高中物理动量定理解题技巧及经典题型及练习题(含答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)女孩受到的冲量大小; (2)男孩消耗了多少体内能量?
【答案】(1) 100N•s (2) 200J 【解析】
【详解】
(1)男孩和女孩之间的作用力大小相等,作用时间相等, 故女孩受到的冲量等于男孩受到的冲量,
对男孩,由动量定理得:I=△P=0-mv0=-50×2=-100N•s,
所以女孩受到的冲量大小为 100N•s;
x t
v0 v 2
(3)由图 2 可求得物块由 x 0 运动至 x A过程中,外力所做的功为:
W 1 kA A 1 kA2
2
2
设物块的初速度为 v0
,由动能定理得:W
0
1 2
mv02
解得: v0 A
k m
设在 t 时间内物块所受平均力的大小为 F ,由动量定理得: Ft 0 mv0
x
1 2
mvt 2
解得: F2
mvt 2 2x
1.0 2.02 2 2.5
N
0.8N
(2)物块在运动过程中,应用动量定理有: F1t mv mv0
解得:
F1
m(v t
v0 )
物块在运动过程中,应用动能定理有:
F2 x
1 2
mv2
1 2
mv02
解得:
F2
m(v2 v02 ) 2x
当
F1
F2 时,由上两式得: v
7.质量为 70kg 的人不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空 中.已知人先自由下落 3.2m,安全带伸直到原长,接着拉伸安全带缓冲到最低点,缓冲时 间为 1s,取 g=10m/s2.求缓冲过程人受到安全带的平均拉力的大小. 【答案】1260N 【解析】 【详解】 人下落 3.2m 时的速度大小为
(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.
(2)小车的长度.
【答案】(1) 4.5N s (2) 5.5m
【解析】
①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:
m0vo (m0 m1)v1 ,可解得 v1 10m / s ;
对子弹由动量定理有: I mv1 mv0 , I 4.5N s (或 kgm/s);
历的时间为 t,发生的位移为 x.分析说明物体的平均速度 v 与 v0、v 满足什么条件时,F1
和 F2 是相等的. (3)质量为 m 的物块,在如图 2 所示的合力作用下,以某一初速度沿 x 轴运动,当由位置
x=0 运动至 x=A 处时,速度恰好为 0,此过程中经历的时间为 t 2
所受合力对时间 t 的平均值.
9.一个质量为 2kg 的物体静止在水平桌面上,如图 1 所示,现在对物体施加一个水平向右 的拉力 F,拉力 F 随时间 t 变化的图象如图 2 所示,已知物体在第 1s 内保持静止状态,第 2s 初开始做匀加速直线运动,第 3s 末撤去拉力,第 5s 末物体速度减小为 求:
前 3s 内拉力 F 的冲量。
v 2gh 8.0m / s
在缓冲过程中,取向上为正方向,由动量定理可得
(F mg)t 0 (mv)
则缓冲过程人受到安全带的平均拉力的大小
F mv mg 1260N t
8.一质量为 1 kg 的小物块放在水平地面上的 A 点,距离 A 点 8 m 的位置 B 处是一面墙, 如图所示.物块以 v0=5 m/s 的初速度从 A 点沿 AB 方向运动,在与墙壁碰撞前瞬间的速度 为 3 m/s,碰后以 2 m/s 的速度反向运动直至静止.g 取 10 m/s2.
由题已知条件: t m 2k
解得: F 2kA
5.如图,一轻质弹簧两端连着物体 A 和 B,放在光滑的水平面上,某时刻物体 A 获得一大 小为 的水平初速度开始向右运动。已知物体 A 的质量为 m,物体 B 的质量为 2m,求:
(1)弹簧压缩到最短时物体 B 的速度大小; (2)弹簧压缩到最短时的弹性势能; (3)从 A 开始运动到弹簧压缩到最短的过程中,弹簧对 A 的冲量大小。
高中物理动量定理解题技巧及经典题型及练习题(含答案)
一、高考物理精讲专题动量定理
1.如图所示,一质量 m1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量 m2=0.4 kg 的小物体,小物体可视为质点.现有一质量 m0=0.05 kg 的子弹以水平速度 v0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩 擦因数为 μ=0.5,最终小物体以 5 m/s 的速度离开小车.g 取 10 m/s2.求:
m ,求此过程中物块 k
【答案】(1)F1=1.0N,F2=0.8N;(2)当 v
x t
v0 2
v
时,F1=F2;(3)
F
2kA
.
