铣削加工工艺
典型薄壁零件数控铣削加工工艺
典型薄壁零件数控铣削加工工艺数控铣削是一种高精度、高效率的数控加工方法,广泛应用于模具、航空航天、船舶、汽车、电子、仪器仪表等行业。
在零件加工中,薄壁零件因其结构特殊、加工难度大,对加工工艺要求较高。
本文将针对典型薄壁零件的数控铣削加工工艺进行介绍和分析。
一、工件材料及加工要求1. 工件材料:典型薄壁零件常用的材料有铝合金、钛合金、不锈钢等,材料硬度一般在28-45HRC之间。
2. 加工要求:薄壁零件加工一般要求表面光洁度高、尺寸精度要求高、壁厚薄、结构复杂等特点。
二、数控铣削工艺分析1. 工艺方案选择:根据零件的结构特点和加工要求,选择合适的数控铣削刀具和切削参数。
对于铝合金等材料,一般选择硬质合金刀具,切削参数选择合适的进给速度和转速。
2. 夹紧方式选择:薄壁零件加工时,应选择合适的夹紧方式,避免加工过程中因变形而影响加工质量。
一般可采用夹具夹紧或磁力吸盘夹紧等方式,根据零件尺寸和形状特点选择合适的夹紧方式。
3. 切削力控制:在数控铣削过程中,控制切削力对薄壁零件加工至关重要。
要合理选择切削参数和刀具几何角度,降低切削力,避免引起零件变形和加工质量不稳定。
4. 节渣处理:薄壁零件加工过程中,切屑容易产生,特别是在高速切削时更为显著。
应采取合适的节渣方式,避免切削刀具堵塞,影响加工质量。
5. 冷却润滑:在数控铣削过程中,及时有效的冷却润滑对加工质量和刀具寿命有着重要影响。
对薄壁零件加工,更需要合理选择喷淋位置和冷却润滑液的使用方式,以防止零件变形和表面质量不稳定。
6. 加工精度控制:薄壁零件加工时,对尺寸精度和表面质量要求较高。
在数控铣削过程中,应严格控制切削参数,采取合适的刀具路径和切削刀具轨迹,避免因加工过程中引起加工质量问题。
7. 加工工艺优化:针对典型薄壁零件的形状特点和加工要求,应综合考虑工艺方案和加工工艺优化,在保证加工质量的前提下,提高加工效率和降低成本。
例如采用高速切削、干法加工等新技术,以提高加工效率和节约成本。
铣削加工工艺步骤
铣削加工工艺步骤铣削加工是一种广泛应用的加工工艺,它可以用于制造各种精密零件,如机床配件、汽车零件、航空零件等。
铣削加工的步骤通常包括以下几个方面:第一步:确定铣削工件的加工工艺参数铣削工件的加工参数包括切削速度、进给速度、切削深度、切削力、切削温度等。
这些参数的选择需要考虑铣削工具的材料、加工工件的材料和形状、加工精度等因素。
通常可以通过试切来确定最佳的加工工艺参数。
第二步:选择合适的铣削刀具铣削加工需要使用铣刀作为加工工具,根据不同的加工工件和加工参数,需要选择不同类型的铣刀。
铣刀可以分为高速钢刀具、硬质合金刀具、刚性合金刀具等。
一般情况下,硬质合金刀具被认为是最适合铣削加工的刀具之一。
第三步:安装铣刀在安装铣刀时,需要保证刀具的正确安装位置和旋转方向,刀具应该是紧固牢固的,刀柄和机床主轴应该要切削轨迹将要运动的方向相同。
同时需要注意刀具的平衡性,不平衡的刀具会对机床、刀具和工件产生不利影响。
第四步:进行刀具磨损修复和更换在铣削加工过程中,刀具会出现磨损现象。
如果不及时修复和更换刀具,会影响到加工精度和铣削表面质量。
一般来说,刀具的磨损状况可以通过刀具的质量控制指标来判断,切削力、加工表面质量的变化等也可以用来判断。
第五步:进行铣削加工操作在进行铣削加工操作时,需要确定加工工件的位置和机床主轴的转速。
同时,需要根据加工要求进行铣削刀具的进给和切削运动,实现加工表面的质量和精度要求。
在加工过程中,需要不断监测刀具的磨损和加工表面质量的变化,及时进行修复和调整。
第六步:完成后处理工作铣削加工完成后,需要进行后处理工作,包括加工表面的清洁和润滑等。
同时还需要对加工工艺参数、加工实际情况和工件质量进行分析和总结,为今后的铣削加工提供参考和借鉴。
铣削铝合金加工工艺
铣削铝合金加工工艺1. 概述铝合金是一种常用的轻质高强度材料,被广泛应用在航空、汽车、电子等行业中。
铣削是一种常见的加工方法,可用于铝合金零部件的加工和制造。
2. 铣削工艺的选择在铣削铝合金时,需要根据工件的形状、尺寸和要求选择合适的铣削工艺。
以下是一些常用的铣削工艺:2.1 平面铣削平面铣削适用于铝合金表面的平面加工和修整。
可使用平铣刀或立铣刀进行铣削操作。
此工艺可以达到较高的加工精度和平面度。
2.2 端铣削端铣削适用于铝合金的边缘加工和倒角。
用端铣刀进行削除材料,可以获得整齐的边缘,并消除可能的锋利边缘。
2.3 深孔铣削深孔铣削适用于铝合金工件的孔内加工。
使用长刀具,沿孔的轴线进行铣削操作。
这种工艺可以获得较深的孔内加工效果。
2.4 铣削槽加工铣削槽加工适用于铝合金工件上的槽加工。
使用槽铣刀进行切割,可以制造出各种形状和尺寸的槽。
此工艺常用于制造槽轨等零部件。
3. 加工参数调整在铣削铝合金时,需要根据具体工件和工艺要求进行加工参数的调整。
以下是一些常见的加工参数:3.1 切削速度切削速度是指刀具切削工件时的线速度。
在铝合金加工中,通常选择较高的切削速度以提高生产效率。
3.2 进给速度进给速度是指刀具在单位时间内移动的距离。
在铝合金加工中,适当的进给速度可以保证加工表面光滑,并减少刀具磨损。
3.3 切削深度切削深度是指每次刀具进入工件的深度。
