电容式液位传感器课程设计 MINE

合集下载

26 汽车传感器与检测技术 电子教案:电容式液位传感器

26 汽车传感器与检测技术 电子教案:电容式液位传感器

姚科业,《图解汽车传感器识别检测拆装维修》,化学工业出版社,2018.03 一、概述电容式液位传感器常用作燃油、机油和冷却液液位的测量。

将电容式传感器放入燃油或冷却液中,随着燃油或冷却液液位高度h变化,引起电容电极间的电介质的不同并使电容变化,电容的变化引起了振荡周期的变化,通过计算振动频率,就能获知液面状态,如图1所示。

机油状态传感器是随时监控机油液位、机油品质、机油温度的传感器。

下面以大众机油状态传感器为例,说明其监测方法。

图1 电容式液位传感器的构造示意图二、功用电容式液位传感器的功用:1.检测液体的高度位置;2.作为仪表指示、警告的输入信号;3.测量液体的储液量。

三、原理机油状态传感器G1形电容器组成,安装于发动机油底壳上,该传感器由两个重叠安装的筒形电容器组成,如图2所示。

图2 构造原理示意图由图2可知,两根金属管作为电容器电极嵌套安装在电极之间,发动机机油作为电介质。

机油状态通过下面的传感器测得,作为电介质的机油因磨损碎屑不断增加以及添加剂的分解而使介电常数发生变化,相应的电容值将在传感器内的电子装置中被处理成数字信号,并作为发动机机油状态信息被传送给仪表电脑。

机油液位传感器在状态传感器的上部,他测量机油液位这一部分的电容值,该电容值会随着机油液位的变化而发生变化,并将由传感器电子装置处理成数字信号再送到仪表电脑。

四、案例图3 机油状态传感器电路图五、检测1.检测供给电源电压用数字式万用表对传感器1号端子进行工作电压检测。

用数字万用表直流20V档检测机油状态传感器1号端子,点火开关打开时,其电源端电压应是蓄电池电压。

2.检测搭铁线检测2号线与搭铁间电阻,正常值应为0Ω,否则说明搭铁不正常。

3.检测信号线参考电压检测2号线信号电压应在9.8-10.5V范围内。

在怠速时测量电压值应基本不变化。

4.查询故障码若机油液位传感器本身或者线路出现问题,会出现故障码。

5.波形检测运用示波器对机油状态传感器输出端的信号进行波形分析,可以进一步确定该传感器信号特征,该信号是一个脉冲矩形方波信号。

基于充放电原理的电容式液位传感器测量电路的设计

基于充放电原理的电容式液位传感器测量电路的设计

基于充放电原理的电容式液位传感器测量电路的设计电容式液位传感器是一种用于测量液体水平高度的传感器。

它基于充放电原理,通过测量电容器中电荷的变化量来确定液位高度。

在本文中,我们将介绍如何设计一种基于充放电原理的电容式液位传感器测量电路。

首先,我们需要了解电容器的基本原理。

电容器是由两个电极以及介质隔离层组成的设备。

当电容器两个电极上施加电压时,它们之间会形成电场。

电场越大,电容器电容就越高。

在液位传感器中,我们可以利用电容器的这种原理来测量液位高度。

具体来说,我们可以将电容器放在液体中,其中一个电极将是传感器底部,另一个电极将在液面上方。

因为液体的介电常数是已知的,我们可以使用液位高度来计算电容器的电容值。

测量电路分为两个部分:充电和放电。

在充电过程中,我们将电容器的一个电极接地,将另一个电极和一个恒定的电压源相连。

然后,我们使用一个计时器来计算电容器充电的时间。

充电时间取决于电容器的电容和施加的电压。

在放电过程中,我们断开电压源,并通过另一个计时器来计算电容器放电的时间。

电容器放电的时间取决于它的电容和接收器的输入阻抗。

通过测量充电和放电时间,我们可以计算电容器的电容值。

从而,我们就可以计算出液位的高度。

这是一个简单的电路,基本实现液位高度的测量,但在实际应用中,我们需要加以改进。

为了提高测量精度,我们需要使用更高分辨率的计时器以及更准确的电源。

我们也可以加入计算机或微控制器来读取和处理传感器的测量结果。

总之,基于充放电原理的电容式液位传感器是一种非常有用的测量设备。

只要我们合理设计传感器测量电路,利用计时器和恒定电源等工具,就可以实现准确测量液位高度,并在许多应用中得到应用。

完整版电容式传感器课程设计方案

完整版电容式传感器课程设计方案

引言硅压力传感器具有精度高、稳定性好等优点,在工业中广泛应用。

但是,由于硅材料本身的限制,使其无法用于高温和腐蚀等特殊环境中。

而陶瓷电容式压力传感器采用特殊陶瓷材料制作,具有抗腐蚀、耐高温等优点,弥补了硅压力传感器的上述缺点,可用于高温、腐蚀等特殊环境下。

现今,国内有大量的需求,但是还没有国内厂家能够生产。

因此,开发出一种实用的陶瓷压力传感器具有非常重要的现实意义。

陶瓷压力传感器通常采用多电容结构,在陶瓷膜片上同时烧结两个电容,一个作为参考电容,以消除温度对传感器输出的影响;另一个为测量电容,其变化量与传感器所受压力的变化量近似成正比,通过检测变化量就能得到传感器所受的压力。

沈阳大学课程设计- 1 -1 电容式传感器设计的目的与任务1.1电容式传感器设计的目的⑴巩固所学知识,加强对传感器原理的进一步理解;⑵理论与实际相结合,“学以致用”;⑶综合运用知识,培养独立设计能力;⑷着重掌握典型传感器的设计要点,方法与一般过程;⑸培养学生精密机械与测控电路的设计能力。

