出机的作用,电石渣被送入电石渣输送机,通过斗式提升机送入电石渣贮槽。根据工厂电石渣用途,作输送或外运处理。 来自乙炔发生器的乙炔气通过自压进入除尘冷却塔进行除尘和冷却,除尘冷却塔除尘洗涤水是通过喷淋水泵经喷淋水冷却系统冷却后循环进入喷淋冷却塔进行洗涤冷却的,喷淋冷却塔顶部喷淋水可以是来自清净工序的次氯酸钠废水。 出除尘冷却塔的洗涤水,通过自流进入沉降池,清液通过冷却系统冷却后经喷淋水泵进入除尘冷却塔进行除尘和冷却喷淋。沉降池沉积的电石渣送入压滤系统处理,压滤系统所产清液送入清液池。 发生水来自上水,通过发生水贮槽、发生水泵送入发生器。 出除尘冷却塔的乙炔气经冷却后直接进入正水封送往下工序。出装置区的正、逆水封,由工厂根据乙炔气柜条件进行设置,以保证安全、正常的生产。 1.2 控制原理表述 1.2.1 电石破碎及输送 加入到原料电石贮槽的电石输送是通过原料电石贮槽料位系统或称重系统给出的上、下限的信号进行自动控制的。原料电石贮槽电石到达上限时自动停止电石的输送,原料电石贮槽电石到达下限时自动开启电石输送。

乙炔的安全生产技术(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 乙炔的安全生产技术(最新版)

乙炔的安全生产技术(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 乙炔,俗名电石气。它是不饱和的碳氢化合物。五色气体。工业乙炔因含有杂质(磷化氢)而具有特殊的刺激性气味。气体相对密度 0.91(空气=1)。液体相对密度0.6181(-82℃)。稍溶于水,溶于乙醇,易溶于丙酮。乙炔的化学性质活泼,能起加成反应,容易聚合。乙炔在氧中燃烧可产生高温(3500℃)和强光。 乙炔是易燃气体,可与空气形成爆炸性混合物,爆炸极限为 2.55%~80.00%(体积)。当压力超过0.15MFa时很易发生爆炸。乙炔的点火能很小,其最小点火能为0.02mJ。 最常见的乙炔一氧焰,用于金属的切割、焊接及金属表面喷镀。乙炔还作为石油化工的原料,用来制造聚氯乙烯、氯丁橡胶、醋酸、醋酸乙烯酯等。 工业上制取乙炔的方法很多。如电石法、甲烷裂解法、烃类裂解法等。我国目前主要采用电石法生产乙炔。电石法生产乙炔按电石和水接触的方式分类,可分为电石入水式(又称湿式)、水人电石式(又称

PVA生产工艺流程

生产工艺流程 (一)、乙炔发生工序: 电石与水在发生器中发生反应,反应温度为80±5℃,压力为10kPa,反应后生成的乙炔气体,由上部出来后到洗涤塔洗涤。电石与水生成的氢氧化钙由溢流管溢流到渣浆池。电石渣浆经沉淀后作为水泥的生产原料。反应后生成的矽铁定期排放到渣池中,由人工定期清理。发生器中生成的乙炔气,从乙炔发生器上部出来经过洗涤塔进入冷却器将乙炔气冷却至35~45℃,冷却后的乙炔气体从冷却塔低部出来,部分送至有机厂乙炔清净工序,部分经进入气柜以平衡流量。 (二)、合成工序 2.1、触媒配制系统: 把定量的活性炭加入触媒加料槽,用罗次鼓风机将其风送至沸腾式触媒干燥塔内,活性炭加完后,打开空气予热器,触媒干燥塔夹套和内加热蛇管的蒸汽。再用鼓风机把经过空气予热器的热空气送入干燥塔内。活性炭沸腾预热至一定温度后,将溶解槽已配制好的醋酸锌水溶液由醋酸锌加料泵通过喷头向触媒干燥塔内均匀喷洒,喷洒停止后,继续干燥一段时间,待水分降至0.5%以下时,卸料装桶。 2.2、乙炔清净系统: 乙炔站送来的具有适当压力的粗乙炔进入次氯酸钠洗涤塔下部,与塔上部喷淋下来的次氯酸钠溶液逆流接触,除去硫化氢、磷化氢等杂质。塔顶馏出的乙炔进入综合洗涤塔,在第一段与循环喷淋的碱液逆流接