在铝合金加工中,一般选择较小的切削深度以减少切削力和切削温度。
3.4 刀具选择针对不同的铝合金材料和加工工艺,选择合适的刀具是非常重要的。
常见的铣削刀具包括平铣刀、立铣刀、端铣刀和槽铣刀等。
4. 加工质量控制在铣削铝合金加工过程中,需要进行质量控制以确保加工零部件的质量。
以下是一些常用的质量控制措施:4.1 尺寸测量通过合适的测量工具,对加工零部件的尺寸进行测量和验证。
确保加工尺寸符合设计要求。
4.2 表面质量检查检查加工零部件的表面质量,包括表面粗糙度和平整度。
铣削加工工艺流程分析
铣削加工工艺流程分析铣削加工是一种常见的机械加工方法,广泛应用于制造行业。
本文将对铣削加工的工艺流程进行详细分析,并探讨其在工业生产中的应用。
一、铣削加工的定义与概述铣削加工是指利用铣床或数控铣床对工件进行物理切削,以达到加工目的的一种工艺方法。
铣床通过旋转刀具进行切削,同时将工件在X、Y、Z三个坐标轴上进行移动,以完成加工过程。
二、铣削加工的工艺流程分析1. 准备工作铣削加工前需要做好充分的准备工作。
首先,根据工件设计图纸确定加工尺寸和要求;其次,准备好所需的铣床、夹具、刀具等设备和工具;最后,对加工设备进行检查和调整,并确保刀具磨损情况良好。
2. 夹紧工件将待加工的工件安装到铣床的工作台上,并通过合适的夹具进行固定。
夹紧夹具需要保证工件的稳定性和正确的加工位置,以确保加工精度。
3. 选择合适的刀具根据工件的材质、形状和加工要求选择合适的刀具。
刀具的选择应综合考虑切削力、切削速度和切削质量等因素,以获得最佳的加工效果。
4. 设定切削参数根据所选刀具和工件的特点,设定合适的切削参数,包括进给速度、转速、切削深度等。
切削参数的设定需要综合考虑加工效率和切削质量之间的平衡。
5. 进行铣削加工根据设定的切削参数,启动铣床,开始进行铣削加工。
在整个加工过程中,操作人员需要密切关注加工状态,确保加工精度和安全。
6. 检验加工质量铣削加工完成后,对加工后的工件进行检验和测量。
通过使用测量工具,比如千分尺、游标卡尺等,对加工尺寸进行检查,以确保加工质量符合要求。
三、铣削加工的应用领域铣削加工广泛应用于各个制造行业,特别是机械制造和零部件加工领域。
以下是铣削加工的一些常见应用领域:1. 汽车制造铣削加工在汽车制造过程中扮演着重要的角色。
通过铣削加工,可以精确地加工汽车发动机零部件、车身结构件等,提高汽车的精度和性能。
2. 航空航天工业铣削加工在航空航天工业中也起到至关重要的作用。
航空发动机的叶片、螺栓等零部件需要通过铣削加工来保证其高精度和可靠性。
铣削加工工艺
铣削加工工艺1. 简介铣削加工是一种常见的机械加工方法,常用于在工件表面上切削出各种形状的凹凸槽、平面、齿轮等。
本文将介绍铣削加工的流程、工艺参数、工具选择和注意事项。
2. 流程铣削加工的基本流程如下:1.选择合适的铣床。
2.设计加工方案,并准备铣削刀具。
3.夹紧工件,并将其固定在铣床工作台上。
4.调整铣床的加工参数,如转速、进给速度等。
5.运行铣削加工程序,开始加工。
6.检查加工质量,并对工件进行修整。
7.收尾工作和清洁。
3. 工艺参数铣削加工的工艺参数对于加工质量和效率具有重要影响,以下是常见的工艺参数:•切削速度(Cutting Speed):切削刀具在单位时间内通过工件的线速度,一般使用米/分钟(m/min)作为单位。
•进给速度(Feed Rate):每次切割刀具移动的距离。
通常用毫米/转(mm/tooth)表示。
•切削深度(Cutting Depth):切削刀具在每次进给完成后,切入工件的深度。
•切削宽度(Cutting Width):切削刀具在每次进给完成后,切削工件的宽度。
•刀具半径补偿(Tool Radius Compensation):针对切削刀具的尺寸进行补偿,保证加工尺寸的精确度。
4. 工具选择选择合适的铣刀工具对于加工质量和效率至关重要。
以下是常见的铣刀工具类型:•端铣刀:用于切削平面和轮廓。
•刀柄铣刀:用于开槽、切割等操作。
•高铣刀:用于深孔加工。
•槽铣刀:用于加工凹槽和槽口。
具体选择何种铣刀工具需要根据加工要求、工件材料和加工量来进行评估。
5. 注意事项在进行铣削加工时,需要注意以下事项:•安全操作:操作人员应戴上安全帽、眼镜等防护用品。
避免手部接触刀具,确保操作安全。
•刀具使用寿命:定期检查铣刀刃口的磨损情况,及时更换刀具,以确保加工质量。
•清洁工作:加工完成后,注意清理铣床、工作台和周围空间,保持工作环境整洁。
结论铣削加工是一种常见的机械加工方法,本文介绍了铣削加工的流程、工艺参数、工具选择和注意事项。
《铣削加工工艺》课件
铣削加工适用于各种金属材料的加工,如钢铁、有色金属等,尤其适用于加工平面、沟 槽、齿形等复杂形状。在航空制造业中,铣削加工广泛应用于机翼、机身和发动机部件 的制造;在汽车制造业中,铣削加工用于发动机、变速器和底盘部件的制造;在模具制
造业中,铣削加工用于模具型腔和型芯的加工。
铣削加工的发展趋势
总结词
工件表面质量不佳是铣削加工中常见的问题 之一,它可能影响工件的外观和使用性能。
详细描述
