[配电网,馈线,系统,其他论文文档]配电网馈线系统保护原理及分析
配电网馈线自动化系统分析及技术实施要点探析
配电网馈线自动化系统分析及技术实施要点探析摘要:配电网馈线自动化系统在实际的应用中,可以对多种不同的技术故障进行解决,通过自动化系统分析的方式,有利于明确技术实施要点。
本文首先对配电网馈线自动化系统的应用模式进行了分析;其次,探究了配电网馈线自动化系统的主要作用;最后,总结了智能分布式自动化亏吓你保护技术的实施要点,希望能为该领域关注者提供有益参考。
关键词:配电网;电压;馈线自动化;外网电缆引言:我国现代化经济建设进程中,国内电力系统的优化建设,尤其是配电网馈线自动化系统等方面的技术应用,也得到了充分创新与发展。
在现代化的电网规划管理过程中,配电网馈线自动化系统的应用范围也在逐步扩大。
因此,如何将现代化的管理技术与配电网馈线自动化系统有机地融合起来,进一步明确配电网馈线自动化系统的保护技术实施要点,成为了相关领域工作人员的工作重点。
一、配电网馈线自动化系统应用模式(一)无通信馈线自动化配电网馈线自动化系统主要的作用是实现配电自动化,作为实现该项目标的基础,配电网馈线自动化系统技术在实际的应用中,能够充分地提高供电的可靠性。
无通信馈线自动化模式通常也被称为控制馈线自动化模式。
此种模式被表达为重合器-分段器配合型FA,也可以被简称为A型FA。
此种管理模式下,主要是根据就地电压和电流的基本情况,从变电站的出口重合器和断路器的位置,以及线路自动分段器中进行故障判断,以此为基础还可以完成相应的隔离操作与系统恢复。
在对整个系统线路处理中,无须通信的子站和主站系统参与其中就可以进一步完成电压、电流以及电压电流控制型的分化管理。
将完成分化管理的电压、电流与电压电流控制类型,可以简单地表达为A-V、A-I与A-VI型[1]。
(二)有无通信自动化有无通信馈线自动化模式还可以进一步被细化分为以下几种模式:第一种为集中控制模式,也可以被简称为B型FA模式。
此种模式主要是对主站和子站的通信系统进行操作,实现FTU各馈线终端中的故障信息检测。
配电网馈线控制系统结构及模式研究
配电网馈线控制系统结构及模式研究本文重点研究总结了城市配电网馈线控制系统结构和模式,列出了几种馈线自动化的典型控制技术方案,比较了不同方案之间的优劣,分析了完全依赖主站的馈线自动化、以子站为主的馈线自动化和以终端为主的馈线自动化这三种模式的详细论述,总结了各种不同馈线自动化技术方案在不同供电区域的应用。
标签:配电网馈线控制控制系统1 引言配电网馈线自动化融合了现代电子技术、通讯技术、计算机及网络技术等现代新兴技术,将配电系统正常运行及事故情况下的信息反馈运行人员,实现对其现代化的监测、保护、控制和配电管理。
电力系统不断发展,电力用户要求更高的电能质量和供电可靠性,电压波动和短时的停电的事故均导致了巨大的电力系统事故。
[1]。
配网自动化技术充分借鉴了调度自动化技术和变电站综合自动化技术,在微观环节上,配网自动化既包括了与调度自动化相似的控制手段,如SCADA、GSI、APS等,同时还包括类似变电站的控制方式如配电变电站、开闭所、馈线自动化,是二者的结合[2]。
目前,网调、省调和重要变电站通过分层控制实现了输电网自动化,使得其在变电站综合自动化中逐步形成了全分布式自动化系统,具有保护功能相对独立、功能下放、就地安装等绝对优点[3]。
配电网馈线自动化控制是在系统正常运行情况下,通过远方实时监控馈线分段开关和开关,实现远距离分合闸操作,自动记录故障,通过程序识别隔馈线故障部位的距离,在最短时间内恢复对非故障区域供电[4,5]。
在配网自动化中,馈线自动化是最基本也是最重要的部分,其处理故障的控制模式有很多种,本文将讨论如何实现配网馈线自动化最优的控制模式。
2 馈线自动化的控制方式及功能2.1控制方式馈线自动化的控制方式主要有两种,包括远方控制和就地控制,其主要与配电网中可控设备的功能有关。
如果开关设备是电动负荷开关,并有通信设备,那就可以实现远方控制分闸或合闸;如果开关设备是重合器、分段器、重合分段器,它们的分闸或合闸是由这些设备被设定的自身功能所控制,这称为就地控制[6]。
(完整版)配电网馈线系统保护原理及分析
摘要:馈线自动化是配电自动化的主要功能之一。
该文针对中国配电自动化的实施情况,讨论了馈线保护技术的现状及发展,提出了建立在光纤快速通信基础上的配电网馈线系统保护的新原理和新概念。
馈线系统保护充分吸取了高压线路纵联保护的特点,利用馈线保护装置之间的快速通信,一次性地实现对馈线故障的故障隔离、重合闸、恢复供电功能,将馈线自动化的实现方式从集中监控模式发展为分布式保护模式,从而提高了配电自动化的整体功能。