1.2电容式传感器设计的要求⑴设计时必须从实际出发,综合考虑实用性、经济性、安全性、先进性及操作维修方便。

如果可以用比较简单的方法实现要求,就不必过分强调先进性。

并非是越先进越好。

同样,在安全性、方便性要求较高的地方,应不惜多用一些元件或采用性能比较好的元件,不能单纯考虑简单、经济;⑵独立完成作业。

设计时可以收集、参考传感器同类资料,但必须深入理解,消化后再借鉴。

不能简单地抄袭;⑶在课程设计中,要随时复习传感器的工作原理。

积极思考。

不能直接向老师索要答案和图纸。

⑷设计传感器测头机械机构方案,绘制总装图(CAD为工具),编写传感器设计说明书。

沈阳大学课程设计- 2 -沈阳大学课程设计 - 3 -2 传感器设计方案的选择设计一台电容式传感器 设计要求如下: ⑴量程范围:0~25Mpa ⑵工作电压 5V ⑶相应时间 <1ms ⑷稳定性 <0.2% ⑸温度范围 -40~125℃ ⑹抗绝缘性 >2KV ⑺相对误差 1% ⑻张力 S=100×106N/m一种测量介质介电常数变化的电容式传感器结构如图。

完整版电容式传感器课程设计方案

完整版电容式传感器课程设计方案

完整版电容式传感器课程设计方案一、课程概述本课程设计旨在介绍电容式传感器的原理、特点以及应用,通过实践操作和实验演示,培养学生的实际应用能力和创新思维能力。

课程设计涵盖了传感器的基础知识、电容式传感器的原理和构造、电容测量电路以及电容式传感器的应用场景等内容。

二、课程目标1.掌握电容式传感器的基本原理和构造;2.熟悉电容测量电路的设计与实现;3.理解电容式传感器在不同领域的应用;4.能够进行电容式传感器的实验操作和数据分析。

三、教学内容和方法1.电容式传感器的基础知识(4学时)-电容的基本概念和计算方法;-电容式传感器的分类和特点;-电容式传感器的工作原理。

2.电容式传感器的原理和构造(6学时)-电容式传感器的工作原理和应用范围;-常见的电容式传感器类型及其特点;-电容式传感器的结构和工作原理。

3.电容测量电路的设计(8学时)-常见的电容测量电路的设计原理;-电阻-电容(RC)电路的设计和实现;-桥式电阻-电容(RC)电路的设计和实现;-电容式传感器的输出信号处理和放大。

4.电容式传感器的应用(6学时)-温度测量与控制;-液位检测与控制;-压力传感与控制;-人机交互与触控技术。

5.实验操作和应用案例(6学时)-实验操作:电容的测量和计算;-实验操作:电容式传感器的特性测量;-应用案例:温度测量与控制;-应用案例:液位检测与控制。

四、教学评价1.实验报告和作业:根据实验操作和应用案例,学生需提交实验报告和作业,考察其对电容式传感器的理解和应用能力。

2.课堂讨论和展示:鼓励学生在课堂上参与讨论,展示自己对电容式传感器的理解和实验操作的结果。

3.课程项目:以小组形式设计一个电容式传感器的应用项目,要求学生能够设计并实现一个基于电容式传感器的控制系统,考察学生的创新思维和工程实践能力。

五、教材参考1.《传感器技术与应用》(第3版),明山,高等教育出版社。

2.《电容式传感器技术与应用》(第2版),姚文奇,机械工业出版社。

电容式液位传感器课程设计 1

电容式液位传感器课程设计 1

电容式智能液位仪目录目录摘要 (2)1.导言 (3)2.传感器 (4)2.1理想的电容式传感器 (4)2.2电路模型 (5)2.3传感器特性 (6)2.4传感器结构 (7)3.硬件电路设计 (11)3.1硬件电路划分 (11)3.2单片机的选用 (11)3.3直流充放电式电容测量电路设计 (13)3.4信号调理电路设计 (14)3.5单片机电路及模数转化电路设计 (15)3.6通信电路设计 (16)4.系统软件设计 (18)4.1编程环境与编程语言 (18)4.2软件总体设计 (18)5.电容测量电路的实验结果和分析 (19)5.1实验过程及结果 (19)5.2实验分析 (21)参考文献 (22)摘要设计一种多功能智能化液位检测装置,采用ATmega8作为硬件电路核心,以圆柱形电容探头为液位检测传感器,利用电容频率转换原理将电容变化为频率变化,利用单片机检测频率,软件计算液位高度。

本装置具有机械去液面波动,用软件进行温度修正、线性校正、用户自校正,通信和多液体选择等功能。

本文主要创新之处是提出一种适合于波动液面液位检测的智能液位仪,具有温度补偿、用户自校正和通信等功能。

本文设计了高度为100cm的柱形电容液位检测传感器,电容器具有结构简单,电路实现容易,利用555振荡电路实现了电容到频率的转换,利用程序实现频率到高度转换,理论正确可靠,推算过程合理,利用软件分段修正减小了线性误差。

在电容的两端装有液位缓冲器,采用机械的方式减小液面波动。

由实验测试可知,本液位检测装置性能稳定,检测可靠,测量精度达到1cm, 分辨率可0.1cm,达到车载式喷雾机液位检测的要求。

利用此方案可根据需要设计各种量程的液位检测装置,适用性较广。

·2·1.导言河流、水库或容器的液位可以通过测量浸在液体内两电极间的电容而进行监控。

使用电容式传感器进行液位测量,具有以下优点:低成本(即对于传感器有比较成熟的技术)、低功耗、高线性度、对应用场合的几何形状有较高的适应性。

传感器课程设计基于电容压力传感器的液位测量系统设计

传感器课程设计基于电容压力传感器的液位测量系统设计

目录一、项目叙述 (1)二、电容式液位传感器的结构与测量原理 (1)2.1电容式液位传感器的结构 (1)2.2电容式液位传感器的工作原理 (2)三、测量电路设计 (3)3.1测量电路 (3)3.2整流电路 (6)3.3放大电路 (7)四、误差分析 (8)4.1机械结构参数的影响 (8)4.2测量电路的影响 (8)五、结论 (8)六、明细表 (9)d AC ε=基于电容压力传感器的液位测量系统设计一、项目叙述在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行精确测量,继而进行自动调节、智能控制使生产结果更趋完善。