工件表面质量不佳的原因可能包括机床精度 不足、刀具磨损、切削参数选择不当等。为 了提高工件表面质量,可以采取一系列措施 ,如提高机床精度、定期检查和更换刀具、
优化切削参数等。
THANKS
感谢观看
02
切削速度是指铣刀在单位时间内所转过的弧长,通常以米/分钟为单 位。
03
进给速度是指铣刀在进给系统中每分钟所移动的距离,通常以毫米/ 分钟为单位。
04
铣削深度是指铣刀在工件表面上所切削的深度,通常以毫米为单位。
铣削深度与进给速度的确定
铣削深度的确定应根据工件的材料、硬度、铣刀的材质和规格以及加工要求等因素 综合考虑。
02
CATALOGUE
铣削加工的基本原理
铣削力的产生与影响
总结词
了解铣削力的产生原因及其对铣削加工的影响
详细描述
铣削力是铣削加工过程中的主要作用力,其产生与切削层的形成和切屑的排出 有关。铣削力的方向、大小和变化直接影响铣削加工的效率、刀具的磨损和加 工质量。
铣削加工的切屑形成与控制
总结词
掌握切屑的形成机理及切屑控制的方法
齿轮铣削是一种针对齿轮的铣削 工艺,主要用于加工各种齿轮。
齿轮铣削工艺主要采用指状铣刀 进行加工,通过调整刀具的角度 和切削参数,可以获得较好的加
铣削主要的加工工艺
铣削主要的加工工艺
铣削是一种高效的金属加工工艺,主要包括以下几个步骤:
1. 设计产品图纸:根据产品需求,设计出产品的CAD图纸。
2. 选择切削工具:根据产品的材料和加工要求,选择合适的铣刀头。
3. 设计切削路径:根据产品图纸,确定切削路径和加工顺序。
4. 设定机床参数:根据材料的硬度和产品要求,设定合适的切削速度、进给速度和切削深度。
5. 安装工件:将待加工的工件固定在铣床上,确保稳定性和定位准确度。
6. 开始铣削:根据切削路径和加工顺序,将铣刀头沿着工件表面进行切削。
根据需要,可能需要进行多次切削来达到最终的形状和尺寸。
7. 检查和修磨:在加工过程中,及时检查工件的尺寸和表面质量,如有需要,进行修磨以满足要求。
8. 清洁和保养:在完成铣削后,清理工作区域,对机床进行保养,以确保设备的正常运行。
铣削是一种常见的金属加工工艺,适用于各种形状和尺寸的工件,可以用于加工平面、曲面、凸轮槽等。
铣削广泛应用于机械制造、汽车制造、航空航天等行业,是一项重要的制造工艺。
薄壁件铣削加工工艺
薄壁件铣削加工工艺一、工艺概述薄壁件铣削加工是指对于壁厚较薄的工件进行铣削加工的一种工艺。
在这种加工过程中,需要注意避免因切削力过大而导致变形、破裂等问题。
二、加工前的准备1. 选择合适的材料:薄壁件通常使用铝合金、钢材等材料,需要根据具体情况选择合适的材料。
2. 设计合理的结构:在设计薄壁件时,需要考虑到其结构是否合理,是否容易变形、破裂等问题。
3. 确定加工方向:在进行薄壁件铣削加工时,需要确定切削方向和进给方向,以避免产生过大的切削力。
4. 准备好所需刀具:根据具体情况选择合适的刀具,并确保其磨损程度符合要求。
三、加工过程1. 切割前处理:将薄壁件固定在机床上,并使用夹具固定好位置。
同时检查夹具是否牢固,以避免因夹具不牢导致的误差。
2. 粗铣:根据加工要求选择合适的切削速度和进给速度,并进行粗铣。
在粗铣时,需要注意切削深度和切削宽度的控制,以避免过大的切削力。
3. 半精铣:在粗铣完成后,进行半精铣。
在半精铣时,需要控制好刀具的磨损程度,并根据加工要求选择合适的切削参数。
4. 精铣:最后进行精铣。
在精铣时,需要控制好加工温度和表面质量,并使用合适的冷却液降低温度。
四、加工后处理1. 去毛刺:在加工完成后,需要去除薄壁件表面的毛刺,以保证其表面质量。
2. 洗净清理:将薄壁件洗净并清理干净,在检查其尺寸是否符合要求。
3. 包装运输:将薄壁件包装好,并妥善运输到指定地点。
五、注意事项1. 避免过大的切削力:在进行薄壁件铣削加工时,需要注意避免因切削力过大而导致变形、破裂等问题。
2. 选择合适的刀具:根据加工要求选择合适的刀具,并确保其磨损程度符合要求。
3. 控制好加工温度:在进行薄壁件铣削加工时,需要注意控制好加工温度,以避免因过高的温度导致变形、破裂等问题。
4. 检查夹具是否牢固:在进行薄壁件铣削加工时,需要检查夹具是否牢固,以避免因夹具不牢导致的误差。
典型薄壁零件数控铣削加工工艺
典型薄壁零件数控铣削加工工艺一、加工工艺概述在现代机械加工中,数控铣削技术已经成为广泛采用的一种加工方式。
它具有高效率、高精度、高稳定性等诸多优点,能够满足各种复杂形状的零部件加工需求。
而在制造业中,薄壁零件的加工一直以来都是一个难点,因为它们具有较大的面积,容易发生振动和变形,导致加工质量不佳。
因此,采用数控铣削加工工艺来生产薄壁零件,显得尤为重要。
1. 材料准备首先需要选定适合薄壁零件加工的材料,一般采用铝合金、镁合金、钛合金等轻合金材料。
然后进行材料的切割、碾磨等预处理工作,以优化后续加工的效果。
2. CAD制图在进行数控铣削加工前,需要对零件进行三维模型设计,以制定详尽的加工工艺方案。
在CAD制图过程中,需要考虑加工精度、表面质量、加工时间等多个因素,确定好各种加工参数,包括加工路径、刀柄发生器等。
3. CAM编程在CAD制图完成后,需要进行CAM编程,将机器指令和实际加工过程相一致。
在CAM编程中,需要考虑加工路径,以及刀柄进给速度、切削进给速度等参数,调整加工节奏和刀具尺寸等。