关键词:系统保护;配电自动化;馈线自动化1 引言配电自动化技术是服务于城乡配电网改造建设的重要技术。
配电自动化主要包括馈线自动化和配电管理系统。
通信技术是配电自动化的关键。
目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的3层结构已得到普遍认可[1]。
光纤通信作为主干网的通信方式也得到共识。
馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此进行通信,共同实现具有更高性能的馈线自动化功能。
2 配电网馈线保护的技术现状电力系统由发电、输电和配电3部分组成。
发电环节的保护集中在元件保护,主要目的是确保发电厂当发生电气故障时将设备遭受的损失降到最小。
输电网的保护集中在对输电线路的保护,其首要目的是维护电网的稳定。
配电环节的保护集中在馈线保护上。
配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。
不同的配电网对负荷供电可靠性和供电质量的要求是不同的。
许多配电网仅是考虑线路故障对售电量的影响及对配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户对电能的依赖性越来越大,提高供电可靠性和改善供电电能质量已成为配电网的工作重点。
而配电网馈线保护的主要作用也体现在提高供电可靠性上,具体包括馈线故障切除、故障隔离和恢复供电。
具体实现方式有以下几种。
(1)传统的电流保护过电流保护是最基本的继电保护之一。
配电网馈线系统保护原理及分析
配电网馈线系统保护原理及分析【摘要】配电网馈线系统是电力系统中非常重要的部分,对其进行保护至关重要。
本文首先介绍了配电网馈线系统保护的原理,包括过电流保护、短路保护等。
然后对配电网馈线系统的保护进行了深入分析,探讨了各种可能的故障情况和应对措施。
通过本文的学习,读者可以更加深入地了解配电网馈线系统的保护机制,并掌握如何应对各种故障情况。
在将对整篇文章进行总结,并指出配电网馈线系统保护的重要性。
本文将有助于电力系统相关人员更好地了解和应用配电网馈线系统保护原理,提高电力系统的可靠性和安全性。
【关键词】配电网、馈线系统、保护原理、保护分析、引言、结论1. 引言1.1 引言配电网馈线系统保护原理及分析配电网馈线系统作为电力系统中至关重要的组成部分,其稳定运行对于维护电网安全和可靠性至关重要。
在配电网中,馈线系统起着承载电能输送和供电功能的作用,因此其保护措施显得尤为重要。
本文将就配电网馈线系统的保护原理和保护分析进行详细探讨。
配电网馈线系统的保护原理主要包括保护动作原则、保护动作方式和保护动作逻辑等方面。
保护动作原则是指在电力系统发生故障时,保护设备应根据特定的动作原则实施保护动作,以快速隔离故障区域,保护系统内部设备和人员的安全。
保护动作方式包括电压保护、电流保护、距离保护等多种方式,根据具体的系统要求和故障情况选择合适的保护方式。
保护动作逻辑是指保护设备根据预先设定的逻辑关系,判断故障类型和位置,并进行相应的保护动作。
对配电网馈线系统的保护进行分析,需要考虑系统的拓扑结构、负荷特性、故障特性等因素。
首先需要确定系统的基本参数和特性,包括馈线长度、负载类型、故障类型等。
然后根据系统的运行情况和故障情况,进行保护策略的制定和分析,确保系统在发生故障时能够及时准确地实施保护措施。
同时还需要考虑保护设备的灵敏度和可靠性,以确保保护装置在各种环境条件下都能够正常工作。
结论配电网馈线系统的保护是保障电网安全运行和系统可靠性的重要手段,只有科学合理地设计和运行保护系统,才能有效地保护电力系统设备和人员的安全。
对配电网馈线系统保护技术的若干思考(一)
对配电网馈线系统保护技术的若干思考(一)摘要:配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。
目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。
馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。
本文讨论了配电网馈线保护的发展过程,提出了配电网馈线保护的未来发展趋势。
关键词:配电网馈线系统保护现状发展0引言建立在快速通信基础上的系统保护是继电保护的发展方向之一。
随着配电网改造的深入及配电网自动化技术的发展,系统保护技术可能在配电网中率先得以应用。