二、电容式液位传感器的结构与测量原理2.1电容式液位传感器的结构电容式传感器是把被测的非电量转换为自身电容量变化的一种传感器。

这些被测量是用于改变组成电容器的可变参数而实现其转换的。

电容式传感器的基本工作原理可以用最普通的平行极板电容器来说明。

两块相互平行的金属极板,当不考虑其边缘效应(两个极板边缘处的电力线分布不均匀引起电容量的变化)时,其电容量为:(1)公式中 ε—— 电容极板间介质的介电常数;A ——两平行板所覆盖的面积;d ——两平行板之间的距离。

因此只要改变其中的一个参数,就会引起电容量的变化,根据这一电容结构关系可构成变极距电容传感器,变面积型电容传感器和变介质型传感器、用于测量液位的电容式传感器。

是利用容器中的物料为恒定的介电常数时,极间电容正比于液位的原理而构成的,并应用电子学方法测量电容值,从而探测液面位置信息。

特点是液位测量只与电容结构有关,与物料的密度无关 根据这一特点,可采用圆筒形结构构成变面积型的液位传感器,这种传感器结构的探头是由这两个电极极板构成,通过气、液或料相介质的高度不同引起极间电容改变来探测物面位置的。

其结构十分简单轻巧,便于安装、维护与使用。

电容式液位传感器的电极结构如图1所示。

图1适用于导电容器中的绝缘液体的液位测量,且容器为立式圆筒形,容器壁为一极,沿轴线插入裸金属棒作为另一极电极,其间构成的电容 C X 与液位成比例,也可悬挂带重锤的软导线作⎪⎭⎫ ⎝⎛H =d D Cln 2122πε()⎪⎭⎫ ⎝⎛-=d D H H C ln 21011πε()101120ln 2H C d D C K +=H -⎪⎭⎫ ⎝⎛+εεπ()()[]1120112101ln 2ln 2ln 2H -+H ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛H -H εεεππεπεd D d D H d D 21C C C X +=为电极。

电容式液位传感器的设计

电容式液位传感器的设计

电容式液位传感器的设计李一峰;吴振陆;樊海红【摘要】设计了一种基于单片机的电容式液位传感器,主要由单片机系统、555定时器、液晶显示屏组成。

单片机作为主要控制的部分,控制系统所有的部分,接收555定时器方波信号并读取出其频率,将频率转换成液位高度,显示到LCD1602液晶显示屏幕上,软件计算液位高度,减小了电容与频率转换的线性误差,最终实现算法的设计。

%Capacitance type liquid level sensor based on single chipwas designed. The system consists of single-chip microcomputer system, 555 timer, LCD screen. Single chip microcomputer, as the main control part, control all part of the system, receive a 555 timer square wave signal and read out the frequencywhich is transformedinto the height of liquid level and is displayed on the LCD1602 liquid crystal screen.The liquid level height is calculated by software, by reducing the linearity error of capacitance and frequency conversion,and finally the algorithm is designed.【期刊名称】《广东海洋大学学报》【年(卷),期】2015(000)001【总页数】5页(P90-94)【关键词】电容式液位传感器;555定时器;多谐振荡电路;频率转换【作者】李一峰;吴振陆;樊海红【作者单位】广东海洋大学信息学院,广东湛江524088;广东海洋大学信息学院,广东湛江 524088;广东海洋大学信息学院,广东湛江 524088【正文语种】中文【中图分类】TP212在石油化工、水利水电、农田灌溉、环境监测以及食品加工等众多行业,液位是一个重要的技术参数。

电容式液位仪设计

电容式液位仪设计

电容式液位仪设计摘要:该液位计利用不同介质具有不同的介电常数的特性,使液面高度变化改变电容大小,建立线性方程,使得能通过检测电容大小检验出液面高度。

本液位计一共分六个局部,由RC文氏震荡电路,衰减电路,微分电路,滤波电路,整流电路和单片机检测显示局部组成。

其中电容板与运放组成微分电路,电容的大小与电路的输出大小呈线性。

单片机通过检测整流后的输出,得出页面高度。

此题的重点是设计合理的滤波电路,难点是如何提高精度。

2.方案论证本设计主要任务是测量平行探针的电容。

并探索电容的容量与液体高度的关系。

电容式传感器检测电路主要有交流半桥式检测电路、充放电检测电路、基于V/T变换的电容测量电路,交流锁相放大电容测量电路,分别论证如下。

方案1:交流半桥式检测电路AC电桥电容测量电路如图2所示,其原理是将被测电容在一个桥臂,可调的参考阻抗放在相邻的一个桥臂,二桥臂分别接到频率一样/幅值一样的信号源上,调节参考阻抗使桥路平衡,那么被测桥臂中的阻抗与参与阻抗共轭相等。

图2 交流半桥式检测电路这种电路的主要优点是:精度高,适合作精细电容测量,可以做到高信噪比。

方案2:充放电检测电路充/放电电容测量电路根本原理如图3所示。

由CMOS开关S1,将未知电容Cx充电至Ve,再由第二个CMOS开关S2放电至电荷检测器。

在一个信号充/放电周期从Cx传输到检波器的电荷量Q=Ve·Cx,在时钟脉冲控制下,充/放电过程以频率f=1/T重复进展,因而平均电流Im=Ve·Cx·f,该电流被转换成电压并被平滑,最后给出一个直流输出电压Vo=R f·Im=Rf·Ve·Cx·f(Rf为检波器的反应电阻) 。

图3 充放电检测电路方案3 基于V/T变换的电容测量电路V/T变换的电容测量电路根本原理如下列图所示。

图4 电容检测电路电流源Io为4DH型精细恒流管,它与电容C通过电子开关K串联构成闭合回路,电容C的两端连接到电压比拟器P的输入端,测量过程如下:当K1闭合时,基准电压给电容充电至Uc=Us,然后K1断开,K2闭合,电容在电流源的作用下放电,单片机的部计数器同时开场工作。