触,除去酸雾、二氧化碳及少量的游离氯。在第二段,乙炔与循环喷淋的低温水逆流接触,除去氢氧化钠、碳酸钠等雾滴和饱和的水蒸汽。塔顶乙炔进入乙炔干操塔除去乙炔中微量水分及有机杂质后进入合成系统。 2.3、醋酸乙烯合成系统: 清净后的精乙炔与来自气体分离塔顶的循环乙炔混合用乙炔鼓风机加压后,定量地送入醋酸蒸发器内,乙炔和醋酸混合气从醋酸蒸发器出来,然后进入反应器底部。反应气体从反应器顶部出来,气体进入气体分离塔。大部分循环液经板式换热器(RJ107)用盐水冷却后进入三段循环使用。部分作反应液采出,进入反应液收集槽后,用泵送往罐场贮槽。 2.4、乙炔回收系统: 来自分TQ-103顶部的乙炔,进入气体吸收塔底部,与塔顶喷淋下来的低温吸收液逆流接触,乙炔被溶解吸收。不被吸收的氮气等由塔顶放空。吸收塔釜吸收液由泵送入解吸塔。解吸后的釜液用泵少部分回至解吸塔顶,大部分返回至吸收塔塔顶。解吸出来的乙炔进入水洗塔。洗涤水从塔釜引出,用泵送出部分至精馏萃取塔。作洗涤塔二段循环液,落入塔釜。乙炔与两段吸收液逆流接触除去乙醛后送往清净工序综合洗涤塔。 (三)、精馏工序 : 3.1、粗分系统: 合成反应液给第一精馏塔加料,塔顶馏出,冷凝液入第一馏出

乙炔生产爆炸案例

案例 乙炔生产过程中危害因素分析及安全控制 [摘要]介绍了乙炔生产过程中电石及乙炔的主要危险和有害因素,分析 了发生的事故案例,并提出了预防 江苏某医药原料有限公司是一家以生产医药中间体为主的企业,主产品1 ,4 - 丁炔二醇生产能力达3 000 t/ a。目前该公司有两台乙炔发生器,乙炔生产系统具有易燃、易爆等诸多危险、有害特性,如何实现乙炔系统的安全稳定运行,一直是该企业安全管理工作的重中之重。 1 乙炔生产事故案例分析 案例1:发生器加料口燃烧 某厂发生器在加料时,由于第1 贮斗排氮不彻底,电石块太大,在加料吊斗 内“搭桥”。操作人员采用吊斗撞击加料口,致使吊钩脱落。于是现场挂吊钩,同时启动电动葫芦开关,结果引起燃烧,操作人员脸部和手部烧伤。 原因分析:乙炔气遇到电动葫芦开关火花引起燃烧。 案例2:乙炔发生器爆炸 安徽某厂乙炔工段1# 发生器活门被电石桶盖卡住,操作人员进入贮斗内处理时突然发生爆炸,死亡3 人。 原因分析:人进入发生器内处理被卡住的活门时,致使大量空气进入贮斗内,用工具敲击电石时产生火花,乙炔气与之接触后发生爆炸。 案例3:乙炔发生器发生爆喷燃烧 广西某厂乙炔工段当班操作人员发现乙炔气柜高度降至180 m3 以下,按正常生产要求,此时发生器需要添加电石,于是操作人员到三楼添加电石,1 # 发生器贮斗的电石放完后,又去放2 # 发生器贮斗的电石,当放出约一半电石物料时,在下料斗的下料口与电磁振动加料器上部下料口连接橡胶圈的密封部位,突然发

