磁性材料名词解释

合集下载

第5节磁性材料

第5节磁性材料

方向相反的磁化强度(M),磁化率<0,这种磁性称为
抗磁性。
表现出磁化率小于零的物质称为抗磁性物质。
抗磁性物质有;惰性气体、大部分有机化合物、若干 金属(如Bi、Zn、Ag和Mg等)、非金属(如Si、P和S等)。
电子壳层都是填满的,所以,原子磁矩等于零或虽原 子的磁矩不为零,但由原子组成的分子的总磁矩为零。
磁化过程四阶段:
磁性材料的技术磁参量
内禀磁
主要取决

参量:
❖ 磁畴
自发磁化的小区域,称为磁畴。各个 磁畴之间的交界面称为磁畴壁。
磁学基础-物质的磁性
(四)磁各向异性 磁性材料在不同方向上具有不同磁性能的特性。 包括:磁晶各向异性,形状各向异性,感生各向异性 和应力各向异性等。
单晶体的易磁化和难磁化方向
磁学基础-物质的磁性
(五)磁致伸缩 磁性材料磁化过程中发生沿磁化方向伸长(或缩 短),在垂直磁化方向上缩短(或伸长)的现象,叫 做磁致伸缩。它是一种可逆的弹性变形。材料磁致 伸缩的相对大小用磁致伸缩系数λ表示,即 :
磁性功能材料
本章主要内容
• 磁学理论 —— 物质的磁性、磁性的基本物理量 • 磁性材料分类 —— 软磁材料、永磁材料 • 磁性材料的基本性能与应用
磁学基础-物质的磁性
(一) 物质的磁性
将一个面积为(A) 、通有电流
(Is)的环型导体放入磁场中,该 环型导体将会在磁场(H)的作用下
发生偏转,即环型导体受到力矩的
铁磁性物质只有在居里温度以下才具有铁磁性;在 居里温度以上,由于受到晶体热运动的干扰,原子磁矩 的定向排列被破坏,使得铁磁性消失,这时物质转变为 顺磁性。
❖ 自发磁化
铁磁性物质内的原子磁矩,通过相 邻晶格结点原子的电子壳层的作用,克服 热运动的无序效应,原子磁矩是按区域自 发平行排列、有序取向,按不同的小区域 分布,这种现象称为自发磁化。