电容传感器课程设计

电容传感器课程设计

电容传感器课程设计一、课程目标知识目标:1. 让学生理解电容传感器的定义、工作原理及其在自动控制技术中的应用。

2. 掌握电容传感器的电路构成、功能特点,能够解释不同类型的电容传感器的工作方式及其适用场合。

3. 了解电容传感器的技术参数,能够进行简单的性能评估。

技能目标:1. 培养学生能够运用所学知识,设计简单的电容传感器电路,进行数据的采集和处理。

2. 能够通过实验操作,分析电容传感器的响应特性,并解决实际应用中的一般问题。

3. 提高学生利用现代工具和技术文档进行信息检索、方案设计的能力。

情感态度价值观目标:1. 培养学生对传感器技术学习的兴趣,激发其探索精神和创新意识。

2. 增强学生的团队合作意识,通过小组合作完成项目任务,培养协同解决问题的能力。

3. 强化学生的工程伦理观念,认识到科学技术在社会发展中的作用和责任,培养环保和可持续发展意识。

本课程设计针对高中年级学生,结合物理学科的教学实际,以电容传感器为主题,旨在通过理论与实践相结合的教学方法,使学生在掌握电容传感器基本知识的同时,提高实践操作技能,并在情感态度上得到正面引导。

课程目标具体、明确,便于学生和教师在教学过程中进行有效评估。

二、教学内容1. 电容传感器基础知识- 传感器定义、分类及原理- 电容传感器的工作原理及其数学模型- 电容传感器的电路组成及其功能2. 电容传感器的类型与特性- 不同类型电容传感器(如变面积、变介电常数、变距离等)的构造与特点- 电容传感器的技术参数(如灵敏度、分辨率、线性度等)分析- 电容传感器的应用场合及其优势3. 电容传感器的应用实例- 实际案例介绍,如触摸屏、物位检测、湿度检测等- 电容传感器在自动控制、物联网等领域的应用4. 电容传感器实验操作- 设计简单的电容传感器电路,进行数据采集与处理- 分析电容传感器的响应特性,探讨影响测量精度的因素- 实验报告撰写与成果分享5. 教学内容进度安排- 第一课时:电容传感器基础知识学习- 第二课时:电容传感器类型与特性分析- 第三课时:电容传感器应用实例探讨- 第四课时:实验操作与成果交流教学内容基于课程目标,结合课本相关章节,确保科学性和系统性。

电容式液位传感器设计

电容式液位传感器设计

电容式液位传感器设计
1.选择合适的电极材料:电极是电容式液位传感器的核心部件,其材
料的选择与电容值的变化密切相关。

一般情况下,电极材料应具有良好的
耐腐蚀性能,并且能够与被测液体产生较大的电容值变化。

常用的电极材
料包括不锈钢、铜、铝等。

2.设计合理的电容结构:电容结构的设计对电容式液位传感器的灵敏
度和线性度有着重要的影响。

一般情况下,可以采用平行板电容结构,即
在容器内侧壁上固定一个金属电极,并将另一个金属电极悬挂于容器内的
液面上方。

当液位变化时,悬挂电极与液面之间的距离发生变化,从而改
变了电容值。

3.选择合适的信号处理电路:电容式液位传感器输出的是电容值的变化,需要通过信号处理电路将其转换为可用的电压或电流信号。

常用的信
号处理电路包括阻抗变换电路、相关计算电路等。

信号处理电路的设计应
充分考虑灵敏度、线性度和稳定性等因素。

4.考虑环境因素:电容式液位传感器在使用过程中会受到温度、压力、湿度等环境因素的影响。

设计时需要考虑传感器的工作温度范围、防护等级、防爆性能等,以保证传感器在恶劣环境下的稳定性和可靠性。

5.校准和调试:电容式液位传感器在安装和使用前需要进行校准和调试,以确保测量的准确性和可靠性。

校准时可以使用标准液位和测定值进
行比较,根据比较结果进行调整。

总之,电容式液位传感器的设计需要综合考虑材料选择、电容结构设计、信号处理电路设计、环境因素等多个方面的因素。

通过合理设计和严
格调试,可以实现对液位的准确测量。

电容式位移传感器课程设计

电容式位移传感器课程设计

摘要差动式电容传感器灵敏度高、非线性误差小,同时还能减小静电引力给测量带来的影响,并能有效的改善高温等环境影响造成的误差,因而在许多测量场合中被广泛应用。

把被测的机械量,如位移、压力等转换为电容量变化的传感器。

它的敏感部分就是具有可变参数的电容器。

本设计采用变压器电桥测试电路将电容变化转化为电压变化,电容式传感器的电容值十分微小,必须借助信号调理电路,将微小电容的变化转换成与其成正比的电压、电流或频率的变化,这样才可以显示、记录以及传输出。

因此,本设计中采用了运算放大器,差分脉冲调宽型电路以及低通滤波器等电路设计,并对这些单元电路进行了原理分析,通过参数的确定,实现位移向电压的转变。

在本次设计中还涉及了寄生电容的消除,以及测量过程中的误差分析,从而保证了测量的精度和准确度。

一、设计分析本文主要是设计差动变面积式电容位移传感器,以及测量电路的设计。

利用电容式传感器非接触测量的特性,测量微小位移的变化,由于位移的变化引起电容的变化,将电容的变化量转换成电压的变化,由电压的变化测出位移的变化量。

本设计主要目的是如何利用设计的差动变面积式位移传感器与转换原件,尽量消除外界干扰引起的误差,高精度测出位移的变化量。

二、设计思路电容式传感器的电容值十分微小,必须借助信号调理电路,将微小电容的变化转换成与其成正比的电压、电流或频率的变化,这样才可以显示、记录以及传输出。

其总体原理框图如图:三、设计电路3.1差动变面积电容传感器由物理学可知,两个平行金属极板组成的电容器,如果不考虑边缘效应,其电容为C=εS d式中:ε—两个极板间介质的介电常数;S—两个极板相对有效面积;d—两个极板间的距离。

