(专题精选)初中数学几何图形初步经典测试题及答案解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
∵a∥b∥c
∴
∵直角三角板的直角顶点落在直线b上
∴
∵∠1=30°
∴
故答案为:B.
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
13.如图, , 平分 ,且 ,则 与 的关系是()
A. B.
C. D.
【答案】A
【解析】
【分析】
延长 交 的延长线于 ,根据两直线平行,内错角相等可得 ,再根据两直线平行,同位角相等可得 ,然后根据角平分线的定义解答.
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO,∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO,∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.
根据 ,设 ,则 ,
根据相似三角形的性质,得
,即 ,
解得 .
故供水站应建在距 Fra Baidu bibliotek2千米处.
故选:B.
【点睛】
本题为最短路径问题,作对称找出点P,利用三角形相似是解题关键.
20.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()
A.64°B.68°C.58°D.60°
【答案】A
【解析】
【分析】
首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.
【详解】
解:延长BF与CD相交于M,
∵BF∥DE,
∴∠M=∠CDE,
∵AB∥CD,
∴∠M=∠ABF,
∴∠CDE=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∴∠ABE=2∠CDE.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A.
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
9.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()
A. B. C. D.
【答案】D
【解析】
解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选D.
3.如图,在正方形 中, 是 上一点, , 是 上一动点,则 的最小值是()
A.8B.9C.10D.11
【答案】C
【解析】
【分析】
连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
【详解】
解:如图,连接 ,交 于 ,连接 ,则此时 的值最小
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3
过点A作AE垂直x轴,则AE=4,OE=1
则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,
∵C′O∥AE,
∴∠B′C′O=∠B′AE,
∴∠B′C′O=∠EB′A
∴B′O=C′O=3,
故选D.
首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.
10.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据余角和补角的定义依次判断即可求解.
【详解】
(1)由互余的两个角的和为90°可知(1)错误;
(2)由同角的补角相等可知(2)错误;
(3)设这个角为x,则其余角为(90°﹣x),补角为(18 0°﹣x),则(180°﹣x)﹣(90°﹣x)=90°,由此可知(3)正确;
【答案】C
【解析】
【分析】
根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.
【详解】
设这个角为α,则它的余角为90°-α,补角为180°-α,
根据题意得,180°-α=3(90°-α)+10°,
180°-α=270°-3α+10°,
解得α=50°.
故选C.
2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
【答案】D
【解析】
【详解】
解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
(4)由73°42+16°18′=90°可知(4)正确.
综上,正确的结论为(3)(4),共2个.
故选B.
【点睛】
本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.
19.如图,某河的同侧有 , 两个工厂,它们垂直于河边的小路的长度分别为 , ,这两条小路相距 .现要在河边建立一个抽水站,把水送到 , 两个工厂去,若使供水管最短,抽水站应建立的位置为( )
故选C.
【点睛】
本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
5.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误的是( )
A.BC=AB-CDB.BC= (AD-CD)C.BC= AD-CDD.BC=AC-BD
【答案】B
【解析】
试题解析:∵B是线段AD的中点,
∴AB=BD= AD,
【点睛】
本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.
16.若∠AOB=60°,∠AOC=40°,则∠BOC等于()
A.100°B.20°C.20°或100°D.40°
【答案】C
【解析】
【分析】
画出符合题意的两个图形,根据图形即可得出答案.
【详解】
解:如图1,
当∠AOC在∠AOB的外部时,
【答案】A
【解析】
【分析】
先根据平分,求出∠COB,再利用互补求∠AOD
【详解】
∵OC平分∠DOB,∠COD=55°45′
∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′
∴∠AOD=180-111°30′=68°30′
故选:A
【点睛】
本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是60
(专题精选)初中数学几何图形初步经典测试题及答案解析
一、选择题
1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是( )
A.∠ABE=2∠CDEB.∠ABE=3∠CDE
C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°
【答案】A
【解析】
【分析】
延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.
11.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则 的值为()
A.-2B.-3C.2D.1
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.
【详解】
这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.
17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()
A.20°B.35°C.55°D.70°
【答案】B
【解析】
【分析】
根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.
【详解】
∵DE∥BC,
∴∠1=∠ABC=70°,
∵BE平分∠ABC,
∴ ,
故选:B.
【详解】
证明:如图,延长 交 的延长线于 ,
,
,
,
,
,
平分 ,
,即 .
故选:A.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
14.如图, 为等边三角形,点 从A出发,沿 作匀速运动,则线段 的长度y与运动时间x之间的函数关系大致是()
A. B.
C. D.
【答案】B
∴选项B符合题意,选项A不合题意.
故选B.
