最新高中数学优秀说课稿(1)

合集下载

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿高中数学新教材必修一说课稿(通用5篇)作为一无名无私奉献的教育工作者,通常需要用到说课稿来辅助教学,编写说课稿是提高业务素质的有效途径。

那么优秀的说课稿是什么样的呢?以下是本店铺为大家收集的高中数学新教材必修一说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学新教材必修一说课稿 1尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:一、背景分析1、学习任务分析本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。

二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;④理解f(X)与f(a)(a为常数)的区别与联系;⑤会求一些简单函数的定义域。

2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

高中数学说课稿5分钟(优秀5篇)

高中数学说课稿5分钟(优秀5篇)

高中数学说课稿5分钟(优秀5篇)作为一位杰出的老师,时常需要用到说课稿,说课稿有助于提高教师的语言表达能力。

怎么样才能写出优秀的说课稿呢?这里的5篇高中数学说课稿5分钟是作者小编为您分享的高中数学说课稿的相关范文,欢迎查看参考。

高中数学说课稿篇一一、本节内容的地位与重要性分类计数原理与分步计数原理是《高中数学》一节独特内容。

这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。

二、关于教学目标的确定根据两个基本原理的地位和作用,我认为本节课的教学目标是:(1)使学生正确理解两个基本原理的概念;(2)使学生能够正确运用两个基本原理分析、解决一些简单问题;(3)提高分析、解决问题的能力(4)使学生树立由个别到一般,由一般到个别的认识事物的辩证唯物哲学思想观点。

三、关于教学重点、难点的选择和处理中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。

正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。

而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。

必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。

教学中两个基本问题的引用及引伸,就是为突破难点做准备。

四、关于教学方法和教学手段的选用根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。

高中数学优秀说课稿(优秀14篇)

高中数学优秀说课稿(优秀14篇)

高中数学优秀说课稿(优秀14篇)高中数学说课稿篇一一、教材分析:"数列"是中学数学的重要内容之一。

不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。

例如:储蓄、分期付款中的有关计算就要用到数列知识。

就本节课而言,在给出数列的基本概念之后,结合例题,指出数列可以看作定义域为正整数集(或它的有限子集)的函数。

因此,本节课的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。

所以本节课在教材中起到了"承上启下"的作用,必须讲清、讲透。

二、教学目标:根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标。

1、知识目标:(1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。

(2)理解数列的通项公式,能根据数列的通项公式写出数列的任意一项。

对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。

2、能力目标:培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。

3、情感目标:通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。

通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育。

三、重点、难点:1、教学重点理解数列的概念及其通项公式,加强与函数的联系,并能根据通项公式写出数列中的任意一项。

2、教学难点根据数列前几项的特点,通过多角度、多层次的观察和分析,归纳出数列的通项公式。

四、教法学法本节课以"问题情境——归纳抽象——巩固训练"的模式展开,引导学生从知识和生活经验出发,提出问题并与学生共同探索、讨论解决问题的方法,让学生经历知识的形成过程,从而理解更加透彻。

2023-高中数学说课比赛一等奖说课稿(精选9篇)

2023-高中数学说课比赛一等奖说课稿(精选9篇)

高中数学说课比赛一等奖说课稿(精选9篇)高一数学说课稿大全篇一一、说教材1、教材的地位、作用及编写意图《对数函数》出现在职业高中数学第一册第四章第四节。

函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;对数函数这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键重点:对数函数的概念、图象和性质;难点:利用指数函数的图象和性质得到对数函数的图象和性质;关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

针对这种情况,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。

在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

三、说学法教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

高中数学的说课稿(优秀7篇)

高中数学的说课稿(优秀7篇)

高中数学的说课稿(优秀7篇)作为一无名无私奉献的教育工作者,常常要根据教学需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。

优秀的说课稿都具备一些什么特点呢?这里是可爱的小编为大伙儿收集整理的高中数学的说课稿【优秀7篇】,仅供参考,希望可以帮助到有需要的朋友。

高中数学说课稿篇一我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。

一、教学理念新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所须具备的一种基本素质。

”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。

因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。

本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。

二、教材分析三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。

本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及a、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。