【解析】
【详解】
解:(1)物块在加速运动过程中,应用动量定理有: F1 t mvt
解得: F1
mvt t
1.0 2.0 N 1.0N 2.0
物块在加速运动过程中,应用动能定理有: F2
大的水平作用力。 【答案】(1)50s(2)0.2N 【解析】解:(1)取水平向右为正方向, 由于水平面光滑,经 t 时间,流入车内的水的质量为 , 对车和水流,在水平方向没有外力,动量守恒 由①②可得 t=50s (2)设 时间内,水的体积为 ,质量为 ,则 设小车队水流的水平作用力为 ,根据动量定理
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
4.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下 的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在 动量定理中的平均力 F1 是指合力对时间的平均值,动能定理中的平均力 F2 是合力指对位移 的平均值. (1)质量为 1.0kg 的物块,受变力作用下由静止开始沿直线运动,在 2.0s 的时间内运动了 2.5m 的位移,速度达到了 2.0m/s.分别应用动量定理和动能定理求出平均力 F1 和 F2 的 值. (2)如图 1 所示,质量为 m 的物块,在外力作用下沿直线运动,速度由 v0 变化到 v 时,经
【答案】(1) v1= 6m/s (2) v2=2m/s (3) t=1s 【解析】
【详解】
(1)子弹打入木块过程,由动量守恒定律可得:
解得:
m0v0=(m0+m)v1
v1= 6m/s (2)木块在木板上滑动过程,由动量守恒定律可得:
解得:
(m0+m)v1=(m0+m+M)v2
v2=2m/s (3)对子弹木块整体,由动量定理得:
第 2s 末拉力 F 的功率。
【答案】(1)
(2)
【解析】
【详解】
(1)冲量为:
即前 3s 内拉力 F 的冲量为
(2)设物体在运动过程中所受滑动摩擦力大小为 f,则在
内,由动量定理有:
设在
内物体的加速度大小为 a,则由牛顿第二定律有:
第 2s 末物体的速度为:
第 2s 末拉力 F 的功率为:
v
联立以上方程代入数据可求出 F 的功率为:
(2)对女孩,由动量定理得 100=mv1-mv0,
故作用后女孩的速度
v1
100
50 50
2
m/s
4m/s
根据能量守恒知,男孩消耗的能量为
E
1 2
mv12
2
1 2
mv02
1 2
50 16
50
4
200J
;
3.如图所示,质量为 m=245g 的木块(可视为质点)放在质量为 M=0.5kg 的木板左端,足 够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为 μ= 0.4,质量为 m0 = 5g 的 子弹以速度 v0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取 10m/s2,求: (1)子弹进入木块后子弹和木块一起向右滑行的最大速度 v1 (2)木板向右滑行的最大速度 v2 (3)木块在木板滑行的时间 t
10.如图所示,质量为 M=5.0kg 的小车在光滑水平面上以
速度向右运动,一人背
靠竖直墙壁为避免小车撞向自己,拿起水枪以
的水平速度将一股水流自右向左
射向小车后壁,射到车壁的水全部流入车厢内,忽略空气阻力,已知水枪的水流流量恒为
(单位时间内流过横截面的水流体积),水的密度为
。求:
(1)经多长时间可使小车速度减为零; (2)小车速度减为零之后,此人继续持水枪冲击小车,若要维持小车速度为零,需提供多
子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F= nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv
电场对氙离子做功的功率 P= nqU
则
根据上式可知:增大 S 可以通过减小 q、U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.
的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守
恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.
2.滑冰是青少年喜爱的一项体育运动。如图,两个穿滑冰鞋的男孩和女孩一起在滑冰场沿 直线水平向右滑行,某时刻他们速度均为 v0=2m/s,后面的男孩伸手向前推女孩一下,作 用时间极短,推完后男孩恰好停下,女孩继续沿原方向向前滑行。已知男孩、女孩质量均 为 m=50kg,假设男孩在推女孩过程中消耗的体内能量全部转化为他们的机械能,求男孩 推女孩过程中:
(1)将该离子推进器固定在地面上进行试验.求氙离子经 A、B 之间的电场加速后,通过 栅电极 B 时的速度 v 的大小; (2)配有该离子推进器的飞船的总质量为 M,现需要对飞船运行方向作一次微调,即通 过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度 Δv,此过程中可认为氙 离子仍以第(1)中所求的速度通过栅电极 B.推进器工作时飞船的总质量可视为不变.求 推进器在此次工作过程中喷射的氙离子数目 N. (3)可以用离子推进器工作过程中产生的推力与 A、B 之间的电场对氙离子做功的功率的 比值 S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大 S,并对增大 S 的实 际意义说出你的看法.
②三物体组成的系统动量守恒,由动量守恒定律有:
(m0 m1)v1 (m0 m1)v2 m2v ;
设小车长为
L,由能量守恒有:
m2 gL
1 2
(m0
m1 )v12
1 2
(m0
m1 )v22
1 2
m2v2
联立并代入数值得 L=5.5m ;
点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车
【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得: (2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得: (3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离
(1)求物块与地面间的动摩擦因数 μ; (2)若碰撞时间为 0.01s,求碰撞过程中墙面对物块平均作用力的大小 F;
【答案】(1)0.1(2)500N
【解析】
(1)由动能定理,有-μmgs= 1 mv2- 1 m v 02
Biblioteka Baidu
2
2
可得 μ=0.1
(2)由动量定理,规定水平向左为正方向,有 FΔt=mv′-(-mv) 可得 F=500N
【答案】(1)
(2)
(3)
【解析】 【详解】 (1)弹簧压缩到最短时,A 和 B 共速,设速度大小为 v,由动量守恒定律有
①
得
②
(2)对 A、B 和弹簧组成的系统,由功能关系有
③
得
④
(3)对 A 由动量定理得 ⑤
得
⑥
6.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.