4. 加工调试CAM编程完成后,需要先进行一次加工调试。
调试过程中,需要不断调整加工参数,以充分发挥数控铣削加工的优势,并保证加工精度和表面光洁度达到标准要求。
5. 实际加工过程综合考虑加工条件、切削速度、进给速率等因素,进行实际的数控铣削加工。
在加工过程中,需要密切关注加工状态,调整加工参数,以保证产品精度和表面质量。
三、关键问题控制1.加工稳定性的控制薄壁零件加工面积较大,容易发生振动和变形,因此需要掌握加工稳定性的控制方法。
首先要选择合适的工件夹持方式,确保工件在加工过程中不产生任何变形。
同时,合理设计加工刀具尺寸和结构,采用具有高刚性的刀具,以提高加工精度和稳定性。
2.表面光洁度的控制薄壁零件加工表面质量要求较高,表面光洁度是一个很关键的指标。
因此,在加工过程中需要选用具有高刚度、高切削能力的刀具,并适当降低装夹紧密度,避免过度压缩,从而保证零件表面光滑克服表面氧化和氧化皮的形成。
铣削加工工艺基础知识概述
铣削加工工艺基础知识概述1. 引言铣削加工是现代制造业中常见的一种加工方法,在各个行业都有广泛的应用。
它通过铣削刀具对工件进行切削,使其达到所需的形状、尺寸和表面质量。
本文将对铣削加工的一些基础知识进行概述,包括铣削的原理、分类、切削力、刀具选择等内容。
2. 铣削的原理与分类铣削是通过铣刀对工件进行旋转切削,将工件与铣刀的相对运动转化为切削力,从而将工件切削成所需要的形状。
根据铣削刀具的结构和切削方式的不同,铣削可分为立铣、立式卧铣、卧铣、立式卧式联合铣、分度铣等几种分类。
•立铣:铣刀安装在主轴上,工件固定在工作台上,铣刀的切削力主要由工作台和主轴承载。
•立式卧铣:铣刀安装在主轴上,而工件可以在工作台上沿水平方向移动,切削力主要由主轴承载。
•卧铣:铣刀安装在主轴上,工件固定在工作台上,铣刀的切削力主要由工作台承载。
•立式卧式联合铣:铣刀安装在一个可以在水平和垂直方向移动的主轴上,工件可以在工作台上移动,切削力主要由主轴和工作台承载。
•分度铣:通过回转工作台和工作夹具使工件在一定角度下进行铣削,用于加工螺纹、齿轮等。
3. 切削力与刀具选择切削力是铣削加工中重要的参数,它对刀具的选择和加工质量有直接影响。
切削力的大小与多个因素有关,包括切削速度、进给量、切削深度、材料硬度等。
在选择刀具时,需要根据工件的材料、形状和加工要求选择合适的切削刃数、刀具材料和涂层。
当切削力过大时,会引起工件振动和变形,影响加工质量和加工精度。
因此,要通过合理地设计刀具几何形状、提高刀具材料的硬度和强度、采用适当的切削参数等方法来降低切削力。
4. 铣削加工工艺流程铣削加工的工艺流程包括以下几个步骤:1.设计加工方案:根据零件的形状、尺寸和加工要求,确定铣削加工方案,包括选择合适的刀具、加工顺序和切削参数等。
2.设计加工夹具:根据工件的形状和要求,设计合适的加工夹具,用于固定工件,保证加工精度和稳定性。
3.加工前准备:对铣削机床进行检查,检查刀具和夹具的磨损情况,清洁工作台和切削润滑系统。
数控铣削加工工艺分析
数控铣削加工工艺分析数控铣削加工是现代制造业中常见的加工方式之一,它使用数控铣床进行金属材料的削除加工。
与传统的手工和半自动铣削相比,数控铣削具有高效、精度高、重复性好等优点。
本文将从工艺流程、工艺参数和加工工具选择等方面,对数控铣削加工的工艺进行详细的分析。
一、工艺流程1.加工准备:明确加工件的尺寸要求、材料和加工工艺要求,并选择合适的加工刀具和夹具。
2.编写加工程序:根据零件的几何形状和加工要求,编写数控机床可识别的加工程序。
3.加工装夹:根据加工程序,选择适当的夹具和装夹方式,在数控铣床上夹紧工件。
4.设定工艺参数:根据加工材料的性质和加工要求,设置合理的切削速度、进给速度和切削深度等参数。
5.加工加工:启动数控机床,进行自动化加工,监控加工过程的稳定性和正确性。
6.加工检验:对加工后的零件进行检验,检查尺寸精度和表面质量是否符合要求。
7.加工记录:记录加工过程中的工艺参数和检验结果,以备后续生产参考。
二、工艺参数1.切削速度:是指刀具在单位时间内切削的长度。
根据加工材料的硬度和切削性能,合理选择切削速度,既能保证加工效率,又能保证刀具寿命。
2.进给速度:是指刀具在单位时间内在加工方向上移动的距离。
进给速度的选择应考虑切削力和切削表面的要求。
3.切削深度:是指刀具在一次进给过程中所削除的材料层厚度。
切削深度的选择应使得切削力合理,既能保证加工效率,又能避免切削表面的质量。
4.刀具半径补偿:数控铣床会自动根据刀具半径补偿值进行补偿,使得加工轮廓与设计轮廓一致。
5.加工顺序:根据零件的几何形状和切削力的分布情况,合理选择加工顺序,避免零件变形和加工过程中的切削力过大。
三、加工工具选择1.刀具材料:刀具材料应具有一定的硬度、耐磨性和耐冲击性,常用的刀具材料有硬质合金、高速钢和陶瓷等。
2.刀具形状:根据零件的几何形状和加工要求,选择合适的刀具形状,如平面铣刀、立铣刀、球头铣刀等。
3.切削刃数:根据加工材料的硬度和切削性能,选择合适的刀具刃数,既能保证加工效率,又能保证刀具寿命。
典型薄壁零件数控铣削加工工艺
典型薄壁零件数控铣削加工工艺
随着数控技术的不断发展和普及,传统的机械加工方式已逐渐被数控加工所取代。