共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。

本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律是本节课的重点。

难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。

因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。

依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。

高中数学说课稿一等奖【精选6篇】

高中数学说课稿一等奖【精选6篇】

高中数学说课稿一等奖【精选6篇】高中数学说课稿一等奖篇1一、教学目标1.把握菱形的判定.2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.3.通过教具的演示培养学生的学习爱好.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.分析判定2:师问:本定理有几个条件?生答:两个.师问:哪两个?生答:(1)是平行四边形(2)两条对角线互相垂直.师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等.(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗?为什么?可画出图,显然对角线,但都不是菱形.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区别与联系.2.思考题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业高中数学说课稿一等奖篇2教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。

高中数学优秀说课稿5篇

高中数学优秀说课稿5篇

高中数学优秀说课稿5篇高中数学优秀说课稿(篇1)高中数学第三册(选修)Ⅱ第一章第2节第一课时一、教材分析教材的地位和作用期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计学问做铺垫。

同时,它在市场预报,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有肯定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。

此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标[学问与技能目标]通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简洁的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]经历概念的建构这一过程,让学生进一步体会从特别到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。

在学生分析问题、解决问题的过程中培养其乐观探究的精神,从而实现自我的价值。

三、教法选择引导发觉法四、学法指导“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发觉问题、分析问题、解决问题。

五、教学的基本流程设计高中数学第三册《离散型随机变量的期望》说课教案.rar高中数学优秀说课稿(篇2)各位老师:今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。

下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用在此之前,学生已学习了算法的概念、程序框图与算法的`基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。

高中数学说课稿(15篇)

高中数学说课稿(15篇)

高中数学说课稿(15篇)高中数学说课稿(15篇)在教学工作者实际的教学活动中,很有必要精心设计一份说课稿,通过说课稿可以很好地改正讲课缺点。

那要怎么写好说课稿呢?以下是小编为大家收集的高中数学说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学说课稿1一、教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二、目标分析:教学重点、难点重点:集合的含义与表示方法。

难点:表示法的恰当选择。

教学目标l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性。

互异性。

无序性;(4)会用集合语言表示有关数学对象;2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

(2)让学生归纳整理本节所学知识。

3. 情感、态度与价值观使学生感受到学习集合的必要性,增强学习的积极性。

三、教法分析1. 教学方法:学生通过阅读教材,自主学习。

思考。

交流。

讨论和概括,从而更好地完成本节课的教学目标。

2. 教学手段:在教学中使用投影仪来辅助教学。

四、过程分析(一)创设情景,揭示课题1、教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?引导学生互相交流。

与此同时,教师对学生的活动给予评价。

2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫(二)研探新知,建构概念1.教师利用多媒体设备向学生投影出下面7个实例:(1)1-20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在20xx年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)国兴中学20xx年9月入学的高一学生的全体。

高中数学优秀说课稿(精选5篇)

高中数学优秀说课稿(精选5篇)

•••••••••••••••••高中数学优秀说课稿高中数学优秀说课稿(精选5篇)作为一名人民教师,通常需要准备好一份说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。

怎样写说课稿才更能起到其作用呢?以下是小编精心整理的高中数学优秀说课稿(精选5篇),欢迎阅读与收藏。

高中数学优秀说课稿1一、说教材1、从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养、2、从学生认知角度看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导、不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错、3、学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨、4、重点、难点教学重点:公式的推导、公式的特点和公式的运用、教学难点:公式的推导方法和公式的灵活运用、公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点、二、说目标知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题、过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力、情感与态度价值观:通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点、三、说过程学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1、创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求、西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格、国王令宫廷数学家计算,结果出来后,国王大吃一惊、为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性、故事内容紧扣本节课的主题与重点、此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数、带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和、这时我对他们的这种思路给予肯定、设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍、同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、2、师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,……,263是什么数列?有何特征?应归结为什么数学问题呢?探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式、比较(1)(2)两式,你有什么发现?设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机、经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:、老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心、3、类比联想,解决问题这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导、设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感、对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础、)再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力、这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用、4、讨论交流,延伸拓展高中数学优秀说课稿2一、教材分析教材的地位和作用期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。

高中数学说课比赛一等奖说课稿

高中数学说课比赛一等奖说课稿

高中数学说课比赛一等奖说课稿高中数学说课稿(精选10 篇一各位领导和教师,大家好!我说课的资料是苏教版必修1第1章第3节第一课时《交集、并集》,下头我想谈谈我对这节课的教学构想:一、教材分析:与传统的教材处理不一样,本章在学生经过观察具体集合得到集合的补集的概念后,上升到数学内部,将"补"理解为集合间的一种"运算"。