【点睛】
本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
15.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )
A.140° B.130° C.50° D.40°
因为相对面上的两个数互为相反数,
所以
解得:
则x+y=2
故选:C
【点睛】
本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.
12.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()
A.40°B.60°C.50°D.70°
【答案】B
【解析】
【分析】
根据两直线平行内错角相等得 ,再根据直角三角板的性质得 ,即可求出∠2的度数.
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
8.如图是某个几何体的展开图,该几何体是()
A.三棱柱B.圆锥C.四棱柱D.圆柱
【答案】A
【解析】
【分析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB+∠AOC=60°+40°=100°
如图2,
当∠AOC在∠AOB的内部时,
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB-∠AOC=60°-40°=20°
即∠BOC的度数是100°或20°
故选:C
【点睛】
本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.
7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
A.距 点 处B.距 点 处C.距 点 处D. 的中点处
【答案】B
【解析】
【分析】
作出点 关于江边的对称点 ,连接 交 于 ,则
,根据两点之间线段最短,可知当供水站在点 处时,供水管路最短.再利用三角形相似即可解决问题.
【详解】
作出点 关于江边的对称点 ,连接 交 于 ,则 .根据两点之间线段最短,可知当供水站在点 处时,供水管路最短.
【点睛】
此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.
18.下列说法中正确的有( )
(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°
(2)如果两个角是同一个角的补角,那么这两个角不一定相等
(3)一个锐角的余角比这个锐角的补角小90°
【解析】
【分析】
根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.
【详解】
根据题意得,点 从点 运动到点 时以及从点 运动到点 时是一条线段,故选项C与选项D不合题意;
点 从点 运动到点 时, 是 的二次函数,并且有最小值,
∵四边形 是正方形
关于 对称
;
故 的最小值是10,
故选:C.
【点睛】
本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
4.下列图形中,是正方体表面展开图的是()
A. B. C. D.
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点解题.
【详解】
解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
A、BC=BD-CD=AB-CD,故本选项正确;
B、BC=BD-CD= AD-CD,故本选项错误;
C、BC=BD-CD= AD-CD,故本选项正确;
D、BC=AC-AB=AC-BD,故本选项正确.
故选B.
6.如图,O是直线AB上一点,OC平分∠DOB,∠COD=55°45′,则∠AOD=()
A.68°30′B.69°30′C.68°38′D.69°38′
∵a∥b∥c
∴
∵直角三角板的直角顶点落在直线b上
∴
∵∠1=30°
∴
故答案为:B.
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
13.如图, , 平分 ,且 ,则 与 的关系是()
A. B.
C. D.
【答案】A
【解析】
【分析】
延长 交 的延长线于 ,根据两直线平行,内错角相等可得 ,再根据两直线平行,同位角相等可得 ,然后根据角平分线的定义解答.
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO,∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO,∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.
根据 ,设 ,则 ,
根据相似三角形的性质,得
,即 ,
解得 .
故供水站应建在距 Fra Baidu bibliotek2千米处.
故选:B.
【点睛】
本题为最短路径问题,作对称找出点P,利用三角形相似是解题关键.
20.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()
A.64°B.68°C.58°D.60°
【答案】A
【解析】
【分析】
首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.
【详解】
解:延长BF与CD相交于M,
∵BF∥DE,
∴∠M=∠CDE,
∵AB∥CD,
∴∠M=∠ABF,
∴∠CDE=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∴∠ABE=2∠CDE.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A.
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
9.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()
A. B. C. D.
【答案】D
【解析】
解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选D.
3.如图,在正方形 中, 是 上一点, , 是 上一动点,则 的最小值是()
A.8B.9C.10D.11
【答案】C
【解析】
【分析】
连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
【详解】
解:如图,连接 ,交 于 ,连接 ,则此时 的值最小
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3
过点A作AE垂直x轴,则AE=4,OE=1
则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,
∵C′O∥AE,
∴∠B′C′O=∠B′AE,
∴∠B′C′O=∠EB′A
∴B′O=C′O=3,
故选D.
首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.
10.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据余角和补角的定义依次判断即可求解.
【详解】
(1)由互余的两个角的和为90°可知(1)错误;
(2)由同角的补角相等可知(2)错误;
(3)设这个角为x,则其余角为(90°﹣x),补角为(18 0°﹣x),则(180°﹣x)﹣(90°﹣x)=90°,由此可知(3)正确;
【答案】C
【解析】
【分析】
根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.
【详解】
设这个角为α,则它的余角为90°-α,补角为180°-α,
根据题意得,180°-α=3(90°-α)+10°,
180°-α=270°-3α+10°,
解得α=50°.