磁性材料原理

磁性材料原理

磁性材料原理磁性材料是一类在磁场中具有特殊性质的材料。

它们在工业生产和科学研究中起着重要的作用。

本文将介绍磁性材料的原理及其应用。

一、磁性材料的概述磁性材料是指在外加磁场作用下,能够产生磁化现象的材料。

它们包括铁、钢、镍、钴等物质。

磁性材料有两种基本类型:铁磁性材料和非铁磁性材料。

铁磁性材料具有强烈的磁性,如铁、镍和钴等。

它们在强磁场中可以被永久磁化,形成磁体。

非铁磁性材料则具有较弱的磁性,它们一般不会被永久磁化。

二、磁性材料的原理1. 原子磁偶极矩磁性材料具有原子磁偶极矩。

原子内电子所带的自旋和轨道角动量导致了原子磁矩的形成。

在一个磁场中,这些原子磁矩会互相作用,从而形成磁性。

2. 域结构磁性材料中存在着不同的磁畴,每个磁畴具有自己的磁化方向。

在无外加磁场的情况下,这些磁畴的磁化方向是杂乱无序的。

当外加磁场作用于材料时,磁畴会逐渐重新排列,使整个材料形成统一的磁化方向。

3. 局域场和磁畴壁在磁性材料中,每个磁畴内的磁化强度是均匀的,但不同磁畴之间的磁化强度存在差异。

这种差异由局域场引起。

磁畴之间的过渡区域称为磁畴壁,磁畴壁上的磁化方向逐渐变化,使得整个材料的磁化过渡更加平滑。

三、磁性材料的应用1. 电磁设备磁性材料广泛应用于电磁设备中。

例如,铁磁性材料可以用于制造电动机、电磁铁和变压器等设备。

非铁磁性材料则用于制造电感器和传感器。

2. 数据存储磁性材料在数据存储领域有着重要的应用。

磁性材料通过改变磁化方向来储存和读取信息。

硬盘驱动器和磁带等设备都是基于磁性材料的数据存储原理。

3. 医疗应用磁性材料在医疗领域有广泛的应用。

例如,磁共振成像(MRI)利用磁性材料的特性来观察人体内部结构。

磁性材料也可以用于制造人工关节和植入式医疗器械。

4. 环境保护磁性材料在环境保护中的应用也越来越多。

例如,利用磁性材料可以制造高效的垃圾处理设备,帮助减少废物产生和环境污染。

四、磁性材料的发展前景随着科学技术的不断发展,磁性材料的应用领域将会不断扩大。

了解物理中的磁性材料和电磁感应

了解物理中的磁性材料和电磁感应

了解物理中的磁性材料和电磁感应在物理学中,磁性材料和电磁感应是两个非常重要的概念。

磁性材料是指具有吸引铁质或其他磁性物质能力的材料,而电磁感应是指当磁通量发生变化时,在导体中会产生感应电流。

本文将详细介绍磁性材料和电磁感应的相关原理和应用。

一、磁性材料磁性材料根据其特性可以分为软磁性材料和硬磁性材料两大类。

软磁性材料是指在外加磁场作用下,能迅速磁化和去磁化的材料,如铁、镍、钴等。

而硬磁性材料则是指在外加磁场的作用下,能保持永久磁力的材料,如铁氧体、钕铁硼、钢等。

磁性材料的磁性主要来自于其中的原子和分子微观磁矩的相互作用。

这些磁矩可以通过自旋和轨道磁矩的相互作用而产生。

在磁性材料中,原子磁矩的方向会随着外加磁场的改变而改变,从而导致材料整体呈现磁性。

磁性材料在许多领域有着广泛的应用。

例如,软磁性材料常用于电感、变压器、发电机等电磁设备中,用来储存和传输能量。

硬磁性材料则常用于制作永磁体,如用于磁吸附、磁存储和磁传感器等。

此外,磁性材料还被广泛应用于医学领域,如核磁共振成像(MRI)等。

二、电磁感应电磁感应是指在磁通量发生变化的情况下,导体中会产生感应电流。

这个现象是由英国物理学家迈克尔·法拉第在19世纪首次发现的。

根据法拉第的电磁感应定律,当导体或线圈中的磁通量发生改变时,会在导体中产生感应电动势,从而驱动电子流动形成感应电流。

电磁感应的应用十分广泛。

最典型的例子就是电磁感应用于发电机的原理。

发电机通过转动磁场感应线圈中的电流,从而将机械能转化为电能。

此外,电磁感应还应用于变压器、感应加热、电动机和电磁传感器等领域。

在电磁感应中,还存在一个重要的概念,即法拉第电磁感应定律。

根据该定律,感应电动势的大小与磁通量的变化率成正比。

具体而言,当磁通量发生变化时,感应电动势的大小可以用以下公式表示:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,dt代表时间的微小变化量。

这个公式反映了感应电动势与磁通量的直接关系。

磁性材料相关知识

磁性材料相关知识

磁性材料相关知识1. 磁性材料的概述磁性材料是一类具有磁性的材料,它们可以被外界的磁场所吸引或排斥。

磁性材料在许多领域有着广泛的应用,例如电机、传感器、存储设备等。

磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两大类。

2. 磁性材料的分类2.1 软磁性材料软磁性材料是一类具有较高磁导率和低矫顽力的材料,其磁化后能迅速消失。

软磁性材料可以有效地吸收和产生磁场,广泛应用于电机、变压器等领域。

常见的软磁性材料有铁、镍、钴等。

软磁性材料的磁导率高,能有效地集中磁场线,使其传导能力较强。

2.2 硬磁性材料硬磁性材料是一类具有较高矫顽力和磁饱和度的材料,其磁化后能长时间保持。

硬磁性材料主要应用于存储设备、传感器等领域。

常见的硬磁性材料有钕铁硼、钴磁体等。

硬磁性材料的矫顽力和磁饱和度高,能够长时间保持磁化状态。

3. 磁化过程磁性材料的磁化过程是指在外加磁场的作用下,磁性材料内部的原子磁矩重新进行排列的过程。

磁化过程可以分为顺磁化和逆磁化两种情况。

3.1 顺磁化顺磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向一致的过程。

顺磁化过程中,磁性材料会被吸引到磁场较强的地方。

顺磁性材料的磁化强度与外磁场强度成正比。

3.2 逆磁化逆磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向相反的过程。

逆磁化过程中,磁性材料会被排斥出磁场较强的地方。

逆磁性材料的磁化强度与外磁场强度成负相关。

4. 磁性材料的性能参数4.1 矫顽力矫顽力是指磁性材料在外磁场作用下,从无磁化状态转变为完全磁化状态所需的外磁场强度。

矫顽力越高,磁性材料越难磁化。

矫顽力的单位是安培/米(A/m)。

4.2 磁导率磁导率是指磁性材料在外磁场作用下,单位磁场强度下的磁化强度与外磁场强度的比值。

磁导率越大,磁性材料的磁性能越好。

磁导率的单位是亨利/米(H/m)。

4.3 磁饱和度磁饱和度是指磁性材料在外磁场作用下,达到最大磁化强度时的外磁场强度。

什么是磁性材料

什么是磁性材料

什么是磁性材料磁性材料是一类具有磁性的材料,其在外加磁场作用下会产生磁化现象。

磁性材料广泛应用于电子、通信、医疗、能源等领域,是现代社会中不可或缺的重要材料之一。

本文将从磁性材料的基本特性、分类、应用以及发展趋势等方面进行介绍。

首先,磁性材料的基本特性。

磁性材料具有磁化特性,即在外加磁场作用下会产生磁化现象。

根据磁化特性的不同,磁性材料可分为铁磁材料、铁氧体材料、永磁材料和软磁材料等几类。

铁磁材料在外加磁场下会产生明显的磁化,而铁氧体材料具有较高的磁导率和电阻率,因此在高频电路中得到广泛应用。

永磁材料则具有自身较强的磁化特性,常用于制作永磁体。

软磁材料则具有较低的矫顽力和磁导率,适用于变压器、电感器等领域。

其次,磁性材料的分类。

根据磁性材料的不同特性和应用领域,可以将其分为多种类型。

例如,按照磁性材料的组成成分可分为金属磁性材料、合金磁性材料和氧化物磁性材料等;按照磁性材料的磁性能力可分为软磁材料和硬磁材料;按照磁性材料的应用领域可分为电子器件用磁性材料、电机用磁性材料和传感器用磁性材料等。