生爆喷燃烧。站在电磁振动器旁的操作人员全身被喷射出来的热电石渣浆烧伤,送医院抢救无效死亡。 原因分析:操作人员在放发生器贮斗的电石时,没注意到乙炔气柜液位的变化,致使加入粉料过多,产气量瞬间过大,压力超高,气压把中间连接的胶圈冲破,大量电石渣和乙炔气喷出,并着火。 案例4 :乙炔发生器加料口爆炸 湖南某厂乙炔站1 # 发生器加料口爆炸起火,随后2 # 发生器加料口和贮斗胶圈的密封处也发生爆炸起火,电石飞溅到一楼排渣池,产生乙炔气导致起火,为此发生器一、三、四楼都起火。操作人员紧急处理时,乙炔气又从2 # 冷却塔水封处冲出,不久便被一楼的火源引爆,冲击波将东、西、北三方围墙冲倒,周围的9 人受伤,其中1 人经抢救无效死亡,有2 人为重伤。 原因分析:①操作人员在紧急处理中,操作程序有误,造成管道内压力升高,冲破水封,气体跑出; ②电石加料口处阀泄漏,乙炔气从加料口处冲出,而电石贮斗处氮气密封不好,有空气进入,致使加料过程中爆炸起火。 案例5 :乙炔发生器爆炸 保定市某电化厂乙炔工段乙炔发生器溢流管堵塞,停车处理。开车后下料管道又堵塞,继续停车处理,操作人员用木锤、铜锤分别敲击下料斗的法兰盘,之后发生爆炸。当场死亡1 人,重伤1 人,轻伤1 人。 原因分析:下料口堵塞时间过长,使发生器内电石吸水分解放热;又因加料斗密封橡胶圈破裂,空气进入。当下料口砸通,突然下料,形成负压,瞬间发生爆炸。 案例6 :违章抽盲板,导致乙炔发生器发生爆炸 江苏某公司树脂厂乙炔发生器停车检修(包括动火作业) 已1 个月,在开车的当天,检修人员修理完电振荡器后,自认为“做好事”,未经允许擅自拆除加料口盲板,在遭到其他人员“谁装谁拆”训斥后又将盲板安装上,在这过程中导致少量电石落入发生器内,开车时发生爆炸。致使分离器筒体1 m 长焊缝开裂,发生器顶盖严重变形,人孔32 只Φ16 螺栓全部拉断(需250 t 力) ,人孔盖飞出撞坏墙体,车间、操作室门窗玻璃炸飞,所幸未有人员伤亡。

乙炔的安全生产技术正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.乙炔的安全生产技术正式 版

乙炔的安全生产技术正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 乙炔,俗名电石气。它是不饱和的碳氢化合物。五色气体。工业乙炔因含有杂质(磷化氢)而具有特殊的刺激性气味。气体相对密度0.91(空气=1)。液体相对密度0.6181(-82℃)。稍溶于水,溶于乙醇,易溶于丙酮。乙炔的化学性质活泼,能起加成反应,容易聚合。乙炔在氧中燃烧可产生高温(3 500℃)和强光。 乙炔是易燃气体,可与空气形成爆炸性混合物,爆炸极限为2.55%~80.00%(体积)。当压力超过0.15MFa时很易发生爆炸。乙炔的点火能很小,其最小点火能为

0.02mJ。 最常见的乙炔一氧焰,用于金属的切割、焊接及金属表面喷镀。乙炔还作为石油化工的原料,用来制造聚氯乙烯、氯丁橡胶、醋酸、醋酸乙烯酯等。 工业上制取乙炔的方法很多。如电石法、甲烷裂解法、烃类裂解法等。我国目前主要采用电石法生产乙炔。电石法生产乙炔按电石和水接触的方式分类,可分为电石入水式(又称湿式)、水人电石式(又称干式)和排水式三种,国内目前以电石入水式居多。从节约能源,提高电石利用率、减少污染并有利于安全管理的角度看,溶解乙炔气瓶与移动式乙炔发生器相比有较大的优越性,我国正推广使用溶解乙炔气