由上式可知,改变电容C的方法有三种,其一为改变介质的介电常数ε;其二为改变形成电容的有效面积S;其三为改变两个极板间的距离d。

从而得到电参数的输出为电容值的增量∆C,这就组成了电容式传感器。

极距与电容成反比,不适用与测位移,介电常数与电容呈线性相关,但介电常数不能用于测位移,面积与电容成线性相关,利用改变位移来改变面积,从而改变电容。

课程设计(论文)-水位传感器自动测试系统的设计模板

课程设计(论文)-水位传感器自动测试系统的设计模板

水位传感器自动测试系统的设计1 水位传感器的工作原理:水位传感器原理图如图1所示,主要利用电容传感器原理,其电容极板间的距离变化引起电容值的变化而达到水位测试的目的。

极板下边所连空心小球所受浮力的大小与极板的所受重力应满足应满足的条件如公式①,极板间的距离x代表着水位的高低,x与电容值应满足的公式如式②。

图1测试简易图m g≤ρgv ①C=ε A/x ②2测试方案:测试方案流程图如图3所示:由此流程图可以知道是利用电容传感器变化的电容值和高频震荡器电容并联,改变了频率,再由鉴频把它转化成电压信号,在进行放大输出,输出后的电压波形图如图3:图⑴,调频震荡:调频调制原理设载波y(t)=Acos(ω0t),这里角频率ω0为常量。

如果振幅A为常数。

让载波瞬时角频率ω(t)随调制信号x(t)做线性变化,则有:ω(t)=ω0+kx(t)=dθ(t)/dt式中的k为比例因子。

于是调频信号的总相角可以表示为:Θ(t)=∫ω(t)dt=ω0t+k∫x(t)dt+θ0频率调制一般用振荡电路来实现,如图4所示LC振荡电路,变容二极管调制器(电容传感器),组成的电路。

LC振荡电路该电路常用于电容,涡流,电感等传感器作测量电路。

将电容或电感作为调谐参数,则电路的震荡频率为:f0=1/2π√LC0 ③若电容C0的变化量为▲C,则上式变为:f=1/2π√LC0(1+▲C/C0)=f0/√1+▲C/C0 ④将上式按泰勒级数展开并忽略高阶项,得f≈f0(1-▲C/2C0)=f0-▲f ⑤式中:▲f=f0▲C/2C0 ⑥将式①代入式⑥可以得到:▲f= f0εxA/2 C0 ⑦有以上分析可以知道LC振荡电路的振荡频率f与调谐参数呈线性变化关系,亦即振荡频率受控于被测物理量(这里指C0)。

这种被测物理量转化为振荡频率的过程称为直接调频测量。

图4⑵鉴频电路:对调频波的解调也称为鉴频,鉴频的原理是将调频信号频率的变化相应的复原为原来电压幅值的变化。

电容压力传感器液位测量系统设计

电容压力传感器液位测量系统设计

基于电容压力传感器的液位测量系统设计姓名:张宜静班级:电气自动化二摘要:电容式压力传感器是以各种类型的电容器作为敏感元件,将被测压力的变化转换为电容量变化的一种传感器,具有结构简单、高分辨率、可非接触测量,并能在高温、辐射和强烈震动等恶劣条件下工作的独特优点。

随着集成电路技术和计算机技术的发展,促使它扬长避短,成为一种很有发展前途的传感器。

一种测量水位用的电容式传感装置。

电容式传感体将电信号输入线性电容检测电路,促使其方波发生电路与单稳态电路输出脉冲送入与门电路进行复合,从而使与门输出的脉宽变化线性地反映传感体浸入水中后增加的所测量可变电容的变化。

而线性修正电路则弥补检测电路输出所造成的非线性误差。

本实用新型线性好,性能指标优良,线路简便。

关键词:传感器、压力、电容、测量引言:传感器的研究始于二十世纪三十年代,它是研究非电量信息与电量间转换的一门跨学科边缘技术科学。

早期传感器是模拟式传感器,现在常称为传统传感器。

随着高性能计算机测控系统的发展,当系统对传感器提出数字化、智能化要求后,传统传感器不再与系统向适应。

控制系统要求传感器输出数字信号,并具备较强的信息处理和自我管理能力,以实现信息的采集与信息的预处理,减轻控制计算机的数据处理负担和提高整个测控系统的可靠性。

电容传感器的基本理想公式为:改变A 、d 、ε 三个参量中的任意一个量,均可使平板电容的电容量C 改变,固定三个参量中的两个,可以做成三种类型的电容传感器。

1 液位电容式传感器测量原理:导电液体电容式传感器主要利用传感器两电极的覆盖面积随被测液体液位的变化而变化,从而引起电容量变化的关系进行液位测量。

图1为传感器部分结构原理图:2 液位测量系统设计:该系统是由数据测量电路和单片机检测监控系统两个部分组成。

首先,被测电路由电容式传感器与二极管环形桥路组成,如图2所示0 r A A C d dεεε==图1当液体处在圆柱形电极与圆柱形容器之间,由于液面高度不同,引起介电常数变化,导致电容量的变化。