再者,磁性材料的应用。

磁性材料在各个领域都有着重要的应用价值。

在电子器件中,磁性材料被广泛应用于制作电感、变压器、磁头等元器件;在电机领域,永磁材料被应用于制作各种类型的电机,如风力发电机、电动汽车驱动电机等;在通信领域,磁性材料被应用于制作微波器件、天线等;在医疗领域,磁性材料被应用于制作医疗设备,如核磁共振成像设备等;在能源领域,磁性材料被应用于制作发电机、电池等。

最后,磁性材料的发展趋势。

随着科学技术的不断进步,磁性材料的研究和应用也在不断发展。

未来,磁性材料将更加注重环保、节能、高效的特性,以适应社会对清洁能源和高效能源的需求。

同时,磁性材料的微纳米化、多功能化、智能化也将成为发展的趋势,以满足各种领域对材料性能的要求。

总之,磁性材料作为一类具有磁化特性的材料,在现代社会中具有重要的应用价值。

通过对磁性材料的基本特性、分类、应用和发展趋势的介绍,相信读者对磁性材料有了更深入的了解,也为今后的研究和应用提供了一定的参考。

磁性材料与磁场

磁性材料与磁场

磁性材料与磁场磁性材料作为一种特殊的物质,其在磁场中会表现出各种有趣的现象和性质。

本文将就磁性材料的基本概念、种类以及磁场对其的影响进行详细探讨。

一、磁性材料的基本概念磁性材料是指具有一定磁性的物质。

其内部原子、分子或电子的微观结构会导致其表现出吸引或排斥磁场的特性。

根据材料的磁性,可以将其分为顺磁性材料、抗磁性材料和铁磁性材料三类。

顺磁性材料,如铁、镍和铬等,具有很弱的磁性,且与外加磁场方向相同,即在磁场中表现出磁化的倾向。

而抗磁性材料,如铜、银和金等,表现出与外加磁场相反的磁化倾向,即在磁场中呈现出磁抵抗的特性。

铁磁性材料,如铁、钴和镍等,表现出强烈的磁化倾向,且能保持自身的磁性,即在磁场中表现出磁化和保留的特性。

二、磁场的基本性质磁场是由磁铁或电流在周围形成的一种力场。

磁场具有两个重要的性质,即磁感应强度和磁场力。

磁感应强度(B)是磁场的物理量,它的大小和方向表示磁场的强弱和方向。

磁场力是指磁场对磁性物质或带电粒子产生的力,其大小与物体的磁化程度和磁场强度有关。

三、磁性材料在磁场中的行为1. 吸引磁场铁磁性材料在外加磁场的作用下,会产生磁化,从而表现出吸引磁场的性质。

这是因为在磁场中,铁磁性材料内部的微观原子、分子或电子会重新排列,形成一个较强的磁性区域,使其吸引周围的磁场。

2. 磁感应强度变化磁性材料在磁场中的表现也会对外部磁场的磁感应强度产生影响。

当磁性材料置于磁场中时,其会干扰磁场的分布,引起磁感应强度的变化,形成一个由材料本身磁化产生的局部磁场,这种现象称为磁屏蔽。

3. 磁滞回线在一定范围内,铁磁性材料的磁化和磁场强度之间存在一种非线性关系。

在外加磁场的作用下,铁磁性材料会发生磁滞现象,即磁化的变化并不完全随着磁场强度的变化而线性变化,而是呈现出一种类似回线的形状。

磁滞回线的形状与材料本身的性质有关,是研究材料磁性的重要参数。

四、磁场对磁性材料的应用磁性材料在各个领域都有广泛的应用。

磁性材料入门知识

磁性材料入门知识

磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。

它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。

本文将为你介绍磁性材料的基本知识。

1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。

磁化强度的单位是安培每米(A/m)或高斯(Gs)。

磁力线越接近选定的物体,磁化强度就越强。

2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。

磁场强度的单位是特斯拉(T)或高斯(Gs)。

3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。

高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。

4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。

磁饱和是磁性材料失去磁性的一个重要特征。

5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。

每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。

6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。

磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。

7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。

软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。

硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。

8. 磁性材料应用磁性材料广泛应用于各个领域。

在电子行业,磁性材料用于制造电感和磁芯等元器件。

在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。