故选C.
2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
【答案】D
【解析】
【详解】
解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
(4)由73°42+16°18′=90°可知(4)正确.
综上,正确的结论为(3)(4),共2个.
故选B.
【点睛】
本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.
19.如图,某河的同侧有 , 两个工厂,它们垂直于河边的小路的长度分别为 , ,这两条小路相距 .现要在河边建立一个抽水站,把水送到 , 两个工厂去,若使供水管最短,抽水站应建立的位置为( )
故选C.
【点睛】
本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
5.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误的是( )
A.BC=AB-CDB.BC= (AD-CD)C.BC= AD-CDD.BC=AC-BD
【答案】B
【解析】
试题解析:∵B是线段AD的中点,
∴AB=BD= AD,
【点睛】
本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.
16.若∠AOB=60°,∠AOC=40°,则∠BOC等于()
A.100°B.20°C.20°或100°D.40°
【答案】C
【解析】
【分析】
画出符合题意的两个图形,根据图形即可得出答案.
【详解】
解:如图1,
当∠AOC在∠AOB的外部时,
【答案】A
【解析】
【分析】
先根据平分,求出∠COB,再利用互补求∠AOD
【详解】
∵OC平分∠DOB,∠COD=55°45′
∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′
∴∠AOD=180-111°30′=68°30′
故选:A
【点睛】
本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是60
(专题精选)初中数学几何图形初步经典测试题及答案解析
一、选择题
1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是( )
A.∠ABE=2∠CDEB.∠ABE=3∠CDE
C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°
【答案】A
【解析】
【分析】
延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.
11.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则 的值为()
A.-2B.-3C.2D.1
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.
【详解】
这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.
17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()
A.20°B.35°C.55°D.70°
【答案】B
【解析】
【分析】
根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.
【详解】
∵DE∥BC,
∴∠1=∠ABC=70°,
∵BE平分∠ABC,
∴ ,
故选:B.
【详解】
证明:如图,延长 交 的延长线于 ,
,
,
,
,
,
平分 ,
,即 .
故选:A.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
14.如图, 为等边三角形,点 从A出发,沿 作匀速运动,则线段 的长度y与运动时间x之间的函数关系大致是()
A. B.
C. D.
【答案】B
∴选项B符合题意,选项A不合题意.
故选B.
【点睛】
本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
15.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )
A.140° B.130° C.50° D.40°
因为相对面上的两个数互为相反数,
所以
解得:
则x+y=2
故选:C
【点睛】
本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.
12.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()
A.40°B.60°C.50°D.70°
【答案】B
【解析】
【分析】
根据两直线平行内错角相等得 ,再根据直角三角板的性质得 ,即可求出∠2的度数.
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
8.如图是某个几何体的展开图,该几何体是()
A.三棱柱B.圆锥C.四棱柱D.圆柱
【答案】A
【解析】
【分析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB+∠AOC=60°+40°=100°
如图2,
当∠AOC在∠AOB的内部时,
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB-∠AOC=60°-40°=20°
即∠BOC的度数是100°或20°
故选:C
【点睛】
本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.
7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
A.距 点 处B.距 点 处C.距 点 处D. 的中点处
【答案】B
【解析】
【分析】
作出点 关于江边的对称点 ,连接 交 于 ,则
,根据两点之间线段最短,可知当供水站在点 处时,供水管路最短.再利用三角形相似即可解决问题.
【详解】
作出点 关于江边的对称点 ,连接 交 于 ,则 .根据两点之间线段最短,可知当供水站在点 处时,供水管路最短.
【点睛】
此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.
18.下列说法中正确的有( )
(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°
(2)如果两个角是同一个角的补角,那么这两个角不一定相等
(3)一个锐角的余角比这个锐角的补角小90°
【解析】
【分析】
根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.
【详解】
根据题意得,点 从点 运动到点 时以及从点 运动到点 时是一条线段,故选项C与选项D不合题意;
点 从点 运动到点 时, 是 的二次函数,并且有最小值,
∵四边形 是正方形
关于 对称
;
故 的最小值是10,
故选:C.
【点睛】
本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
4.下列图形中,是正方体表面展开图的是()
A. B. C. D.
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点解题.
【详解】
解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
A、BC=BD-CD=AB-CD,故本选项正确;
B、BC=BD-CD= AD-CD,故本选项错误;
C、BC=BD-CD= AD-CD,故本选项正确;
D、BC=AC-AB=AC-BD,故本选项正确.
故选B.
6.如图,O是直线AB上一点,OC平分∠DOB,∠COD=55°45′,则∠AOD=()
A.68°30′B.69°30′C.68°38′D.69°38′