电容式液位计课程设计

电容式液位计课程设计

电容式液位计 课程设计一、课程目标知识目标:1. 理解电容式液位计的工作原理与构造,掌握其测量液位的物理基础。

2. 学会分析电容式液位计的电路图,并能解释各部分的功能和相互关系。

3. 掌握影响电容式液位计测量精度的因素,能够列举并解释至少三种主要影响因素。

技能目标:1. 能够运用所学的知识,正确操作电容式液位计进行液位的测量。

2. 通过实践,学会对电容式液位计进行简单的故障诊断和校准。

3. 能够设计简单的液位控制电路,并运用电容式液位计作为传感部件。

情感态度价值观目标:1. 培养学生对物理传感器在工业控制中应用的兴趣,激发学生探索工程技术的热情。

2. 增强学生的团队合作意识,通过小组合作完成实验和项目设计。

3. 培养学生严谨的科学态度,认识到精确测量在工业生产中的重要性。

分析:本课程针对高中年级学生,他们已具备基础的物理知识和一定的电路原理理解能力。

课程性质为实践性与理论性相结合,要求学生在理解电容式液位计理论知识的基础上,通过实践活动加深理解,并将知识应用于解决实际问题。

课程目标旨在通过理论与实践的结合,提升学生的知识应用能力和实践操作技能,同时培养对物理学科的兴趣和正面价值观。

通过具体的学习成果分解,教师可依据目标进行教学设计和评估学生的学习效果。

二、教学内容1. 理论知识:- 电容式液位计的工作原理与物理基础。

- 电容式液位计的电路分析与各部分功能。

- 影响测量精度的因素,包括介质特性、传感器间距、温度等。

- 传感器在工业控制中的应用案例分析。

2. 实践操作:- 电容式液位计的组装与操作流程。

- 液位测量实验,包括不同介质下的测量对比。

- 简单故障的诊断与校准方法。

- 设计并实现一个简单的液位控制电路。

3. 教学大纲安排:- 章节一:电容式液位计的基础知识(1课时)- 章节二:电容式液位计的电路分析与功能(1课时)- 章节三:影响测量精度的因素及解决方案(1课时)- 章节四:实践操作与实验(2课时)- 章节五:液位控制电路设计与实现(2课时)4. 教材关联:- 教科书第三章:传感器及其应用。

传感器课程设计

传感器课程设计

传感器课程设计题目:智能液位计目录摘要 (2)1绪论 (3)1.1引言 (3)1.2电容式液位测量技术的发展 (4)1.2.1电容式液位测量现状 (4)1.2.2电容式液位测量存在的问题 (5)1.2.3电容式液位传感器的发展趋势 (5)2本设计的电容式液位测量方法 (6)2.1测量原理及实现思路 (6)2.2液体的物理参数对液位测量的影响 (8)2.3极板设计 (9)2.4液位测量系统的基本构成 (11)3硬件设计 (12)3.1电源电路设计 (12)3.2电容测量电路设计 (13)3.3放大调零电路设计 (14)3.4 A/D转换电路设计 (16)4误差分析 (17)4.1电容测量误差对精度的影响 (17)4.2影响液位测量的主要因素 (18)5总结 (19)参考文献 (20)摘要。

本设计采用一种与介质无关的电容式液位测量方法,解决了传统电容测量与被测介质有关的技术难题。

它可以应用于动态液位测量,尤其是在被测液体本身介质常数和液位,随时间和环境等因素容易发生变化的场合,如车用燃油油位的计量,从而向当今高精度、数字化、集成化、智能化的科学技术全面发展更迈进了一步,对满足石油化工等液位检测领域的迫切需求具有重大的理论和应用价值,前景十分广阔。

消除电容式液位测量方法中介质介电常数的因素是关键,设计符合测量方法的电容极板,通过电容电压转换电路处理为直流电压信号,由数据采集卡采集后送入单片机或计算机,最终实现算法的设计。

其中电容极板设计时需注意消除和减小边缘效应和寄生电容的影响,同时要保证平板电容良好的绝缘性能和抗外界干扰性。

最后在整体设计和理论分析的基础之上,从硬件各部分进行具体的设计,包括硬件电路和各环节的信号量匹配等。

通过理论计算和数据分析,验证了此液位仪具有良好的性能,达到了要求的技术指标,同时指出了需要改进和完善的地方。

1绪论1.1引言在各种化工、食品、石油仓储等工业生产过程中经常要对存储在储仓罐和其它容器中的生产原料及产品液体或固体的体积或高度进行测量和控制,以确保生产的正常进行。

电容式液位计

电容式液位计

课程设计有关写作细则1. 书写格式课程设计文本要按有关规定的格式用A4纸打印,正文中的任何部分不得写到文稿纸边框以外,文稿纸不得随意接长或截短。

汉字必须使用国家公布的规范字。

页面设置:上2.5,下2.5,左2.5,右2;页眉1.5,页脚1.75。

采用固定行距为20 磅/1.2倍行距。

西文、数字等符号均采用Times New Roman体字。

目录:"目录"用小2号黑体字、居中;目录内容最少列出第一级标题和第二级标题;前者用4号黑体字,后者用4号宋体字,第三级标题用4号楷体字,居左顶格、单独占行,每一级标题后应标明起始页码。