磁性材料还用于通讯、医疗、军事和安全等领域。

总之,磁性材料具有重要的应用和理论价值。

通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。

磁性材料分类

磁性材料分类

磁性材料分类
磁性材料是指具有一定磁性的物质,根据其磁性特性的不同,磁性材料主要可以分为三类:铁磁材料、铁氧体材料和非铁磁材料。

1. 铁磁材料:铁磁材料是指能够持续保持较强磁性的材料,它们在外部磁场作用下,可以产生自发磁化,且除去磁场作用后,能够保持一定程度的剩磁。

典型的铁磁材料包括铁、镍、钴以及它们的合金,如铁氧体、钐铁氧体等。

这类材料在电磁机械、电磁传感器、磁记录介质等领域有广泛应用。

2. 铁氧体材料:铁氧体材料以含铁氧化物为主要成分,由铁氧体晶粒与其他成分组成的复合材料。

铁氧体材料具有优良的磁特性、高温稳定性、低价格等优点,广泛应用于电力电子、电子通信、电子计算机等领域。

根据铁氧体的晶粒结构不同,铁氧体材料又可以分为软磁铁氧体和硬磁铁氧体两类。

软磁铁氧体具有高导磁率和低磁滞损耗等特点,适用于高频的电感元件、变压器等;硬磁铁氧体则具有高矫顽力和高剩磁等特点,适用于永磁体、电机等领域。

3. 非铁磁材料:非铁磁材料是指在外加磁场下,几乎不发生自发磁化的材料。

常见的非铁磁材料包括铜、铝、木材、玻璃等。

这些材料的磁导率接近于1,磁化率极小,几乎不受磁场影响。

非铁磁材料在电子设备、通信设备、建筑装饰等领域有广泛应用。

总结起来,磁性材料主要分为铁磁材料、铁氧体材料和非铁磁
材料三类。

铁磁材料具有较强磁性和剩磁特性,适用于电磁机械等领域;铁氧体材料具有高温稳定性和优良的磁特性,广泛应用于电力电子领域;非铁磁材料几乎不受磁场影响,适用于电子设备和建筑装饰等领域。

初中物理磁学知识点梳理

初中物理磁学知识点梳理

初中物理磁学知识点梳理物理学是一门研究物质和能量之间相互作用的科学,而磁学则是物理学中一个重要的分支。

在初中物理学习中,磁学知识点是必须重点掌握的内容。

下面将对初中物理磁学知识点进行梳理,分为磁性材料、磁场、电磁感应和电磁线圈四个部分进行介绍。

一、磁性材料磁性材料是指能够产生磁场或被磁场所吸引的物质。

常见的磁性材料有铁、镍和钴等。

磁性材料可以分为永磁材料和临时磁性材料两类。

1. 永磁材料永磁材料是指在外部磁场的作用下,其自身能够保持磁性的材料。

永磁材料可以产生持久磁场,并具有很强的磁性。

常见的永磁材料有铁氧体、钕铁硼和钴硅钴等。

2. 临时磁性材料临时磁性材料是指在外部磁场的作用下,其自身能够显示出磁性,但在去掉外部磁场后会失去磁性的材料。

常见的临时磁性材料有铁、镍和钴等。

二、磁场磁场是指物体周围存在的磁性力场。

在磁场中,对磁性物体具有吸引或排斥力。

磁场可以根据磁力线的性质分为均匀磁场和非均匀磁场两类。

1. 均匀磁场均匀磁场是指磁场中磁感应强度大小方向均相同的磁场。

在均匀磁场中,磁力线是平行且间距相等的。

在均匀磁场中,通过一个理想的磁针可以找到磁场的方向。

2. 非均匀磁场非均匀磁场是指磁场中磁感应强度大小或方向不均匀的磁场。

在非均匀磁场中,磁力线会有变化,磁力线的间距不等。

三、电磁感应电磁感应是指通过改变磁场中磁感应强度的大小或方向,产生感应电流的现象。

电磁感应有三种方式,即电磁感应定律、发电机和电磁铁。

1. 电磁感应定律电磁感应定律是描述电磁感应现象的定律。

根据法拉第电磁感应定律,当导体中的磁感应强度发生变化时,导体的两端会产生感应电动势。

感应电动势的大小与磁感应强度的变化率成正比。

2. 发电机发电机是一种利用电磁感应产生电能的装置。

它通过旋转一个导电线圈或磁体,在磁场中产生感应电动势,从而产生电流。

发电机是现代发电的重要设备之一。

3. 电磁铁电磁铁是一种利用电磁感应产生磁场的装置。

当通过导线通电时,导线周围会产生磁场,形成一个临时的磁铁。

磁性材料分类

磁性材料分类

磁性材料的分类1、铁氧体磁性材料:一般是指氧化铁和其他金属氧化物的符合氧化物。

他们大多具有亚铁磁性。

特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。

饱和磁化强度低,不适合高磁密度场合使用。

居里温度比较低。

2 、铁磁性材料:指具有铁磁性的材料。

例如铁镍钴及其合金,某些稀土元素的合金。

在居里温度以下,加外磁时材料具有较大的磁化强度。

3 、亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。

4 、永磁材料:磁体被磁化后去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。

可分为三类,金属永磁,例:铝镍钴,稀土钴,铷铁硼等;铁氧体永磁,例:钡铁氧体,锶铁氧体;其他永磁,如塑料等。

5、软磁材料:容易磁化和退磁的材料。

锰锌铁氧体软磁材料,其工作频率在1K-10M之间。

镍锌铁氧体软磁材料,工作频率一般在1-300MHZ6、金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。

7 、损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交变磁场的每周期中,损耗能量与储存能量的2派之比。