具
有复杂形状的零件加工越来越受到重视,薄壁零件的加工也成为数控铣削加工中的一个重
要领域。
本文将介绍几种常见的典型薄壁零件数控铣削加工工艺。
一、空间曲面薄壁零件的加工
1. 先导铣削法:先导铣削法是指在进行数控铣削之前,通过手工或其他加工方式,
先将工件的主要外形进行加工,以便在数控铣削中能够准确定位和定位,确保加工精度。
这种方法通常适用于工件的结构单一,不涉及过多曲面的薄壁零件。
2. 内壁铣削法:对于空间曲面薄壁零件的加工,往往会涉及到一些内壁的加工。
内
壁铣削法是指利用特殊形状的刀具进行内壁加工,通常采用搅拌刀或球头刀进行加工。
这
种方法相比传统的刀具在内壁加工过程中更容易掌握,提高加工质量和效率。
3. 全固定装夹法:对于薄壁零件的加工来说,固定装夹是一个非常关键的环节,直
接关系到加工精度和质量。
全固定装夹法是指在加工过程中,将工件的切削力用于装夹上,使其实现稳定加工。
这种方法适用于一些形状复杂、精度要求高的薄壁零件。
典型薄壁零件的数控铣削加工工艺有很多种,根据不同的零件形状和要求,选择合适
的加工工艺能够提高加工效率和质量,满足工程的需求。
随着数控技术的不断发展和应用,相信在将来的发展中,还会出现更多的创新加工工艺,以适应各种需要。
典型零件机械加工工艺与实例
典型零件机械加工工艺与实例一、引言在制造业中,机械加工是一项至关重要的工艺,它用于将原材料加工成各种形状和尺寸的零件。
典型零件机械加工工艺是指那些在机械加工过程中常见且广泛应用的工艺方法。
本文将探讨几种典型的零件机械加工工艺,并提供实例进行说明。
二、铣削加工铣削加工是一种常见的机械加工工艺,通过旋转刀具将工件上的材料切削掉,从而得到所需形状和尺寸的零件。
铣削加工可以分为平面铣削、立铣、端铣等多种形式。
2.1 平面铣削平面铣削是将刀具与工件平行或近似平行于工件表面进行切削的加工方式。
它适用于平面、凸轮槽、直齿轮等零件的加工。
平面铣削的实例包括制作平面底座、平面销轴等。
2.2 立铣立铣是将刀具与工件垂直或近似垂直于工件表面进行切削的加工方式。
它适用于开槽、钻孔、倒角等零件的加工。
立铣的实例包括制作键槽、孔加工等。
2.3 端铣端铣是将刀具与工件端面进行切削的加工方式。
它适用于平面、凹槽、凸齿轮等零件的加工。
端铣的实例包括制作平面销轴端面、齿轮端面等。
三、车削加工车削加工是通过旋转工件,并将刀具沿工件轴向移动,将工件上的材料切削掉的加工方式。
车削加工可分为外圆车削和内圆车削两种形式。
3.1 外圆车削外圆车削是将刀具与工件外表面接触,并进行切削的加工方式。
它适用于制作轴、销轴、螺纹等零件。
外圆车削的实例包括制作轴、销轴等。
3.2 内圆车削内圆车削是将刀具放置在工件内部,并进行切削的加工方式。
它适用于制作孔、内螺纹等零件。
内圆车削的实例包括制作孔、内螺纹等。
四、钻削加工钻削加工是通过旋转刀具,使刀具的尖端与工件接触,并将工件上的材料切削掉的加工方式。
钻削加工适用于制作孔、沉孔等零件。
4.1 钻孔钻孔是将刀具的尖端放置在工件上,并进行切削的加工方式。
它适用于制作各种规格和深度的孔。
钻孔的实例包括制作螺纹孔、沉孔等。
五、铣床加工铣床加工是一种常用的机械加工工艺,它通过铣刀在工件上进行切削,得到所需形状和尺寸的零件。
数控铣削加工工艺与编程
数控铣削加工工艺与编程一、数控铣削加工工艺数控铣削加工是一种以金属材料为对象,利用铣削刀具和高速旋转的主轴,在数控机床上进行精密的加工技术。
它相较于传统的手工铣削和普通铣床加工,具有更高的自动化程度、更高的精度和更大的生产效率。
同时,它可以实现对复杂曲面零件的加工,提高了产品精度和质量,广泛应用于航空航天、汽车制造、机械制造等行业。
数控铣削加工工艺的关键在于精确的编程和合理的刀具选择,这决定了加工的效率和产品质量。
首先,需要进行零件的CAD三维建模设计,然后通过CAM软件进行加工路线规划和工艺分析,最后生成NC代码并将其传输到数控机床上进行加工。
在加工的过程中,需要不断地根据实际情况调整刀具和参数,以保证加工的效果。
常用的刀具有铣刀、钻刀、车刀等,需要根据具体的加工要求选择合适的刀具和切削参数,以达到最佳的加工效果。
二、数控铣削加工编程数控铣削加工编程是利用计算机编写加工程序,以指导数控机床进行准确的零件加工。
在编程之前,需要进行零件CAD 设计和CAM工艺分析,确定加工路线和切削参数。
在编程的过程中,需要熟悉数控机床编程的语法和指令格式,掌握加工过程中常用的切削参数和刀具补偿等技巧。
编程的第一步是确定加工坐标系和切削速度。
加工坐标系是数控机床的工作坐标系,其坐标轴的方向和位置需要与零件CAD设计的坐标系一致,才能使零件加工的精度和效率最佳。
切削速度是在加工过程中刀具和工件的相对速度,需要根据刀具的刃口材料、硬度和工件材料进行调整,以达到最佳的加工效果。
其次,需要编写切削路径和刀具指令。
切削路径是指刀具在工件表面上的运动轨迹,要尽可能地减少切削时间和切削力,以保证零件表面的精度和质量。
刀具指令是指对刀具运动的详细描述,包括切削深度、切削速度、切削方向、回刀位置等。
最后,需要进行NC程序的调试和参数优化。
调试是指通过模拟运行和实物测试等手段,不断检查和调整程序的正确性和合理性,确保加工过程的稳定性和精度。