1现有的馈线故障处理方案①基于FTU的集中监控方案;②基于重合器的就地控制方案;③基于馈线系统保护的快速保护方案;方案①的集中监控完全依赖于通讯和主站系统,未能将配网自动化的正常运行和紧急控制相分离;方案②、③具有故障处理的相对独立性,但考虑的网络都比较简单,本文从配电网的复杂拓朴结构入手,将馈线终端作为通用控制节点,在二维平面上讨论如何更好地组织、管理馈线控制节点。
通过控制节点之间的快速通讯与协调工作实现面向区域性故障快速隔离的配电网控制技术。
2配电网馈线保护的技术现状电力系统由发电、输电和配电三部分组成。
发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。
输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。
配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。
不同的配电网对负荷供电可靠性和供电质量要求不同。
许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。
配电网馈线自动化技术分析
配电网馈线自动化技术分析随着电力系统的发展和智能化水平的提升,配电网馈线自动化技术逐渐成为电力行业的热点话题。
馈线自动化技术是指利用先进的电力设备、智能化系统和通信技术,对配电网中的馈线进行实时监测、分析和控制,以提高配电网的可靠性、安全性和经济性。
本文将对配电网馈线自动化技术进行深入分析,从技术原理、功能特点、应用案例等方面展开讨论。
一、技术原理配电网馈线自动化技术是基于先进的智能终端设备和通信网络构建的智能化配电系统。
其主要包括以下几个方面的技术原理:1. 智能终端设备:配电网馈线自动化系统需要利用先进的智能终端设备,如智能开关、智能保护装置、智能电能表等,实现对配电网设备状态的检测、监视、保护和控制。
这些智能终端设备具有高精度、高稳定性、快速响应等特点,能够实时采集电力系统数据,为系统的自动化运行提供可靠的数据支持。
2. 通信网络:配电网馈线自动化系统需要建立可靠的通信网络,将各个智能终端设备连接在一起,实现数据的互联互通。
通信网络可以采用有线通信、无线通信等多种技术手段,满足不同环境下的通信需求,确保系统的稳定性和可靠性。
3. 智能控制系统:配电网馈线自动化系统需要配备智能控制系统,利用先进的控制算法和逻辑判定,实现对配电网设备的自动化控制。
智能控制系统能够根据系统状态实时调整操作策略,提高系统的运行效率和安全性。
以上几个方面的技术原理共同构成了配电网馈线自动化技术的核心内容,为电力系统的智能化运行提供了重要的技术支持。
二、功能特点配电网馈线自动化技术具有以下几个主要的功能特点:1. 实时监测与控制:配电网馈线自动化技术能够实时监测配电网设备的运行状态和负荷情况,及时发现故障和异常情况,并采取相应的控制措施,保障系统的安全稳定运行。
2. 智能化分析与判断:配电网馈线自动化技术能够通过智能分析和判断技术,对电力系统的运行情况进行实时评估和分析,为系统的运行优化提供决策支持。
3. 快速故障定位与恢复:配电网馈线自动化技术能够快速定位故障点,并自动切除故障区域,实现自动化的故障恢复,缩短故障处理时间,提高系统的可靠性和供电质量。
配电网馈线系统保护原理及分析馈线原理
《配电网馈线系统保护原理及分析|馈线原理》摘要:引言配电动化技术是城乡配电改造建设重要技术配电动化包括馈线动化和配电管理系统通信技术是配电动化关键,3基馈线动化馈线保护配电动化包括馈线动化和配电管理系统其馈线动化实现对馈线信息采集和控制也实现了馈线保护,馈线保护发展趋势目前配电动化馈线动化较地实现了馈线保护功能引言配电动化技术是城乡配电改造建设重要技术配电动化包括馈线动化和配电管理系统通信技术是配电动化关键目前我国配电动化进行了较多试由配电主、子和馈线终端构成三层结构已得到普遍认可光纤通信作主干通信方式也得到共识馈线动化实现也完全能够建立光纤通信基础上这使得馈线终端能够快速地彼通信共实现具有更高性能馈线动化功能二配电馈线保护技术现状电力系统由发电、输电和配电三部分组成发电环节保护集元件保护其主要目是确保发电厂发生电气故障将设备损失降输电保护集输电线路保护其首要目是维护电稳定配电环节保护集馈线保护上配电不存稳定问题般认馈线故障切除并不严格要是快速不配电对荷供电可靠性和供电质量要不许多配电仅是考虑线路故障对售电量影响及配电设备寿命影响尚将配电故障对电力荷(用户)面影响作配电保护目随着我国济发展电力用户用电依赖性越越强供电可靠性和供电电能质量成配电工作重而配电馈线保护主要