在此基础上,经过实例,使学生感受和掌握集合之间的另外两种运算—交和并。

设计的思路从具体到理论,再回到具体,螺旋上升。

集合作为一种数学语言,在后续的学习中是一种重要的工具。

所以,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学资料。

有了集合的语言,能够更清晰的表达我们的思想。

所以,集合是整个数学的基础,在以后的学习中有着极为广泛的应用。

基于以上的分析制定以下的教学目标二、教学目标:1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。

能用Venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。

2、经过对交集、并集概念的学习,培养学生观察、比较、分析、概括的本事,使学生认识由具体到抽象的思维过程。

3、经过对集合符号语言的学习,培养学生符号表达本事,培养严谨的学习作风,养成良好的学习习惯。

三、教学重点、难点:针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。

而把如何引导学生经过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。

四、教法、学法:针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习进取性的原则,采用"五环节教学法"。

同时利用多媒体辅助教学。

下头我重点说一说教学过程五、教学过程:第一个环节:问题情境经过实例:学校举办了排球赛,08小教(2)56名同学中有12名同学参赛,之后又举办了田径赛,这个班有20名同学参赛。

高中数学说课稿全套(最新8篇)

高中数学说课稿全套(最新8篇)

高中数学说课稿全套(最新8篇)高中高二数学说课稿篇一一、教材分析1.教材所处的地位和作用“几何概型”这一节内容是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。

此节内容是为更广泛地满足随机模拟的需要而在新课本中增加的,这是与以往教材安排上的的不同之处。

这充分体现了数学与实际生活的紧密关系,来源生活,而又高于生活。

同时也暗示了它在概率论中的重要作用,在高考中的题型的转变。

2、教学的重点和难点重点:几何概型概念的理解和公式的运用;难点:几何概型的应用。

二、教学目标分析1.知识与技能目标①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;②理解并掌握几何概型的定义;③会求简单的几何概型试验的概率。

2、过程与方法通过学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。

3、情感、态度与价值观通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯。

三、教法与学法分析1、教法分析:结合本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、分析问题、解决问题等教学过程,观察对比、概括归纳几何概型的概念及其概率公式,再通过具体实际问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

利用多媒体辅助教学。

2、学法指导:以学生活动为主,引导学生在动手操作、实践探索、合作交流的基础上,充分调动学生学习的积极性和主动性。

结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较;立足基础知识和基本技能,掌握好典型例题;注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型。

四、教学过程分析㈠以境激情、导入新课[课件展示]问题1:一条长50米的电话线架于两电线杆之间,其中一个杆子上装有变压器。

在暴风雨天气中,电话线遭到雷击的点是随机的。

最新高中数学说课稿精彩4篇

最新高中数学说课稿精彩4篇

最新高中数学说课稿精彩4篇高中数学说课稿篇一我今天说课的课题是新课标高中数学人教版a版必修第二册第三章“3.1.1倾斜角与斜率”。

我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。

一、说教材:1、教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。

学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。

因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。

2、教学目标根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:(1)知识与技能目标:了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。

(2)过程与方法目标:引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力(3)情感、态度与价值观目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。

3、教学重点、难点(1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。

(2)教学难点:斜率公式的推导二、说教法课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。

根据这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。

启发引导学生积极的思考并对学生的思维进行调控,使学生优化思维过程;在此基础上,通过学生交流与合作,从而扩展自已的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。

高中数学说课比赛一等奖说课稿【最新9篇】

高中数学说课比赛一等奖说课稿【最新9篇】
引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力
(3)情感、态度与价值观目标:
在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。
3、教学重点、难点 (1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公
义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、 例题讲解,学以致用 例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生
式。
(2)教学难点:斜率公式的推导
二、说教法
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问 题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据 这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。启发引导学生积极的思考并对 学生的思维进行调控,使学生优化思维过程;在此基础上,通过学生交流与合作,从而扩展自已的数学知识和使用数学知识及 数学工具的能力,实现自觉地、主动地、积极地学习。 三、说学法 在实际教学中,根据学生对问题的感受程度不同,学习热情、身心特点等,对学生进行针对性的学法指导。主要运用引导、启 发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生自己动手、参与教学过程、发现问题、讨论问题 提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的 热情,让学生学会学习,学会探索问题的方法,培养学生的能力。 四、说教学程序:

高中数学说课稿模板一等奖(通用5篇)