圆管涵施工工艺流程图范文

圆管涵施工工艺流程图 1. 工艺标准、 2. 3. 队长及施工队技术人员等参加。 重点细节作专题介绍和详细说明, 技术安全保证措施作详细交底。 排。 4.施工工艺的技术交底应采用书面交底,项目部或施工队向工班就分项工程或工序进行技术交底,应根据该项工程的施工组织设计或施工方案、上级的技术交底内容,按照设计文件、施工及验收规范等的有关要求,结合本工程的具体情况,按分项工程和工序,向施工班组进行详细的书面技术交底。交底、接受交底双方均要在交底记录上签字。班组长在接受技术交底后,应组织全班组成员认真学习与讨论,明确工艺流程和施工操作要点、工序交接要求、质量标准、技术措施、成品保护方法、质量通病预防方法及安全注意事项,然后根据施工进度要求、作业班组劳动力和技术水平高低进行分工,明确责任和协作关系。 5.施工技术交底应符合下列要求:

1)、应符合设计图设计(或变更图设计)中的各项技术要求,特别是当设计图中的技术要求和技术标准高于施工及验收规范的相应要求时,应作更为详细的交底和说明; 2)应符合体现上一级技术交底的意图和具体要求。 3)应符合实施性施工组织设计和施工方案的各项要求,包括技术措施和施工进度等要求。 4)对不同层次的施工人员,其交底的内容、深度和说明方式应有所区别,要有针对性。 5)对采用的新技术、新工艺、新结构、新材料应进行详细的技术交底。 6)技术交底应形成书面材料,内容具体扼要,严格履行交接签字手续,并归档管理。 6.施工技术交底应注意的问题: 1)、书面技术交底是工程施工技术资料中必不可少的内容和明确责任的依据,施工完毕后应归档管理; 2)、技术交底应严格执行施工验收规范、规程,对施工验收规范、规程中的要求,特别是质量标准,不得任意修改、删减; 3)、技术交底应满足施工组织设计有关要求,领会和理解上一级技术交底等技术文件中提出的技术要求,不得违背文件中的有关要求; 4)、会议交底应作详细的会议纪要,包括参加会议人员的姓名、日期、会议内容及会议决定,会议纪要作长期保存; 5)、所有书面技术交底,均应经过复核,并留有底稿,字迹工整,数据引用正确,书面交底的编制人、审核人、签发人、接受人均应签名; 6)各级技术人员要加强技术交底工作的督促与检查,保证技术交底制度化、规范化。

乙炔工艺流程图

乙炔工艺流程图 生产原理 电石水解反应原理 CaC2+2H2O→Ca(OH)2+C2H2+130KJ/mol(31kcal/mol) 由于工业电石含有大量杂质,CaC2在水解反应的同时,还进行一些副反应,生成相应的杂质气体,其反应式如下: CaO+2H2O→Ca(OH)2+63.6kJ/mol CaS+2H2O→Ca(OH)2+H2S↑ Ca3P2+6H2O→3Ca(OH)2+2PH3↑ Ca3N2+6H2O→3Ca(OH)2+2NH3↑ Ca2Si+4H2O→2Ca(OH)2+SiH4↑ Ca3As2+6H2O→3Ca(OH)2+2AsH3↑ 清净原理: 上述水解反应中,生成的粗乙炔气中含有硫化氢、磷化氢等杂质气体,在清净时主要进行如下化反应. H2S+4NaClO→H2SO4+4NaCl PH3+4NaClO→H3PO4+4NaCl SiH4+4NaClO→SiO2+2H2O+4NaCl AsH3+4NaClO→H3AsO4+4NaCl 上述反应生成的H2SO4 、H3PO4等酸类物质,部份夹带于气体中,进入中和塔,在塔内与氢氧化钠进行中和反应,主要的反应式如下: H3PO4+3NaOH→Na3PO4+3H2O H2SO4+2NaOH→Na2SO4+2H2O