板件数控铣削加工技术与工艺
板件数控铣削加工技术与工艺1.板件数控铣削加工技术的定义板件数控铣削加工技术是一种采用数控技术对板材进行加工的技术,主要包括数控铣床和数控铣刀两个部分。
板件数控铣削加工技术在生产过程中具有高效、精度高、质量稳定等优点,因此被广泛应用于各个行业,如机械制造、汽车航空等领域。
2.板件数控铣削加工技术的应用板件数控铣削加工技术广泛应用于工业领域,如机械制造、汽车航空、电子通信、医疗器械、化工等领域。
在机械制造中,板件数控铣削加工技术主要应用于铣削毛坯、精镗、孔加工、表面切削、平面铣削等方面;在汽车航空领域,板件数控铣削加工技术主要应用于制造汽车零部件、飞行器零件、发动机部件等方面;在电子通信领域,板件数控铣削加工技术主要应用于制造电子元器件、金属壳体、导热部件等方面;在医疗器械领域,板件数控铣削加工技术主要应用于制造人工骨、人工关节、牙科种植体等方面;在化工领域,板件数控铣削加工技术主要应用于制造化工反应器、管道、存储罐等方面。
3.板件数控铣削加工技术的工艺流程(1)设计CAD图纸:根据客户的需求,使用CAD软件进行产品设计和模型制作。
(2)转换CAM程序:将CAD图纸转换成CAM程序,并设置铣削参数,如铣刀直径、转速、进给速度、切削深度等。
(3)上传到数控铣床:将CAM程序上传到数控铣床系统中,进行机床设备和刀具的设定,以及图形定位和坐标系的确定。
(4)加工铣削:启动数控铣床,进行加工铣削,根据铣削参数进行加工,经过多次铣削后,最终得到精度高、形状规整的产品。
(5)完成品检:对加工后的产品进行检查,如尺寸、表面光洁度、平整度等方面。
(6)产品上料和拆卸:将加工好的产品从数控铣床上取下,放入工件仓库中等待下一步操作。
4.板件数控铣削加工技术的优点(1)高效性:板件数控铣削加工技术采用数控技术,可以高速加工,提高生产效率;(2)高精度:板件数控铣削加工技术的精度高,可以满足复杂产品的制造要求;(3)质量稳定:板件数控铣削加工技术采用数控技术,可以保证产品质量稳定,并且可以减少误差和损坏;(4)灵活性:板件数控铣削加工技术可以根据不同的产品需要设计不同的程序,具有很大的灵活性和适应性;(5)节省成本:板件数控铣削加工技术采用数控加工工艺,可以节省大量的人力和物力成本,也可以提高企业的经济效益。
数控铣削加工工艺与编程
数控铣削加工工艺与编程数控铣削加工工艺是先进的金属加工方法之一,它通过计算机编程控制铣床进行精密切削工作,以生产出高精度、高质量的金属零部件。
本文主要讨论数控铣削加工工艺和编程相关的知识和技术。
一、数控铣削加工工艺1. 铣削加工工艺过程数控铣削加工工艺过程包括以下几个步骤:① 选择合适的材料和刀具,将工件和刀具夹紧在铣床上。
② 根据需要进行加工参数的预设和测试。
③ 设计刀具路径和切削参数,编写数控程序。
④ 启动数控系统,进行自动加工工作。
⑤ 完成后卸下零部件,进行质量检测和加工效果评估。
2. 铣床加工的切削参数数控铣床加工需要根据不同的材料、刀具和工件大小等要素,确定合适的切削参数。
常见的切削参数包括:① 切削速度:铣削加工时,刀具在工件表面移动时的速度,通常用米/分钟、英尺/分钟、英寸/分钟等单位表示。
② 进给速度:工件表面切割定量移动的速度,通常用每个齿口的距离表示,例如每分钟5毫米或每分钟0.2英寸。
③ 切削深度:刀具与工件表面之间的垂直距离,通常用米或英寸表示。
④ 切削角度:刀具与工件表面之间的斜角度数。
⑤ 切削力:在切削过程中对工件的力量,常用牛顿或磅表示。
3. 铣削加工的梳理方法铣削切削过程会产生切屑,不同的方法可以梳理它们以避免对加工造成影响。
常见的梳理方法包括:① 顺向梳理:切屑在与铣削方向平行的方向上梳理。
② 逆向梳理:切屑沿与铣削方向相反的方向梳理。
③ 中央梳理:将切削方向改为靠近工件中心的位置,即在工件的两侧同时进行铣削加工,将切削屑梳理到中央位置进行清理。
二、数控铣削加工编程1. 编程语言和软件数控铣削加工编程需要使用特定的编程语言和软件,如G代码和CAM软件。
G代码是用于数控铣削加工的标准指令语言,它包含了控制铣床加工参数和运动轴的指令。
CAM软件是一种计算机辅助制造软件,可以帮助设计师进行实体建模、刀路规划、程序生成等工作。
2. 数控铣削加工编程过程数控铣削加工编程过程需要遵循以下几个步骤:① 设计零部件,确定加工路径和切削参数。
数控铣削加工工艺及对刀操作PPT课件
进给速度的选择同样重要,过快或过 慢的进给速度都可能导致加工质量下 降或损坏刀具。
切削深度的选择
切削深度
根据工件材料、铣刀直径和加工要求等参数,合理选择切削深度,以确保切削 效率和加工质量。
总结
切削深度的选择对切削效率和加工质量均有影响,过大的切削深度可能导致刀 具损坏或加工质量下降。
刀具的选择与使用
05
数控铣削加工的未来发展与挑战
数控铣削加工技术的发展趋势
80%
智能化
随着人工智能和机器学习技术的 不断发展,数控铣削加工将更加 智能化,能够实现自适应加工和 智能优化。
100%
高效化
为了提高加工效率和降低成本, 数控铣削加工将不断优化切削参 数和加工路径,实现高效、高精 度的加工。
80%
柔性化