8、比损耗角正切:这是材料的损耗角正切与起始导磁率的比值。

9 、温度系数:在两个给定温度之间,被测的变化量除以温度变化量。

10、磁导率的比温度系数:磁导率的温度系数与磁导率的比值。

11 、居里温度:在此温度上,自发磁化强度为零,即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度。

专业术语:1 、饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。

在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。

2、剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。

磁性材料名词解释

磁性材料名词解释

磁性能名詞說明
■ 殘留磁束密度(Br) 給予磁石一外加飽和磁場(H) ,當磁場消退 為零時,磁石內部所保留之磁束密度。
■ 矯頑力(Hcb)及固有矯頑力(Hcj) 使磁束密度B=0之反向磁場強度稱矯頑力 (Hcb/Hc) ,另使磁化強度M=0之反向磁場 強度稱為固有矯頑力(Hcj/iHc) 。 為磁體抵抗外加磁場的能力,亦是充磁難 易度指標。
磁性能名詞說明
■居里溫度Tc 系指随着温度的升高,由于物质内部基本粒子的热振荡加 剧,磁性材料内部的微观磁偶极矩的排列逐步紊乱,宏观 上表现为材料的磁极化强度J随着温度的升高而减小,当 温度升高至某一值时,材料的磁极化强度J降为0,此时磁 性材料的磁特性变得同空气等非磁性物质一样,将此温度 称为该材料的居里温度Tc
磁性能名詞說明
■最大磁能積(BHmax) B-H曲線在第二象限(減磁曲線)上各點的磁 場強度H與磁束密度B之乘積最大值 ,亦即 (B.H)max,為磁體最大磁能量之衡量指 標,可用來分類磁石等級 。
磁性能名詞說明
■溫度系數
Brα﹪/℃ 剩余磁感应强度(Br)随温度变化的系数 Hcjβ﹪/℃ 内禀矫顽力(Hcj)随温度变化的系数
■可工作溫度Tw 系指在某一温度下永磁材料的磁性能与室温相比降低一规 定的幅度,将该温度称为该磁体的可工作温度Tw
基本磁學單位換算
Br Hcb/Hcj BHmax
CGS制
高斯 Gauss 奧斯特
Oe T
安培/米 A/m kJ/m
1 T= 10 G 1 Oe = 79.5A/m 1 MGOe ≒ 8 kJ/m