正文:用小4号宋体字;参考文献正文用5号宋体字;图表字号采用5号宋体字。

2. 标点符号课程设计中的标点符号应按新闻出版署公布的"标点符号用法"使用。

特别注意中文下的格式,如逗号,而不是,3. 公式公式应居中书写,公式的编号用圆括号括起放在公式右边行末,公式和编号之间不加虚线。

4. 表格每个表格应有自己的表序和表题,表序和表题应写在表格上放正中,表序后空一格书写表题。

表格允许下页接写,表题可省略,表头应重复写,并在右上方写"续表××"。

表题用5号黑体字,表格内容用5号字体。

表格位于正文中引用该表格字段的后面。

5. 插图毕业设计的插图必须精心制作,不得徒手画,照片图应清晰,线条要匀称,图面要整洁美观。

每幅插图应有图序和图题,图序和图题应放在图位下方居中处。

图题用5号黑体字,图内用5号字体。

插图位于正文中引用该插图字段的后面。

6. 参考文献参考文献是毕业设计中引用文献出处的目录表。

参考文献一律放在文后,书写格式要按国家标准GB7714-87规定。

a. 专著、论文集、学位论文、报告[序号] 著者. 文献题名[文献类型标识]. 出版地:出版者,出版年. 起止页码(任选).[1] 刘国钧,陈绍业,王凤翥. 图书馆目录[M]. 北京:高等教育出版社,1957. 15-18.[2] 辛希孟. 信息技术与信息服务国际研讨会论文集:A集[C]. 北京:中国社会科学出版社,1994.[3] 张筑生. 微分半动力系统的不变集[D]. 北京:北京大学数学系数学研究所,1983.[4] 冯西桥. 核反应堆压力管道与压力容器的LBB分析[R]. 北京:清华大学核能技术设计研究院,1997.b. 期刊文章[序号] 著者. 文献题名[J]. 刊名,年,卷(期):起止页码.[5] 何龄修. 读顾城《南明史》[J]. 中国史研究,1998,(3):167-173.[6] 金显贺,王昌长,王忠东,等. 一种用于在线检测局部放电的数字滤波技术[J].清华大学学报(自然科学版),1993,33(4):62-67.c. 电子文献[序号] 著者. 电子文献题名[文献类型标识/载体类型标识]. 电子文献的出处或可获得地址,发表或更新日期/引用日期(任选).[7] 郭路. XML数据传输的安全加密[EB/OL]. /developerWorks/cn/xml/xmlb2b/index5.shtml, 2001-06/2001-10-04.注1:参考文献类型对于其他未说明的文献类型,建议采用单字母“Z”。

电容式导电液体液位传感器

电容式导电液体液位传感器
.
传感器课程设计说明书
电容式导电液体液位传感器
Capacitive conductive liquid level sensor
学院名称: 机械工程学院 专业班级: 学生姓名: 学生学号: 指导教师姓名: 指导教师职称: 教 授
2012 年 1 月
可编辑文本
.
电容式导电液体液位传感器
专业班级:**** 学生姓名:**** 指导老师:**** 职称:****
本设计采用一种简单方便的电容式液位测量方法,电容式传感器是将被测非 电量的变化转化为电容变化量的一种传感器,它具有结构简单、分辨力高、可实 现非接触测量,并能在高温、辐射和强烈震动等恶劣条件下工作等优点,是很有 发展前途的一种传感器 。
本电容式液位测量设计方式是用等径的长直圆筒容器,液位的高低正比于导 电液体与测杆中导电金属铜之间电容的大小,通过测量电路的转换,就可以很方 便地测量出液面的位速有效优质的生产,经常需要
对液位进行测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量
法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自 动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法 取代。目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、 电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构 简单,是间接测量方法中最常用的方法之一。
此课程设计的目的是为了熟练掌握电容传感器的基本知识和各种测量电路 的原理运用;基本掌握测量液位方法的基本思路和方法;能够利用所学的基本知 识和技能,解决简单的传感器测量问题;培养综合利用传感器进行测量设计的能 力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要................................. - 2 - 引言................................. - 3 - 1设计方案 ............................. - 4 -1.1设计原理 ........................ - 4 -1.2系统框图 ........................ - 4 - 2传感器原理 ........................... - 6 -2.1传感器简述 ...................... - 6 -2.2电容式液位计..................... - 7 -2.3传感器的组成..................... - 9 -2.4测量原理 ........................ - 9 - 3电容测量电路设计 .................... - 11 -3.1测量电路 ....................... - 11 - 4电信号放大电路设计................... - 17 -4.1整流电路 ....................... - 17 -4.2放大电路 ....................... - 17 -5 AD转换电路及与单片机接口........... - 18 - 6误差分析........................ - 21 -6.1误差来源................... - 21 -6.2影响液位测量的主要因素........ - 21 - 7总结 ................................ - 22 - 参考文献........................... - 24 -摘要在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行精确测量,继而进行自动调节、智能控制使生产结果更趋完善。

通常进行液位测量的方法有二十多种,分为直接法和间接法。

其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。

本设计采用电容式传感器的原理、电容电压转换电路、精确测量电压幅度的测量法,及利用DS1820 测量温度和用单片机进行温度补偿的方法。

设计并制作了圆柱形电容器,利用二极管T型网络电路将容量变化转换成电压的变化,并利用单片机进行测量,通过软件计算液位高度,减小了电容与电压转换的线性误差,具有温度软件补偿功能。

通过实验测试,该装置的测量精度优于1cm。

引言液位检测在许多控制领域已较为普遍,各种类型的液位检测传感器较多,按原理分有浮子式、压力式、超声波式、吹气式等。

各种方式都根据其需要设计完成,其结构、量程和精度适用于各自不同的场合,大多结构较为复杂,制造成本偏高;市面上也有现成的液位计,有投入式、浮球式、弹簧式等,多数成品价格惊人。

以上液位计多数输出为模拟量电流或电压,有些为机械指针读数,不能用于远程监视;普遍适用于静止液面,在波动液面易引起读数的波动;也有用电容法测液位的系统,此法是一种简单易行的方案。

本文利用圆柱形电容器原理,结合单片机设计出一种智能液位检测装置。

1设计方案1.1设计原理本设计采用筒式电容传感器采集液位的高度。

主要利用在柱形电容器的极板之间,充以不同高度的介质时,电容量的大小也会有所不同。

从而引起对应电容量变化的关系进行液位测量。

由于从传感器得出的电压一般在0~30mv之间,太小不易测量,所以要通过放大电路进行放大。

从放大电路出来的是模拟量,因此送入ADC0809转换成数字量,ADC0809连接于单片机,把信号送入单片机。

显示电路连接于单片机用于显示水位的高度。

该显示接口用一片MC14499和单片机连接以驱动数码管。

1.2系统框图被测物理量:主要是指非电的物理量,在这里为水位。

传感器:将输入的物理量转换成相应的电信号输出,实现非电量到电量的变换。

传感器的精度直接影响到整个系统的性能,所以是系统中一个重要的部件。

放大,整形,滤波:传感器的输出信号一般不适合直接去转换数字量,通常要进行放大,滤波等环节的预处理来完成。

A/D转换器:实现将模拟量转换成数字量,常用的是并行比较型、逐次逼近式、积分式等。

在此用到逐次逼近式。

单片机:目前的数据采集系统功能和性能日趋完善,因此主控部分一般都采用单片机。

显示设备:在此用到8段数码管。

控制设备:控制电动机的运行或关闭。

2传感器原理2.1传感器简述电容式液位传感器系统; 它利用被测体的介电常数不同,使电容的大小也不相同,通过传感器将液位高度变化转换成相应的电容量变化,再通过测量电路转化成电压脉冲宽度变化, 再由单片机进行测量并转换成相应的液位高度进行显示,该系统对液位深度具有测量、显示与设定功能, 并具有结构简单、成本低廉、性能稳定等优点。