随着个性化需求的增加,数控铣 削加工将更加柔性化,能够快速 适应不同工件和加工需求的调整 。
数控铣削加工面临的挑战与问题
加工精度要求高
随着产品质量的不断提高,对 数控铣削加工的精度要求也越 来越高,如何保证高精度加工 是当前面临的重要问题。
切削参数优化
切削参数的优化是提高数控铣 削加工效率和加工质量的关键 ,但如何实现切削参数的合理 匹配和优化仍是一个挑战。
引入智能化技术
利用人工智能和机器学习技术,实现 加工过程的自适应控制和智能优化, 提高加工效率和精度。
THANK YOU
感谢聆听
详细描述
数控铣削加工是指利用数控机床进行铣削加工的一种技术,通过 计算机控制机床的运动和切削参数,实现高精度、高效率、高柔 性的加工。相比于传统铣削加工,数控铣削加工具有更高的加工 精度和更广泛的加工范围,能够满足各种复杂零件的加工需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卧式升降台 铣床的坐标方向 为:Z轴水平, 且向里为正方向 (面对工作台的 平行移动方向); 工作台的平行向 左移动方向为X 轴正方向;Y轴 垂直向上。
卧式铣床的坐标系统
数控铣床的坐标系统
数控装置通电后通常要进行回参考点操作, 以建立机床坐标系。参考点可以与机床零点重 合,也可以不重合,通过参数来指定机床参考 点到机床零点的距离。机床回到了参考点位置 也就知道了该坐标轴的零点位置,找到所有坐 标轴的参考点,CNC就建立起了机床坐标系。
数控铣床的坐标系统
工件坐标系
用来确定工件几何形体上各要素的位置而设置的坐标 系,工件坐标系的原点即为工件零点。
工件零点的位置是任意的,它是由编程人员在编制程 序时根据零各轴的方向应该 与所使用的数控机床的坐标轴方向一致。
数控铣床的坐标系统
机床坐标系 原点 工件坐标系 原点
数控铣床的主要加工对象
数控铣床是用来加工工件的平面、,内外轮廓、孔、攻螺纹等工 序,并可通过两轴联动加工零件的平面轮廓,通过两轴半控制、 三轴或多轴联动来加工空间曲面零件。 配点位、直线数控装置——用同一刀具进行多道工序的直线切 削而且需要进行大余量重切削的工件或用同一刀具又有定位精 度要求的加工。 配轮廓数控装置——平面轮廓(特别是由圆弧和直线形成的形 状)的加工及立体曲面形状的铣削(凸轮、样板、冲模、压模、 铸模)。
加工外轮廓时的安装
数控铣削加工工件的安装
不影响进给的装夹示例
数控铣削加工的对刀
对刀方式
标准芯轴和块规对刀
数控铣削加工的对刀
对刀方式
寻边器对刀
数控铣削加工工艺分析
数控铣削加工工艺分析
数控铣削加工的工艺性分析是编程前的重 要工艺准备工作之一,关系到机械加工的效果 和成败,不容忽视。由于数控机床是按照程序 来工作的,因此对零件加工中所有的要求都要 体现在加工中,如加工顺序、加工路线、切削 用量、加工余量、刀具的尺寸及是否需要切削 液等都要预先确定好并编入程序中 。
数控铣床的主要加工对象
数控铣床是一种加工功能很强的数控机床, 在数控加工中占据了重要地位。世界上首台数 控机床就是一部三坐标铣床,这主要因于铣床 具有X、Y、Z三轴向可移动的特性,更加灵活, 且可完成较多的加工工序。现在数控铣床已全 面向多轴化发展。目前迅速发展的加工中心和 柔性制造单元也是在数控铣床和数控镗床的基 础上产生的。
选择并确定进行数控加工的内容
数控加工内容的选择:
工件上的曲线轮廓 已给出数学模型的空间曲面 形状复杂、尺寸繁多、划线与检测困难的部位 通用机床加工时难以测量和控制进给的内外凹槽
选择并确定进行数控加工的内容
数控加工内容的选择:
以尺寸协调的高精度孔或面
能在一次安装中顺带铣出来的简单表面或形状 采用数控铣削后能成倍提高生产率,大大减轻 体力劳动强度的一般加工内容
工序的划分
总之,在数控机床上加工零件,其加工 工序的划分要视加工零件的具体情况具体分 析,许多工序的安排是综合了上述各分序方法 的。
确定对刀点与换刀点
对于数控机床来说,在加工开始时,确定刀具与工件 的相对位置是很重要的,它是通过对刀点来实现的。
对刀点
指通过对刀确定刀具与工件相对位置 的基准点。
确定对刀点与换刀点
工序的划分
在数控机床上特别是在加工中心上加工零件,工序 十分集中,许多零件只需在一次装卡中就能完成全部 工序。
但是零件的粗加工,特别是铸、锻毛坯零件的基 准平面、定位面等的加工应在普通机床上完成之后, 再装卡到数控机床上进行加工。这样可以发挥数控机 床的特点,保持数控机床的精度,延长数控机床的使 用寿命,降低数控机床的使用成本。
选择并确定进行数控加工的内容
数控加工内容的选择:
立式数控 铣床 卧式数控 铣床 多坐标联 动的卧式 加工中心 适于加工箱体、箱盖、平面凸轮、样板、形状复杂 的平面或立体零件,以及模具的内、外型腔等。 适于加工复杂的箱体类零件、泵体、阀体、壳体等。
用于加工各种复杂的曲线、曲面、叶轮、模具等。
零件结构的工艺性分析
数控机床采用的是 笛卡尔的直角三坐 标 系 统 , X、Y、Z 三轴之间的关系遵 循右手定则。如右 图所示,右手三指 尽量互成直角,拇 指指向X轴正方向 ,食指指向Y轴正 方向,中指指向Z 轴正方向。
迪卡尔
X
数控铣床的坐标系统
由于数控铣床有立式和卧式之分, 所以机床坐标轴的方向也因其布局的 不同而不同。