生成的盐类物质溶解于液相中,通过排碱时排放。 工序任务 将破碎好的电石加入发生器内与水发生水解反应,按生产需要,调节电磁振荡器电流,维持气柜高度,生成的粗乙炔气进行冷却、压缩、清净(除去粗乙炔气中的H2S、PH3等杂质),使其纯度达到98%以上,满足合成工序流量要求。 工序岗位职责 熟悉本工序工艺流程,设备结构,物料性能,掌握操作法及基本生产原理,以及安全、消防环境保护要求。 严格遵守岗位操作规程、交接班制度、安全生产制度、巡回检查制度、设备维护保养制度。严格控制各项工艺控制指标,准确及时填写原始记录,做到无漏项,无涂改,无污迹,字体工整(要求用仿宋体)。 八小时工作负责处理和排除各种生产故障,保证实现优质、高产低消耗,同时保证设备卫生清洁和环境卫生。 遵守劳动纪律、不串岗、不睡岗、不擅自离岗,有事离岗必须向班长请假。 服从班组长、工段长的领导和分厂、生产调度的指挥,接受安全巡岗检查。 工序原料质量要求 电石 电石质量应符合(表1)要求。 表1电石质量标准 GB/T10655-89指标名称指标 优级品一级品二级品三级品 发气量,L/Kg ≥ 粒度,mm 81~15051~802~50 305305 300 295 295290 280280 275 255255 -250 乙炔中磷化氢,%(V)≤ 0.06 0.08 0.08 0.08 乙炔中硫化氢,%(V)≤ 0.10 0.10 0.15 0.15 电石粒度应符合(表2)要求。 表2电石粒度标准 粒度,mm 限度内粒度,% 2mm筛下物,% 81~150 85以上≤3 51~81 85以上≤3 2~50 76(16mm以上)≤4 氮气 纯度: ≥97% 含氧: ≤3% 不含水 压力≥0.2MPa 碱液 Na(OH) >15% NaCl<5% Na2CO3<1% 氯气 纯度: ≥90% 含氢: >0.4% 含水: >0.03%

乙炔气生产安全

乙炔生产安全 乙炔,俗名电石气。它是不饱和的碳氢化合物。五色气体。工业乙炔因含有杂质(磷化氢)而具有特殊的刺激性气味。气体相对密度0.91(空气=1)。液体相对密度0.6181(-82℃)。稍溶于水,溶于乙醇,易溶于丙酮。乙炔的化学性质活泼,能起加成反应,容易聚合。乙炔在氧中燃烧可产生高温(3 500℃)和强光。 乙炔是易燃气体,可与空气形成爆炸性混合物,爆炸极限为2.55%~80.00%(体积)。当压力超过0.15MFa时很易发生爆炸。乙炔的点火能很小,其最小点火能为0.02mJ。 最常见的乙炔一氧焰,用于金属的切割、焊接及金属表面喷镀。乙炔还作为石油化工的原料,用来制造聚氯乙烯、氯丁橡胶、醋酸、醋酸乙烯酯等。 工业上制取乙炔的方法很多。如电石法、甲烷裂解法、烃类裂解法等。我国目前主要采用电石法生产乙炔。电石法生产乙炔按电石和水接触的方式分类,可分为电石入水式(又称湿式)、水人电石式(又称干式)和排水式三种,国内目前以电石入水式居多。从节约能源,提高电石利用率、减少污染并有利于安全管理的角度看,溶解乙炔气瓶与移动式乙炔发生器相比有较大的优越性,我国正推广使用溶解乙炔气瓶。电石法生产乙炔工艺如图所示。加入到发生器中的电石和水反应生成乙炔气,生产的粗制乙炔气经气液分离后进入气柜储存,气柜内的乙炔除去硫化氢、磷化氢等杂质后成为精制乙炔,再除去水分后进入压缩机,加压至2.5MPa的乙炔气再经除油和除水后送至用气装置或乙炔充装台。