作用也成提高供电可靠性和提高电能质量具体包括馈线故障切除、故障隔离和恢复供电具体实现方式有以下几种传统电流保护电流保护是基继电保护考虑到济原因配电馈线保护广泛采用电流保护配电线路般很短由配电不存稳定问题了确保电流保护动作选择性采用配合方式实现全线路保护常用方式有反限电流保护和三段电流保护其反限电流保护配合特性又分标准反限、非常反限、极端反限和超反限参见式()、()、(3)和()这类保护整定方便、配合灵活、价格便宜可以包含低电压闭锁或方向闭锁以提高可靠性;增加重合闸功能、低周减功能和电流接地选线功能电流保护实现配电保护前提是将整条馈线视单元当馈线故障将整条线路切并不考虑对非故障区域恢复供电这些不利提高供电可靠性另方面由依赖延实现保护选择性导致某些故障切除偏长影响设备寿命重合器方式馈线保护实现馈线分段、增加电是提高供电可靠性基础重合器保护是将馈线故障动限制区段有效方式「参考献」参见图重合器R位线路首端该馈线由、B、三分段器分四段当B区段发生故障重合器R动作切除故障、B、分段器失压动断开重合器R延重合分段器电压恢复延合闸样分段器B电压恢复延合闸当B合闸故障重合器R再次跳开当重合器二次重合分段器将再次合闸B将动闭锁分闸位置从而实现故障切除、故障隔离及对非故障段恢复供电目前我国城乡电改造仍有量重合器得到应用这种简单而有效方式能够提高供电可靠性相对传统电流保护有较优势该方案缺是故障隔离较长多次重合对相关荷有定影响3基馈线动化馈线保护配电动化包括馈线动化和配电管理系统其馈线动化实现对馈线信息采集和控制也实现了馈线保护馈线动化核心是通信以通信基础可以实现配电全局性数据采集与控制从而实现配电、配电高级应用()以地理信息系统(G)平台实现了配电设备管理、图管理而、G和体化则促使配电动化成提供配电保护与监控、配电管理全方位动化运行管理系统参见图所示系统这种馈线动化基原理如下当开关和开关发生故障(非单相接地)线路出口保护使断路器B动作将故障线路切除装设处检测到故障电流而装设开关处没有故障电流流动化系统将确认该故障发生与遥控跳开和实现故障隔离并遥控合上线路出口断路器合上络开关3完成向非故障区域恢复供电这种基通信馈线动化方案以集控制核心综合了电流保护、R遥控及重合闸多种方式能够快速切除故障几秒到几十秒实现故障隔离几十秒到几分钟实现恢复供电该方案是目前配动化主流方案能够将馈线保护集成体化配电监控系统从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性整配电动化可以加装电能质量监测和补偿装置从而全局上实现改善电能质量控制三馈线保护发展趋势目前配电动化馈线动化较地实现了馈线保护功能但是随着配电动化技术发展及实践对配电保护目也要悄然发生变化初配电保护是以低成电流保护切除馈线故障随着对供电可靠性要提高又出现以低成重合器方式实现故障隔离、恢复供电随着配电动化实施馈线保护体现基远方通信集控制式馈线动化方式配电动化基础上配电通信得到充分重视成动化核心目前国主流通信方式是光纤通信具体分光纤环和光纤以太建立光纤通信基础上馈线保护实现由以下三部分组成)电流保护切除故障;)集式配电主或子遥控实现故障隔离;3)集式配电主或子遥控实现向非故障区域恢复供电这种实现方式实质上是动装置无选择性动作恢复供电如能够馈线故障保护动作选择性就可以提高馈线保护性能从而次性地实现故障切除与故障隔离这要馈线上多保护装置利用快速通信协动作共实现有选择性故障隔离这就是馈线系统保护基思想四馈线系统保护基原理基原理馈线系统保护实现前提条件如下)快速通信;)控制对象是断路器;3)终端是保护装置而非高压线路保护高频保护、电流差动保护都是依靠快速通信实现主保护馈线系统保护是多两装置通信基础上实现区域性保护基原理如下参见图3所示型系统该系统采用断路器作分段开关如图、B、、、、对变电手拉手线路至部分变电则对应至部分侧馈线系统保护则控制开关、B、、保护单元R至R7组成当线路故障发生B区段开关、B处将流故障电流开关处无故障电流但出现低电压系统保护将执行步骤保护起动R、R、R3分别起动;保护计算故障区段信息;3相邻保护通信;R、R3动作切除故障;5R重合如重合成功至9;6R重合故障再跳开;7R3△测得电压恢复通知R合闸;8R合闸恢复段供电至0;9R3△测得电压恢复R3重合;0故障隔离恢复供电结束故障区段信息定义故障区段信息如下逻辑表示保护单元测量到故障电流逻辑0表示保护单元测量到故障电流但测量到低电压当故障发生系统保护各单元向相邻保护单元交换故障区段对保护单元当身故障区段信息与收到故障区段信息异或出口跳闸了确保故障区段信息识别正确性进行逻辑判断可以增加低压闭锁及功率方向闭锁3系统保护动作速及