磁学基础知识

磁学基础知识

磁学基础知识一、磁性材料1.磁性:物体吸引铁、镍、钴等物质的性质。

2.磁体:具有磁性的物体。

3.磁极:磁体上磁性最强的部分,分为南极和北极。

4.磁性材料:具有磁性的物质,如铁、镍、钴及其合金。

5.硬磁材料:一经磁化,磁性不易消失的材料,如铁磁性材料。

6.软磁材料:磁化后,磁性容易消失的材料,如软铁、硅钢等。

7.磁场:磁体周围存在的一种特殊的物质,它影响着磁体和铁磁性物质。

8.磁场线:用来描述磁场分布的假想线条,从磁南极指向磁北极。

9.磁感线:用来表示磁场强度和方向的线条,从磁南极出发,回到磁北极。

10.磁通量:磁场穿过某一面积的总量,用Φ表示,单位为韦伯(Wb)。

11.磁通密度:单位面积上磁通量的大小,用B表示,单位为特斯拉(T)。

三、磁场强度1.磁场强度:磁场对单位长度导线所产生的力,用H表示,单位为安培/米(A/m)。

2.磁感应强度:磁场对放入其中的导线所产生的磁力,用B表示,单位为特斯拉(T)。

3.磁化强度:磁性材料内部磁畴的磁化程度,用M表示,单位为安培/米(A/m)。

4.磁化:磁性材料在外磁场作用下,内部磁畴的排列发生变化,产生磁性的过程。

5.顺磁性:磁化后,磁畴的排列与外磁场方向相同的现象。

6.抗磁性:磁化后,磁畴的排列与外磁场方向相反的现象。

7.铁磁性:磁化后,磁畴的排列在外磁场作用下,相互一致的现象。

8.磁路:磁场从磁体出发,经过空气或其他磁性材料,到达另一磁体的路径。

9.磁阻:磁场在传播过程中遇到的阻力,类似于电学中的电阻。

10.磁导率:材料对磁场的导磁能力,用μ表示,单位为亨利/米(H/m)。

11.磁芯:具有高磁导率的材料,用于集中和引导磁场。

六、磁现象的应用1.电动机:利用电流在磁场中受力的原理,将电能转化为机械能。

2.发电机:利用磁场的变化在导体中产生电流的原理,将机械能转化为电能。

3.变压器:利用电磁感应原理,改变交流电压。

4.磁记录:利用磁性材料记录和存储信息,如硬盘、磁带等。

材料的磁学性能

材料的磁学性能

材料的磁学性能
材料的磁学性能是指材料在外加磁场下的磁化特性,包括磁化强度、磁导率、磁化曲线等。

磁学性能对于材料的应用具有重要的意义,尤其是在电子、通信、医疗等领域。

本文将从磁性材料的基本概念、磁性材料的分类、磁性材料的应用等方面进行介绍和分析。

磁性材料是指在外加磁场下会产生磁化现象的材料。

根据材料在外加磁场下的磁化特性,可以将磁性材料分为铁磁性材料、铁素磁性材料、铁氧体材料和软磁性材料等几类。

铁磁性材料在外加磁场下会产生明显的磁化现象,具有较高的磁导率和磁化强度,主要用于制造电机、变压器等电器设备。

铁素磁性材料具有较高的电阻率和磁导率,主要用于制造电感元件、磁芯等。

铁氧体材料具有较高的磁导率和磁化强度,主要用于制造微波器件、磁记录材料等。

软磁性材料具有较低的矫顽力和磁导率,主要用于制造变压器、电感器等。

磁性材料在电子、通信、医疗等领域具有广泛的应用。

在电子领域,磁性材料主要用于制造电感元件、变压器、磁芯等,用于电源、通信、计算机等设备中。

在通信领域,磁性材料主要用于制造微波器件、天线等,用于无线通信、卫星通信等设备中。

在医疗领域,磁性材料主要用于制造医疗设备、磁共振成像设备等,用于诊断、治疗等用途。

总之,磁性材料的磁学性能对于材料的应用具有重要的意义。

通过对磁性材料的基本概念、分类和应用的介绍和分析,可以更好地了解磁性材料的特性和用途,为相关领域的科研和生产提供参考和指导。

希望本文能够对读者有所帮助,谢谢阅读。

什么是磁性材料

什么是磁性材料

什么是磁性材料
磁性材料是指在外加磁场作用下,能够产生磁化现象并保持磁化状态的材料。

磁性材料是一类特殊的材料,其在现代工业和科学技术中具有广泛的应用。

磁性材料根据其磁性特性可以分为铁磁材料、铁氧体材料、铁氧氮材料、软磁材料和硬磁材料等不同类型。

铁磁材料是一类具有较强磁性的材料,主要包括铁、镍、钴和它们的合金。


磁材料在外加磁场下能够产生明显的磁化现象,并且在去除外加磁场后能够保持一定的磁化强度,因此在电机、变压器、传感器等领域有着重要的应用。

铁氧体材料是一类氧化铁和其他金属氧化物的复合材料,具有良好的磁导率和磁饱和感应强度,被广泛应用于电子、通讯、医疗等领域。

铁氧氮材料是一类铁氧体材料和氮化物的复合材料,具有高饱和磁感应强度和
低磁导率的特点,被广泛应用于磁记录材料、磁存储材料等领域。

软磁材料是一类在外加磁场下能够迅速磁化和退磁的材料,主要包括硅钢、镍铁合金等,具有低磁滞回线和低磁导率的特点,被广泛应用于变压器、电感器、传感器等领域。

硬磁材料是一类在外加磁场下难以磁化和退磁的材料,主要包括氧化钴、氧化镍、氧化铁等,具有高矫顽力和高剩磁感应强度的特点,被广泛应用于磁记录材料、磁存储材料、磁传感器等领域。

总的来说,磁性材料在现代工业和科学技术中具有重要的地位和作用,其种类
繁多,性能各异,广泛应用于电机、变压器、传感器、电子、通讯、医疗、磁记录材料、磁存储材料等领域。

随着科学技术的不断发展,磁性材料的应用领域将会更加广泛,性能将会更加优越,为人类社会的发展进步做出更大的贡献。

磁性材料

磁性材料

磁性材料主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质。

磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。

从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。

软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。

磁性材料从形态上讲。

包括粉体材料、液体材料、块体材料、薄膜材料等。

磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。

可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。

顺磁性paramagnetism顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10-5~10-3,遵守Curie定律或Curie-Weiss定律。

物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。

在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。

顺磁性是一种弱磁性。

顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。

但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。

但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。

这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。

磁性材料有哪些

磁性材料有哪些

磁性材料有哪些
磁性材料是指具有磁性能力的物质。

根据磁性能力的不同,可以将磁性材料分为软磁性材料和硬磁性材料两类。

软磁性材料是指在外加磁场作用下很容易磁化,但在磁场消失后,能够迅速消磁的材料。

常见的软磁性材料有:
1. 铁:纯铁是一种具有很好的软磁特性的材料,但其抗腐蚀性较差,容易生锈,所以常常需要进行镀层处理,如镀锌等。

2. 钠:钠是一种具有较高磁导率和低磁阻的软磁性材料,常用于电感器等电子器件中。

3. 镍铁合金:镍铁合金是一种具有较高软磁导率和磁阻的材料,广泛用于电感器、变压器等电子元器件中。

4. 钴铁合金:钴铁合金具有较高的饱和磁感应强度和软磁导率,常用于制造磁头、电动机等设备。

硬磁性材料是指在外加磁场作用下很难磁化,且在磁场消失后,能够保持一定的磁化程度的材料。

常见的硬磁性材料有:
1. 钕铁硼磁体:钕铁硼磁体是一种强磁性材料,具有较高的饱和磁感应强度和矫顽力,广泛用于制造电动机、磁盘驱动器、手持电动工具等设备。

2. 钴磁体:钴磁体是一种具有较高矫顽力和耐磨性的硬磁性材料,常用于制造磁头、传感器等设备。

3. 铬钭磁体:铬钭磁体是一种具有较高饱和磁感应强度和矫顽力的硬磁性材料,常用于制造磁头、电机等设备。

4. 铁氧体:铁氧体是一种具有良好磁性能和电性能的硬磁性材料,常用于制造电感器、变压器等设备。

总结起来,磁性材料的种类繁多,从软磁性材料到硬磁性材料,具有不同的磁性能力和应用领域。

这些材料在电子器件、电动机、磁头等设备中起着重要的作用。

磁性材料术语解释及计算公式

磁性材料术语解释及计算公式

磁性材料术语解释及计算公式起始磁导率“i初始磁导率是磁性材料的磁导率(B/H)在磁化曲线始端的极限值,即式中“o为真空磁导率(4TTX\0~7 H/m)△H为磁场强度的变化率(A/m)△B为磁感应强度的变化率(T)有效磁导率“e在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表示磁芯的性能0式中L为装有磁芯的线圈的电感量(H)N为线圈匝数Le为有效磁路长度5)Ae为有效截面积(卅)饱和磁通密度Bs (T)磁化到饱和状态的磁通密度。

见图1。

・ 1a 1 =—x ——(AH T O)图1剩余磁通密度Br (T)从饱和状态去除磁场后,剩余的磁通密度。

见图1。

矫顽力He (A/m)从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁感应强度减为零,此时的磁场强度称为矫顽力。