高中数学说课稿模板一等奖(通用5篇)

高中数学说课稿模板一等奖(通用5篇)高中数学说课稿模板一等奖(通用5篇)说课稿的撰写和演讲能力对于教师的专业发展和提高教学水平非常重要。

说课稿是教师与听课人员进行沟通和交流的桥梁。

这里给大家分享一些关于高中数学说课稿模板一等奖,供大家参考学习。

高中数学说课稿模板一等奖精选篇1各位老师:大家好!我叫__,来自__。

我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。

下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1、教材所处的地位和作用本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。

它是本册第二章统计的延伸,又是后面古典概型及几何概型的基础。

在整个教学中起到承上启下的作用。

同时也是新课改以来考查的热点之一。

2、教学的重点和难点重点:概率的加法公式及其应用;事件的关系与运算。

难点:互斥事件与对立事件的区别与联系二、教学目标分析1.知识与技能目标⑴了解随机事件间的基本关系与运算;⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。

2、过程与方法:⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;⑵通过学生自主探究,合作探究培养学生的动手探索的能力。

3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

三、教法分析采用实验观察、质疑启发、类比联想、探究归纳的教学方法。

四、教学过程分析1、创设情境,引入新课在掷骰子的试验中,我们可以定义许多事件,如:c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜H=﹛出现的点数为奇数﹜⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。

高中数学说课稿优秀9篇

高中数学说课稿优秀9篇

高中数学说课稿优秀9篇高中数学说课稿篇一一、背景分析1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

教学重点:充分条件、必要条件和充要条件三个概念的定义。

2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点。

根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解。

对于“B=A”,称A 是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。

教学关键:找出A、B,根据定义判断A=B与B=A是否成立。

教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。

二、教学目标设计:(一)知识目标:1、正确理解充分条件、必要条件、充要条件三个概念。

2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

(二)能力目标:1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。

(三)情感目标:1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。

高中数学优秀一等奖说课稿(精选11篇)

高中数学优秀一等奖说课稿(精选11篇)

高中数学优秀一等奖说课稿高中数学优秀一等奖说课稿(精选11篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。

那么应当如何写说课稿呢?下面是小编帮大家整理的高中数学优秀一等奖说课稿(精选5篇),仅供参考,欢迎大家阅读。

高中数学优秀一等奖说课稿篇1一、教材分析:1、教材的地位与作用。

本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。

"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。

概率的概念比较抽象,概率的定义学生较难理解。

在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。

2、重点与难点。

重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

二、目的分析:知识与技能:掌握用频率预测概率和用列举法求概率方法。

过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

三、教法、学法分析:引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
高中数学优秀说课稿等差数列
等差数列(第一课时)的内容。

3.2本节课讲述的是人教版高一数学(上)§一、
二、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。


时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点三、
四、教法分析
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知
欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

五、精品文档.
精品文档
六、学法指导在引导分析
留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的
______ 。

(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递②45 35,15,25,增为5,
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。

由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。

强调:
①“从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√d=0.01
3. 0,0,0,0,0,0,…….; √d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
精品文档.
精品文档
其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。

给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。

通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。

整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
a2 - a1 =d 即:a2 =a1 +d
a3 –a2 =d 即:a3 =a2 +d = a1 +2d
a4 –a3 =d 即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:
an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
a2 –a1 =d
a3 –a2 =d
a4 –a3 =d
……
an –an-1=d
将这(n-1)个等式左右两边分别相加,就可以得到an–a1= (n-1) d即an= a1+(n-1) d (1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。

在迭加法的证明过程中,我采用启发式教学方法。

利用等差数列概念启发学生写出n-1个等式。

对照已归纳出的通项公式启发学生想出将n-1个等式相加。

证出通项公式。

在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想”的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,即an=2n-1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。

用函数的思想来研究数列,使数列的性质显现得更加清楚。

(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。


过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这精品文档.
精品文档
4个量之间的关系。

当其中的部分量已知时,可根据该公式求出另一部分量。

例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。

启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。

问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;
3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
(四)归纳小结(由学生总结这节课的收获)
1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式an= a1+(n-1) d会知三求一
3.用“数学建模”思想方法解决实际问题
(五)布置作业
必做题:课本P114 习题3.2第2,6 题
选做题:已知等差数列{an}的首项a1= -24,从第10项开始为正数,求公差d的取值范围。

(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

精品文档.。

相关文档
最新文档