其备保护了确保馈线保护可靠性馈线首端R处设限电流保护建议整定0秒即要馈线系统保护00完成故障隔离保护动作上系统保护能够0识别出故障区段信息并起动通信光纤通信速很快考虑到重发多帧信息相邻保护单元通信应30完成断路器动作0~00这样只要通信环节理想即可实现快速保护馈线系统保护应用前景馈线系统保护很程上沿续了高压线路纵保护基原则由配电通信条件很可能十分理想基础上实现馈线保护功能性能提高馈线系统保护利用通信实现了保护选择性将故障识别、故障隔离、重合闸、恢复故障次性完成具有以下优()快速处理故障不多次重合;()快速切除故障提高了电动机类荷电能质量;(3)直接将故障隔离故障区段不影响非故障区段;()功能完成下放到馈线保护装置无配电主、子配合四系统保护展望继电保护发展历了电磁型、晶体管型、集成电路型和微机型微机保护拥有很强计算能力也具有很强通信能力通信技术尤其是快速通信技术发展和普及也推动了继电保护发展系统保护就是基快速通信由多位不位置保护装置共构成区域行广义保护电流保护、距离保护及主设备保护都是采集就地信息利用局部电气量完成故障就地切除线路纵保护则是利用通信完成两故障信息交换进行处异地两装置协动作近年出现分布式母差保护则是利用快速通信络实现多装置快速协动作如由位广域电不变电保护装置共构成协保护则很可能将继电保护应用围提高到新层次这种协保护不仅可以改进保护配合共实现性能更理想保护而且可以演生基继电保护相角测量稳定监控协系统基继电保护高精多端故障测距以及基继电保护电力系统动态模型及动态程分析等应用领域目前输电已出现了基G动态稳定系统和分散式行波测距系统配电伴随贼配电动化开展配电馈线系统保护有可能率先得到应用五结论建立快速通信基础上系统保护是继电保护发展方向随着配电改造深入及配电动化技术发展系统保护技术可能配电率先得以应用讨论了配电馈线保护发展程提出了建立配电动化和光纤通信基础上馈线系统保护新原理这种新原理能够进步提高供电可靠性系统保护分布式功能也将提高配电动化主及子性能是种极具前途馈线动化新原理。
配电网馈线自动化技术及其应用
配电网馈线自动化技术及其应用随着社会的发展和电力需求的增长,配电网的稳定和安全变得越来越重要。
而随着科技的发展,配电网馈线自动化技术应运而生,并被广泛应用于实际生产中。
本文将从配电网馈线自动化技术的原理、特点、应用以及未来发展趋势等方面进行详细介绍。
一、配电网馈线自动化技术的原理配电网馈线自动化技术主要是通过对配电网的监测、继电保护、远动管理等方面进行自动化改造,以实现对配电网的智能化控制和管理。
其原理主要包括对配电网各环节的监测和控制,确保配电网各个环节的安全运行。
配电网馈线自动化技术的原理可以简单概括为:通过监测系统对配电网的工作状态进行实时监测,当出现故障或异常情况时,通过自动化系统进行快速处置,保证配电网的安全稳定运行。
1.智能化管理:配电网馈线自动化技术采用先进的监测系统和自动化设备,能够实现对配电网各个环节的实时监测和智能化管理,大大提高了配电网的运行效率和稳定性。
2.快速响应:配电网馈线自动化技术能够实现对配电网故障的快速识别和处理,大大缩短了故障处理时间,提高了配电网的可靠性和稳定性。
3.灵活性:配电网馈线自动化技术可以根据不同的配电网需求进行灵活配置,适应不同类型的配电网和不同工作环境的需求。
4.节能环保:配电网馈线自动化技术能够提高配电网的运行效率,减少能源消耗,从而达到节能环保的效果。
随着科技的不断发展和配电网的不断完善,配电网馈线自动化技术也在不断创新和发展。
未来,配电网馈线自动化技术的发展趋势主要表现在以下几个方面:1. 人工智能技术的应用:未来,随着人工智能技术的发展,配电网馈线自动化技术将更加智能化,能够实现对配电网的智能化管理和控制。
3. 全面覆盖:未来,随着配电网馈线自动化技术的不断完善,将实现对配电网的全面覆盖,提高了配电网的整体运行效率和安全稳定性。
随着配电网馈线自动化技术的不断创新和发展,将为配电网的安全稳定运行提供更强有力的保障,有利于推动配电网的智能化管理和控制,提高配电网的整体运行效率和可靠性。
关于10kV配电网馈线自动化系统控制技术分析
关于10kV配电网馈线自动化系统控制技术分析摘要:馈线自动化是配电网自动化的重要组成部分,研究10kV配电网馈线自动化系统的控制技术对于配电网的安全运行具有重要意义文章主要介绍了10kV配电网馈线自动化系统的控制方式和功能,并且,对其控制技术进行了相应的分析,对就地智能分布式馈线自动化控制技术、重合器方式的就地式馈线自动化控制技术、主站集中式馈线自动化控制技术和子站监控式馈线自动化控制技术做了详细的论述,旨在为相关技术人员提供参考。