电石法生产乙炔工艺流程图 (一)职业危害 乙炔的爆炸极限范围很宽,最小点火能的数值很小,因此极易引起燃烧、爆炸。乙炔与空气或氧形成爆炸性混合物。与氯和氟也发生爆炸性反应。乙炔含磷化氢越过0.15%时,遇空气容易自燃。乙炔聚合时放出热量,温度越高,聚合速度越快,如不加以控制,会因温度过高而发生乙炔分解爆炸反应。一般物质分解时是吸热的,而乙炔分解时却是放热的。常压乙炔一般不会分解,加压乙炔则极易分解。压力越高,越容易发生分解、爆炸,且分解温度随压力的升高而迅速下降。乙炔与多种金属接触能生成危险的金属炔化物。在—定条件下生成的乙炔银、乙炔铜或乙炔汞等,受到撞击摩擦或在干燥状态下升温都可导致强烈的分解、爆炸。 乙炔具有弱麻醉作用。高浓度吸人可引起单纯窒息。暴露于20%浓度(乙炔)时,出现明显缺氧症状;吸人高浓度时,初期兴奋、多语、哭笑不安,后出现眩晕、头痛、恶心、呕吐、嗜睡;严重者昏迷、紫绀、瞳孔对光反应消失、脉弱而不齐。当混有磷化氢时,毒性增大。(二)预防措施

乙炔气工艺流程

乙炔气生产工艺流程简介 张永林 1、发生器加料 发生器在开始运行前必须先进行内部安全置换,先打开发生器加料口,同时打开排渣阀,放水阀、其余阀门处于关闭状态。开启引风机对发生器进行置换和干燥。在加料口通过观察内部无水或渣浆附着在发生器内壁上,确认内部篦板和内壁干燥后再进行电石投料。经人工破碎的电石装入小推车(粒度≦250mm)经行车钓到发生器平台,操作工佩戴防护面具将电石加入双体稳压发生器加料口,加料时先将较大的电石块加到底部,其余小块加在上部,粒度小于30mm的碎末均匀撒入电石块之间,投料完毕后盖上加料口,关闭排渣阀、引风机及放水阀。 2、发生器置换 打开置换专用氮气瓶阀及减压阀,低压氮气通过管道向发生器加氮气进行氮气对空气的置换,置换后的氮气空气混合气由排空阀排出,经化验排空后气体氧含量≦3%后为合格,关闭置换系统的氮气、排空阀门,准备乙炔气生产。 3、乙炔气发生 打开乙炔气发生器高位水箱的进水阀门(其余阀门全部关闭)将来自渣浆澄清池的电石渣沉淀后的澄清水加入发生器底部,开始加水要缓慢进行,同时要仔细贯彻发生器的压力表和温度计,间断打开排空阀和取样阀将设备内部的氮气排掉,在取样阀取样分析当乙炔气浓

度达到98%以上后关闭排空阀和取样阀,同时打开发生器出口阀门向净化系统送气进行气体低压净化和干燥。 乙炔气发生器在发生过程中产生的大量热量由发生器夹套的循环冷却水带出,冷却水由冷却水池的冷却水循环泵提供,压力由冷却水阀门控制在0.2MPa,发生器的反应温度控制在70℃,发生器乙炔气出口压力控制在0.03—0.04MPa。 发生器在生产乙炔气的同时生成的副产物电石渣(主要成分为Ca(HO)2)与水混合排入渣池进行沉降分离、澄清,澄清后的清水进入澄清池,由澄清液泵加入发生器供乙炔气发生使用,不足部分由循环水补充。电石渣沉淀后作为建筑材料对外销售。 电石发生器生产乙炔气的主要化学方程式: CaC2+2H2O→C2H2↑+Ca(OH)2 CaS+2H2O→H2S↑+Ca(OH)2 Ca3P2+6H2O→2PH2↑+3Ca(OH)2 Ca3N2+6H2O→2NH3↑+3Ca(OH)2 4、乙炔气低压净化 粗乙炔气先进入乙炔气洗涤器与器顶部喷淋的循环水逆流接触换热,出洗涤器的乙炔气进入汽水分离器分离水分后进入低压干燥器进一步进行干燥,然后进入酸洗塔与98%的浓硫酸溶液逆流接触之后进入中和碱洗塔与8%氢氧化钠溶液再次逆流接触,使用硫酸溶液和氢氧化钠溶液进行净化乙炔气的杂质H2S、PH2,然后再进入后置低压干燥器进一步干燥后经检测合格后送压缩机进行乙炔气加压。

相关文档
最新文档