切入切出路径
铣削内轮廓的切入切出路径
铣削内圆的切入切出路径
切入切出路径
铣削内轮廓的切入切出路径
广东机电职业技术学院
数控教研室
作为一名数控加工技术人员,不但 要了解数控机床、数控系统的功能,而 且要掌握零件加工工艺的有关知识,否 则,编制出来的程序就不一定能正确、 合理地加工出我们需要的零件来。
第五单元
教学目的:
数控铣削加工工艺
了解数控铣削中要解决的主要工艺问题以 及各种问题的解决方法。掌握数控铣削工艺拟 定的过程、工序的划分方法、工序顺序的安排 和进给路线的确定等工艺知识,对数控铣削工 艺知识有一个系统的了解,并学会对一般数控 铣削零件加工工艺进行分析及制定加工方案。
工序的划分
按加工部位分序法
即先加工平面、定位面,再加工孔;
先加工简单的几何形状,再加工复杂的几何形状; 先加工精度比较低的部位,再加工精度要求较高的部位。
工序的划分
例如: 零件材料变形小,加工余量均匀,可以采用刀 具集中分序法,以减少换刀时间和定位误差; 若零件材料变形较大,加工余量不均匀,且精 度要求较高,则应采用粗精加工分序法。
零件结构的工艺性分析
提高工艺性的措施 :
减少薄壁零件或薄板零件 尽量统一零件轮廓内圆弧的有关尺寸
保证基准统一原则
零件图形的数学处理
数控加工的数值计算是程序编制中一个关键的环节。 编程尺寸确定的步骤:
基本尺寸换算成平均尺寸
保持原重要的几何关系不变并修改一般尺寸
计算未知结点坐标尺寸 编程尺寸的最后形成
刀具与工件原点 X 轴方向之距离 刀具与工件原点 Z 轴方向之距离
刀具与工件原点 Y 轴方向之距离
确定对刀点与换刀点
对刀点的选择原则 便于用数字处理和简化程序编制 在机床上找正容易,加工中便于检查 引起的加工误差小
确定对刀点与换刀点
对刀点与加工原点重合
确定对刀点与换刀点
铣削加工零件
确定对刀点与换刀点
数控铣削加工工件的安装
数控铣削加工选择定位基准应遵循的原则:
尽量选择零件上的设计基准作为定位基准
定位基准选择要能完成尽可能多的加工内容 定位基准应尽量与工件坐标系的对刀基准重合
必须多次安装时,应遵从基准统一原则
数控铣削加工工件的安装
加工面的安装
数控铣削加工工件的安装
加工内轮廓时的安装
数控铣削加工工件的安装
数控铣床的坐标系统
立式升降台铣床的 坐标方向为:Z轴垂 直(与主轴轴线重 合),向上为正方向; 面对机床立柱的左右 移动方向为X轴,将 刀具向右移动(工作 台向左移动)定义为 正方向;根据右手笛 卡尔坐标系的原则, Y轴应同时与Z轴和X 轴垂直,且正方向指 向床身立柱。
立式铣床的坐标系统
数控铣床的坐标系统
选择走刀路线
确定走刀路线的一般原则
保证零件的加工精度和表面粗糙度 方便数值计算,减少编程工作量 缩短走刀路线,减少进退刀时间和其他辅助时间 尽量减少程序段数
切入切出点
切入点
。
切入切出点
切入点选择原则:
粗加工选择曲面内的最高角点作为切入点。 精加工选择曲面内某个曲率比较平缓的角点作为切入点。
总之避免铣刀当钻头使用,否则因受力大而损坏。
确定对刀点与换刀点
对刀时应使对刀点与刀位点重合。
刀位点 如:
是指确定刀具位置的基准点
平头立铣刀的刀位点一般为端面中心;球头铣刀的刀位点 取为球心;钻头为钻尖。
确定对刀点与换刀点
换刀点
应根据工序内容来作安排,为了防止 换刀时刀具碰伤工件,换刀点往往设 在距离零件较远的地方。
选择走刀路线
走刀路线是数控加工过程中刀具相对于被 加工件的的运动轨迹和方向。走刀路线的确定 非常重要,因为它与零件的加工精度和表面质 量密切相关。
工序的划分
加工床脚
以导轨面 为粗基准
以加工后的 床脚为基准 加工导轨面
导轨粗基准的加工
工序的划分
数控铣削加工工序的划分
刀具集中分序法 粗、精加工分序法 按加工部位分序法
工序的划分
刀具集中分序法 即按所用刀具划分工序,用同一把刀加工完零 件上所有可以完成的部位,在用第二把刀、第 三把刀完成它们可以完成的其它部位。
零件结构工艺性分析的主要内容: 审查与分析零件图纸中尺寸标注方法是否适合数控加工; 审查与分析图纸中几何元素的条件是否充分、正确; 审查与分析数控加工零件的结构合理性;
零件结构的工艺性分析
预防零件变形措施:
对于大面积的薄板零件,改进装夹方式, 采用合适的加工顺序和刀具
采用适当的热处理方法 粗、精加工分开及对称去除余量等措施来 减小或消除变形的影响
对 刀 点 与 加 工 原 点 重 合
确定对刀点与换刀点
对刀点在几何对称中心
确定对刀点与换刀点
×
对刀点
对刀点在加工过程中便于检查
确定对刀点与换刀点
对刀点可以设在零件上、夹具上或机床上,但必须与零 件的定位基准有已知的准确关系。当对刀精度要求较高 时,对刀点应尽量选在零件的设计基准或工艺基准上。 对于以孔定位的零件,可以取孔的中心作为对刀点。
切入切出路径
铣削外圆的切入切出路径
切入切出路径
铣削外轮廓的切入切出路径
切入切出路径
当铣切内表面轮廓形状时,也应该尽量遵循 从切向切入的方法,但此时切入无法外延,最好 安排从圆弧过渡到圆弧的加工路线。当实在无法 沿零件曲线的切向切入、切出时,铣刀只有沿法 线方向切入和切出,在这种情况下,切入切出点 应选在零件轮廓两几何要素的交点上,而且进给 过程中要避免停顿。