关键词:10KV配电网;控制技术;馈线自动化馈线自动化是指在配电网正常运行的情况下,对馈线的电压、电流、联络开关以及分段开关的状态等进行远方实时监控,并负责线路开关远方合战、分闸的操作,而在配电网出现故障时,及时获取故障相关数据,对馈线故障段进行识别和迅速隔离,并恢复对正常区域的供电。
目前馈线自动化技术在我国的配电网中已经获得了广泛的应用,其中的主站系统和智能配电终端技术已经相当成熟,但对故障的自动识别、自动定位和自动隔离等技术还很浅显,有待完善和发展。
一、馈线自动化的控制方式和功能(一)控制方式馈线自动化的控制方式主要有两种:就地控制方式和远方控制方式。
开关设备若是重合分段器等,通过自身所预设的功能实现对分、合闸的控制,就可称之为就地控制;开关设备若是电动负荷开关,且配有通信设备,便可对开闸、合闸进行远方控制。
其中,远方控制可以分为两种方式,一是分散式;二是集中式。
(二)控制功能馈线自动化的运行动态监控是指实时监控线路中的电流、电压、功率因素等电气参数,监视线路联络开关、分段开关的运行状态,实现三遥(遥测、遥信、遥控)或运动的功能。
如果配电网系统中发生永久性的故障,开关设备就会通过有序地运行对故障区进行隔离,并迅速恢复供电。
为保障非故障段的供电质量,可对网络机构进行适当的调整。
如果故障是瞬时性的,在故障电流被切断时一般就会消失,开关重新合闸后就可以恢复供电。
二、10kV配电网馈线自动化系统的控制技术(一)就地智能分布式馈线自动化控制技术就地智能分布式馈线自动化控制技术以线路中的电流、电压为故障段的判断依据,根据故障线路的过流规律、失压情况等,重新规划网络方案。
配电网馈线自动化技术及其应用
配电网馈线自动化技术及其应用随着社会经济的快速发展和城市化进程的加快,对电力供应的需求越来越大。
传统的电力配网往往存在着很多问题,如配电网故障率高、供电可靠性低、故障定位时间长等。
为了解决传统电网存在的问题,提高供电可靠性和维护效率,配电网馈线自动化技术应运而生。
本文将从配电网馈线自动化技术的基本原理、应用现状和发展趋势等方面进行探讨。
一、配电网馈线自动化技术的基本原理配电网馈线自动化技术是指通过先进的通信、计算机、自动控制等技术手段,实现对配电网馈线设备的监测、控制、故障定位和恢复等操作,从而提高配电网的供电可靠性和投资效益。
1.监测和控制功能馈线自动化系统通过安装传感器和智能设备,实时监测馈线设备的运行状态和电气参数。
一旦发现异常情况,系统即可自动进行相应控制操作,例如切换负载、故障分段隔离、跳闸刀闸等,保证配电网的正常运行。
2.故障定位和恢复功能当馈线设备发生故障时,自动化系统可以通过故障信号定位、智能分析等手段,快速准确地确定故障位置,并自动进行分段隔离和恢复操作,缩短供电中断时间,提高供电可靠性。
3.智能控制和运维管理馈线自动化系统可以通过先进的计算机和通信技术,实现对配电网设备的智能控制和运维管理,提高管理效率和节约运行成本。
目前,我国城市配电网馈线自动化技术已经得到了广泛应用,取得了明显的效果。
主要体现在以下几个方面:1.设备智能化配电网馈线自动化技术通过引入智能终端设备和传感器,实现对配电设备的实时监测和数据采集,为运维管理提供了有效的数据支持。
2. 运行效率提升通过自动化系统的监控和控制功能,可以降低人工巡检频率,减少了运维成本,提高了运行效率。
3. 供电可靠性提高馈线自动化技术可以实现快速准确的故障定位和恢复,缩短了供电中断时间,提高了供电可靠性。
4. 运维管理智能化通过自动化系统的智能控制和运维管理功能,提高了运维管理的智能化水平,减轻了运维管理人员的工作负担。
5.经济效益突出自动化系统的应用大大提高了供电可靠性,减少了停电损失,增加了经济效益。
配电网直供区10kV馈线保护
2.2 几种保护方案
调研情况,结合配电网的具体特点,通过综合分析, 提炼出了4 10kV 馈线保护的几种可行性方案, 主要有 两类, 即二段式电流保护和三段式电流保护, 其中二 段式电流保护以“ 速断+ 过流” 进行配置, 这种保护 灵活多样,连同三段式电流保护,概括如下:
掌握保护装置的 整定技巧, 又要考虑继电 保护的配置
与选型,还要考虑电力系统的结构和运行。
根 我 对 有 表 的 个 、 、城 的 据 们 具 代 性 十 大 中尘 市
2 10kV 馈线的整定方案
2.1 1O 配电网保护整订的相关原则 kV
20 第 07年 , 气 俄59 2期电 映 }
产 品 与应 用
第一类: 二段式电流保护,即 I 段为电流速断 保护,II 段为过流保护,其配置和整定方法遵从三