见图1。

损耗因子tan5损耗系数是磁滞损耗、涡流损耗和剩余损耗三者之和。

tan^= tan d h + t an del tan dr式中tan o i.为磁滞损耗系数tan o e为涡流损耗系数tan d r为剩余损耗系数相对损耗因子t an6//I i比损耗因子是损耗系数与与磁导率之比:tano /i (it用于材料)tano/zze (适用于磁路中含有气隙的磁芯)品质因数Q品质因数为损耗因子的倒数:Q = 1/ tan5温度系数a“( 1/K)温度系数为T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: a 口 =卩2_卩1 1Pl T 2 _T ] 式中“1为温度为T1时的磁导率“2为温度为T2时的磁导率相对温度系数a “r(l/K)温度系数和磁导率之比,即在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即DF =x 丄(T2>T1)“1为退磁后T1分钟的磁导率“2为退磁后T2分钟的磁导率居里温度Tc (°C)在该温度时材料由铁磁性(或亚铁磁)转变为顺磁性,见图2。

a //r = 减落系数DFGT电阻率p(Q.m)具有单位截面积和单位长度的磁性材料的电阻。

磁材基础知识简介

磁材基础知识简介

1.磁性材料简介磁性材料是指由过渡金属元素铁、钴、镍及其合金等组成的能够直接或间接产生磁性的物质。

根据物质在外磁场中表现出的特性,物质的磁性可分为五类:顺磁性、抗磁性、铁磁性、亚铁磁性、反铁磁性。

我们把顺磁性和抗磁性物质称为弱磁性物质,把铁磁性和亚铁磁性物质称为强磁性物质。

通常所说的磁性材料是指强磁性物质。

磁性材料按磁化后去磁的难易可分为软磁材料和硬磁材料。

磁化后容易去掉磁性的物质叫软磁材料,不容易去磁的物质叫硬磁材料,也称为永磁材料。

软硬磁材料最明显的区别就是矫顽力,一般来讲软磁材料的矫顽力较小,硬磁材料的矫顽力较大。

通常软磁材料的矫顽力小于80 A/m,而永磁材料的矫顽力则大于4000 A/m。

磁性材料按使用又可分为软磁材料、永磁材料和功能磁性材料。

功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料、旋磁材料以及磁性薄膜材料等。

磁性材料的磁化过程可通过磁滞回线来表示。

图1和1’分别为软磁材料和永磁材料的磁滞回线。

其中Bs表示饱和磁感应强度,Br表示剩磁,Hc表示矫顽力。

图中可以看出,软磁材料和硬磁材料最明显的区别就在于,硬磁材料的矫顽力远大于软磁材料。

图1 磁性材料的磁滞回线1:软磁材料的磁滞回线,1’:硬磁材料的磁滞回线;Hc、Hc’:矫顽力;Bs、Bs’:饱和磁感应强度;Br、Br’:剩磁。

1.1 磁性材料各性能参数(1)饱和磁感应强度Bs:是指磁体被磁化至饱和状态时的磁感应强度,其大小取决于材料的成分,与其他外在条件无关。

它所对应的物理状态是材料内部的磁化矢量整齐排列。

(2)剩余磁感应强度Br:磁性材料经磁化至技术饱和,去掉外磁场后所保留的表面场Br, 称为剩余磁感应强度。

简称剩磁,用Br表示,单位为特斯拉(T)或高斯(Gs),换算关系为1 T=10000 Gs。

(3)矫顽力Hc:磁性材料在饱和磁化后,当外磁场退回到零时其磁感应强度B 并不退到零,只有在原磁化场相反方向加上一定大小的磁场才能使磁感应强度退回到零,该磁场称为矫顽磁场,又称矫顽力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性材料Jump to: navigation, search磁性材料magnetic material可由磁场感生或改变磁化强度的物质。

按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。

铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。

现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。

磁性材料的用途广泛。

主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。

磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。

简史中国是世界上最先发现物质磁性现象和应用磁性材料的国家。

早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。

11世纪就发明了制造人工永磁材料的方法。

1086年《梦溪笔谈》记载了指南针的制作和使用。

1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。

近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。

永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。

随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。

20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。

50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。

50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。

压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。

后来又出现了强压磁性的稀土合金。

非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。

分类磁性材料按磁性功能分,有永磁、软磁,矩磁、旋磁和压磁材料;按化学成分分,有金属磁和铁氧体;按结构分,有单晶、多晶和非晶磁体;按形态分,有磁性薄膜、塑性磁体、磁性液体和磁性块体。

磁性材料通常是按功能分类的。

永磁材料一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。

对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即抗退磁能力)强,磁能积(BH)max (即给空间提供的磁场能量)大。

相对于软磁材料而言,它亦称为硬磁材料。

永磁材料有合金、铁氧体和金属间化合物三类。

①合金类:包括铸造、烧结和可加工合金。

铸造合金的主要品种有:AlNi(Co)、 FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后两种中BHC较低者亦称半永磁材料。

②铁氧体类:主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。

③金属间化合物类:主要以MnBi 为代表。

永磁材料有多种用途。

①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。

②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。

③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。

其他方面的应用还有:磁疗、磁化水、磁麻醉等。

根据使用的需要,永磁材料可有不同的结构和形态。

有些材料还有各向同性和各向异性之别。

软磁材料它的功能主要是导磁、电磁能量的转换与传输。

因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。

与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。

软磁材料大体上可分为四类。

①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl 等。

②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。

③磁介质(铁粉芯):FeNi(Mo)、FeSiA l、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。