2.2电容式液位计1.测量原理在柱形电容器的极板之间,充以不同高度的介质时,电容量的大小也会有所不同。

因此,可通过测量电容量的变化来检测液位。

图(a)是由两个同轴圆筒极板组成的电容器,在两圆筒之间充以介电常数为ε0的介质时,则两圆筒间的电容量表达式为式中L---两极板相互遮盖部分的长度;d,D---圆筒形内电极的外径和外电极的内径;ε0---两电极间介质的介电常数。

所以,当D和d一定时,电容量C的大小与极板的长度L和介质的介电常数的ε0乘机成比例。

这样,将电容传感器(探头)插入被检测物料中,电极浸入物料中的深度随物位高低变化,必然引起电容量的变化,从而可检测出物位。

2.3传感器的组成图3-1-2 为传感器部分的结构原理图。

它主要是由细长的不锈钢管(半径为R1 ) 、同轴绝缘导线(半径为R0 ) 以及其被测液体共同构成的金属圆柱形电容器构成。

该传感器主要利用其两电极的覆盖面积随被测液体液位的变化而变化, 从而引起对应电容量变化的关系进行液位测量。

2.4测量原理由图(a)可知, 当可测量液位H = 0 时, 不锈钢管与同轴绝缘导线构成的金属圆柱形电容器之间存在电容C0 , 根据文献得到电容量为:(1)(1)式中, C0 为电容量, 单位为F ; ε0 为容器内气体的等效介电常数,单位为F/ m; L 为液位最大高度; R1 为不锈钢管半径;R0 为绝缘导线半径, 单位为m。

当可测量液位为H 时, 不锈钢管与同轴绝缘电线之间存在电容CH :(2)(2)式中, ε为容器内气体的等效介电常数, 单位为F/ m。

因此, 当传感器内液位由零增加到H 时, 其电容的变化量ΔC 可由式(1) 和式(2) 得(3)由式(3)式可知, 参数ε0 , ε, R1 , R0 都是定值。

所以电容的变化量ΔC 与液位变化量H 呈近似线性关系。

因为参数ε0 , ε, R1 , R0 , L 都是定值, 由式(2) 变形可得:CH = a0 + b0 H ( a0 和b0 为常数) (4)。

可见, 传感器的电容量值CH 的大小与电容器浸入液体的深度H 成线性关系。

由此, 只要测出电容值便能计算出水位。

液位高度与电容变化曲线3电容测量电路设计3.1测量电路本设计采用二极管T形网络(双T电桥)如下图所示。

它是利用电容器充放电原理组成的电路。

其中e是高频电源,提供幅值电压为E的对称方波;C1和C2为差动电容传感器;D1和D2为两只理想二极管;R1和R2为固定电阻,且R1=R2;R L 为负载电阻(或后接仪器仪表的出入电阻)。

该电路的工作原理如下:当电源为正半周时,二极管D1导通而D2截止,其等效电路如图(b)所示。

此时电容C1很快充电至E,电源e经R1以电流I1向负载R L供电;与此同时,电容C2经R2和R L放电,放电电流I2(t)。

流经R L的电流I L(t)是I1和I2(t)之和,他们的极性如图(b)所示。

当电源e为负半周时,二极管D2导通而D1截止,其等效电路如图(c)所示。

此时电容C1很快充电至E,电源e经R1以电流I1向负载R L供电;与此同时,电容C2经R2和R L放电,放电电流I2(t)。

流经R L的电流I L(t)是I1和I2(t)之和,他们的极性如图(c)所示。

利用电路分析可以求得电源e的负半周内电路的输出为:式中,为电容C1的放电时间常数。

同理,在电源e的正半周期内电路的输出为式中,为电容C2的放电时间常数。

由此可得输出电流的平均值为式中,f为电源e的频率;k1、k2为系数,输出电压的平均值为适当选择电路中元件的参数以及电源频率f,则上式中指数项所引起的误差可以小于1%。

式中,k为常数,为电容传感器测量时的电容变化量。

二极管T形网络电路特点:(1)e,C1 ,C2接地;(2)工作电平高,D1 ,D2工作在线性区灵敏度与电源幅值和频率有关;(3)输出电压高;(4)输出阻抗与C1 、C2无关,与R1 ,R2同数量级,可用mA或A表直接测量;(5)RL影响电容放电速度,宜小些,RL=1k时,上升时间20s,可测量动态信号。

4电信号放大电路设计4.1整流电路将模拟电压转化为数字信号所用的转换芯片为ADC0809,它仅能将单极性电压转换为数字量,所以我们将测量电路转换后的电压先经整流电路、滤波器和稳压电路将输入电压变为单极性电压供给放大电路。

4.2放大电路由于从传感器得出的电压一般在0~30mv之间,太小不易测量,所以要通过放大电路进行放大,如图3-3所示,采用最基本的比例运算反放大电路.图3-3 比例放大电路要将30mV电压放大成5V,根据公式U=-(R1/R2)Uo,所以选择R1=500K,R2=3K,R4=R1//R2,,后边的是一个反相器,把第一个运放得到的电压反相成正的,其中R3=R5=1K,R6=R3//R5。

5 AD转换电路及与单片机接口本设计采用A/D转换器ADC0809。

ADC0809是CMOS单片型逐次逼近式A/D转换器,由于输出级有8位三态输出锁存器,因而0809的数据输出端可以直接与单片机的数据总线连接。

ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输入之一到比较器。

START上升沿将逐次逼近寄存器复位。

下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。

直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。

当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上.ADC0809转换是采用逐次比较的方法完成A/D转换的,由单一的+5V供电,片内带有锁存功能的8路选一的模拟开关,由A,B,C引脚的编码来确定所选通道。

相关文档
最新文档