在二段式保护的①、②及第二类的三段式电流 保护速断时限均为 0,但动作值相差两倍多,即① 的保护范围较长,所以①误动作的几率要高一些。 二段式保护的①和③比较,动作值相当,但时 限相差 0.2^-0.3s。 这就要考虑到出线若发生近端故
障,是否会对变压器产生损伤。③较①延长 0.20.3s,因此方式③对变压器的冲击会大一些。 一个配电网要采用什么样的保护,不能生搬硬 套各个具体方案,因为配电网的建设以实际用户需
求为前提,所以配电网的保护要根据具体的配电网 实际情况, 结合理论分析, 灵活运用。 一般情况下, 如果线路较短、负荷集中的线路,可以考虑采用二 段式保护的①; 但如果线路长且负载较大,T 接用 户较多,再采用二段式保护的①就容易引起出线开 关的误动作。这时可以考虑投入速断延时加过流保 护,例如采用二段式的③,如晋江市 l O 配电网 kV 线路长、负荷较集中且容量大,采用的就是这种保 护方式 (3 ) ; 也可以将长线路分段,每段采用速断 延时加过流保护,其中各段的速断保护允许有一小 的时限级差进行配合,如泉州的 lO 保护就是这 kV 种应用的典型; 再如,若 lO 配电网采用环网形 kV 式开环运行,可以考虑采用二段式保护的②,并结 合重合闸前加速,如杭州的 l O 配网保护采用的 kV 就是这种方式。从实际运行实际情况来看,这些保 护方案是满足供电可靠性的。当然,三段式电流保 护也是较为可靠的一种保护方式,有些有条件的地 区己经将其投入运行。从 .l O 配网供电可靠性的 kV 要求上看,灵活使用二段式电流保护,完全可以满 足要求,因此,二段式电流保护是应用最普遍的馈 线保护方式。 3.2 保护装置动作时限对变压器的影响 运行人员在选择保护方案时, 对速断的延时是否 影响到变压器的性能存在顾虑。 变压器承受短路的动
配电网馈线体系维护原理及剖析
配电网馈线体系维护原理及剖析配电主动化技能是效劳于城乡配电网改造发明的首要技能,配电主动化包含馈线主动化和配电处理体系,通讯技能是配电主动化的要害。
如今,中国配电主动化进行了较多试点,由配电主站、子站和馈线终端构成的三层构造已得到广泛认可,光纤通讯作为骨干网的通讯办法也得到一同。
馈线主动化的结束也彻底能够树立在光纤通讯的根底上,这使得馈线终端能够活络地互相通讯,一同结束具有更高功用的馈线主动化功用。
二.配电网馈线维护的技能现状电力体系由发电、输电和配电三有些构成。
发电环节的维护会集在元件维护,其首要意图是确保发电厂发作电气缺陷时将设备的扔掉降为最小。
输电网的维护会集在输电线路的维护,其首要意图是维护电网的安稳。
配电环节的维护会集在馈线维护上,配电网不存在安稳疑问,通常以为馈线缺陷的切除并不严峻恳求是活络的。
纷歧样的配电网对负荷供电牢靠性和供电质量恳求纷歧样。
很多配电网仅是思考线路缺陷对售电量的影响及配电设备寿数的影响,没有将配电网缺陷对电力负荷(用户)的负面影响作为配电网维护的意图。
跟着中国经济的翻开,电力用户用电的依托性越来越强,供电牢靠性和供电电能质骤变成配电网的作业要害,而配电网馈线维护的首要效果也变成跋涉供电牢靠性和跋涉电能质量,详细包含馈线缺陷切除、缺陷阻隔和康复供电。
详细结束办法有以下几种:2.1传统的电流维护过电流维护是最根柢的继电维护之一。
思考到经济要素,配电网馈线维护广泛选用电流维护。
配电线路通常很短,由于配电网不存在安稳疑问,为了确保电流维护动作的挑选性,选用时刻协作的办法结束全线路的维护。
常用的办法有反时限电流维护和三段电流维护,其间反时限电流维护的时刻协作特性又分为规范反时限、十分反时限、极点反时限和超反时限,拜见式(1)、(2)、(3)和(4)。
这类维护整定便当、协作活络、报价廉价,一同能够包含低电压闭锁或方向闭锁,早年进牢靠性;添加重合闸功用、低周减载功用和小电流接地选线功用。
10kV电力配网馈线自动化技术分析
10kV电力配网馈线自动化技术分析摘要:在我国社会经济快速发展的背景下,各行各业的生活和工作都离不开电力的有效支撑,因此,人们对于用电量的需求也呈现出逐年攀升的状态。
为了能够确保供电的可靠性和稳定性,为电力行业提出了更高的要求和标准。
电力配网馈线自动化是配网自动化中的重要组成部分,他不仅能够实现对配电线路运行情况的实施监督,而且还能够在第一时间内发现故障线路,并且将故障线路进行有效的切除,进而确保供电的稳定性和可靠性。
所以,10千伏电力配网馈线自动化技术对于确保电网的安全运行起到了非常重要的作用。
本文主要对10千伏电力配网馈线自动化技术进行了详细的分析与探讨,希望能够为电力行业的快速发展提供参考性的意见或者是建议。