④铁氧体:包括尖晶石型──M++ O·Fe2O3(M++代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。

软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。

矩磁材料和磁记录材料主要用作信息记录、无接点开关、逻辑操作和信息放大。

这种材料的特点是磁滞回线呈矩形。

旋磁材料具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。

据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧体器件)。

常用的材料已形成系列,有Ni 系、Mg系、Li系、YlG系和BiCaV系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的结构和形态。

压磁材料这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。

常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。

由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合金;在小信号下使用则多用Ni系和NiCo系铁氧体。

非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。

压磁材料的生产和应用远不及前面四种材料。

展望磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。

磁性半导体材料和磁敏材料和器件可以应用于遥感、遥则技术和机器人。

人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。

磁性液体已进入实用阶段。

某些新的物理和化学效应的发现(如拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。

参考书目戴礼智编著:《金属磁性材料》,上海人民出版社,上海, 1973。

周志刚等编著:《铁氧体磁性材料》,科学出版社,北京,1981。

李荫远、李国栋编著:《铁氧体物理学》第二版,科学出版社,北京,1983。

具有铁磁性能的材料。

电工技术中常用的磁性材料可分为高磁导率、低矫顽力、低剩磁的软磁材料和高矫顽力、高剩磁的永磁材料两大类。

永磁材料又称硬磁材料。

磁性是物质的一种基本属性。

物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。

铁磁性和亚铁磁性物质为强磁性物质,其他均为弱磁性物质。

磁性材料有各向同性和各向异性之分。

各向异性材料的磁性能依方向不同而异。

因此,在使用各向异性材料时,必须注意其磁性能的方向。

电工领域中常用的磁性材料都属于强磁性物质。

反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。

磁化曲线和磁滞回线反映磁性材料磁化特性的曲线。

可以用于确定磁性材料的一些基本特性参量如磁导率μ、饱和磁通密度B s、剩余磁场强度即矫顽力H c、剩余磁通密度即剩磁B r,以及磁滞损耗P等。

基本磁化曲线是铁磁物质以磁中性状态为出发点,在反复磁化过程中B 随H 变化规律的曲线,简称磁化曲线(图1)。

它是确定软磁材料工作点的依据。

B 和H 的关系如下:B=μ0(H+M )式中μ0为真空磁导率(又称磁常数),在国际单位制(SI)中,其值为μ0=4π×10-7亨/米;H为磁场强度,单位为安/米(A/m);M 为磁化强度,单位为安/米(A/m)。

图中磁化到饱和时的B值称为饱和磁通密度B s,相应的磁场强度为 H s。

通常,要求磁性材料有高的B s值。

磁化曲线上任一点的B 与H 之比就是磁导率μ,即对于各向同性的导磁物质μ=B/H,常用的是相对磁导率μr=μ/μ0,它是无量纲的纯数,用以表示物质的磁化能力。

因此,按μr的大小,把各类物质划分为:μr<1的抗磁性物质,μr>1的顺磁性物质,μr»1的强磁性物质。

根据B-H 曲线可以描绘出μ-H 曲线,图中μm和μi分别称为最大磁导率和初始磁导率。

μi是在低磁场下使用软磁材料的一个重要参量。

图2表示外磁场H 变化一周时B 随H变化而形成的闭合曲线。

由于B 的变化滞后于H,这个现象称为磁滞。

闭合曲线称为磁滞回线。

图中可见,当Hs降为零时,B 并不回到零,而仅到b点,此值(Br)称为剩余磁通密度,简称剩磁。

若要使Br降到零,需加一反磁场,这个反磁场强度的绝对值称为磁感应矫顽力,简称矫顽力H c。

B r与B s之比称为剩磁比或称开关矩形比(B r/B s),它表征矩磁材料磁滞回线接近矩形的程度。

磁滞回线的形状和面积直接表征磁性材料的主要磁特性。

软磁材料的磁滞回线窄,故矫顽力低,磁滞损耗也低(图3a),常用于电机、变压器、继电器的铁心磁路。

若磁滞回线窄而接近于矩形(称为矩磁材料)(图3c),则这种软磁材料不仅矫顽力低而且B r/B s值也高,适宜作记忆元件和开关元件。

永磁材料其磁滞回线面积宽大(图3b),B r和H c都大,经饱和磁化后,储存的磁场能量大。

常用作发电机、电动机的永磁磁极和测量仪表、扬声器中的永磁体等。

磁损耗单位重量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗或铁损耗P。

它主要由磁滞损耗和涡流损耗引起。

其中由磁滞现象引起的能量损耗称为磁滞损耗,它与磁滞回线所包围的面积成正比。

磁滞损耗功率P h可由下式计算P h=кhƒB mn V式中ƒ为频率(Hz);B m为最大磁通密度(T);指数 n为经验参数,和B m大小有关;V为磁性材料的体积;кh为与铁磁物质性质有关的系数。

在交变磁场中导电物质(包括铁磁物质)将感应出涡流,由涡流产生的电阻损耗称为涡流损耗。

涡流损耗的功率Pe可由下式计算P e=кeƒ2B mn V式中кe为与材料的电阻率、截面大小、形状有关的系数。

P h和P e是衡量电工设备、仪表产品质量好坏的重要参数。

具有强磁性的材料。

相关文档
最新文档