关键词:10千伏、电力配网馈线自动化、技术分析引言:在配电网正常运行的前提下,馈线自动化技术不仅能够对馈线的电压、电流及分段开关的实时状态进行远程的监控和管理,同时还能够通过远程的操作实现线路的开合和分闸内容,尤其是当配电网出现故障的时候,配网馈线自动化系统更是能够在最快的时间将故障进行有效的隔离,进而确保其他线路的稳定运行。
从目前来看,10千伏电力配网馈线自动化技术已经被广泛的应用到配电网中。
一、配电网馈线自动化技术的主要功能在配网自动化系统中,配网的馈线自动化系统不仅具有远程监控的功能,而且还能够将馈线在运行过程中出现的故障问题进行实时的解决与处理。
在进行故障处理的过程中不仅能够把馈线的运行负荷进行重新的优化与整合,以此来确保配电网供电系统的安全稳定运行。
除此之外,在电力系统正常运行的过程中,配电网馈线的自动化系统还能够实现将超负荷运行的配电网系统进行系统的正常切换功能,以此来实现对整个配电系统的正常运行设计。
在完成以上功能的过程中,馈线自动化技术主要是通过馈线开关来实现对配电网系统的远程监控操作的。
与此同时配网馈线自动化系统还能够实现对操作的内容进行详细的记录功能[1]。
二、10千伏电力配网馈线自动化技术的工作原理当10千伏电力配网馈线在自动化的系统中正常运行时,在对于馈线运行过程中出现得故障问题的决绝措施主要是通过与电力系统的变电站出现断路器设备的有效配合下,才能够及时的将出现的故障问题进行隔离或者是解决处理。
配电网馈线组自动化技术及其应用分析
配电网馈线组自动化技术及其应用分析引言随着社会的不断发展,电力需求量不断增加,配电网的安全可靠运行变得尤为重要。
而馈线组是配电网的重要组成部分,其自动化技术的应用对于提高配电网的可靠性、安全性和经济性具有重要意义。
本文将对配电网馈线组自动化技术进行分析,并探讨其在实际应用中的优势和挑战。
一、馈线组自动化技术的概念和原理1.1 概念馈线组自动化技术是指利用先进的电气设备、智能控制系统和现代通信技术,对配电网的馈线组进行自动监测、控制和调度,以提高其运行效率、可靠性和安全性的一种技术手段。
1.2 原理馈线组自动化技术主要包括以下几个方面的内容:(1)监测技术:通过智能仪表和传感器等设备对馈线组的电压、电流、功率等参数进行实时监测,获取配电网的运行状态信息。
(2)控制技术:通过智能控制器对馈线组进行实时控制,实现供电装置的远程操作或自动控制。
(3)保护技术:通过保护装置对馈线组进行实时保护,当出现故障时能够立即切除故障部分,保障配电网的安全运行。
(4)通信技术:通过现代通信技术实现馈线组之间、以及馈线组与配电网调度中心之间的信息传输和数据交换,实现远程监控和调度。
二、馈线组自动化技术的应用优势2.1 提高运行效率馈线组自动化技术能够实现对配电网的实时监测、控制和调度,能够及时发现和处理故障,提高配电网的运行效率,降低故障处理时间,减少停电损失。
2.2 提高供电质量通过馈线组自动化技术,能够实现对电压、频率等供电质量参数的实时监测和调节,提高供电质量,降低谐波、电压波动等问题,保障用户电力设备的安全运行。
2.3 提高系统可靠性通过自动化技术实现馈线组的远程监测和控制,可以减少人为因素对系统的影响,提高系统的可靠性和稳定性,确保配电网的安全运行。
2.4 降低管理成本自动化技术的应用可以减少人力资源的投入,降低管理成本,提高管理效率,降低运行维护成本,实现电网的智能运行与管理。
三、馈线组自动化技术的应用挑战3.1 技术成熟度目前,我国配电网自动化技术仍处于发展的初期阶段,各种技术标准和设备规格尚未统一,技术成熟度还有待提高。
配电网馈线组自动化技术及其应用分析
配电网馈线组自动化技术及其应用分析随着电力系统的不断发展和城市化进程的加快,人们对电力供应质量和可靠性的要求越来越高。
在此背景下,配电网自动化技术应运而生,成为保障电力系统运行安全、提高供电质量的重要手段之一。
配电网馈线组自动化技术作为其重要组成部分,对提高配电网的运行效率、可靠性和经济性具有重要意义。
本文将围绕配电网馈线组自动化技术及其应用进行分析。
一、配电网馈线组自动化技术的概念及原理馈线组自动化技术是指在配电网中,对馈线组进行监测、控制和保护的自动化系统。
其主要包括远动检测、远动控制和远动保护等功能,通过智能终端设备和通信网络实现对馈线组的实时监测和远程控制,提高了配电网的运行效率和可靠性。
配电网馈线组自动化技术依托智能终端设备,对馈线组的各种参数进行实时监测和数据采集,包括电压、电流、功率因数、频率等。
然后,利用通信网络将监测数据传输至监控中心,实时反映馈线组的运行状态。
根据监测数据,通过远程控制设备对馈线组进行调控,保障配电网的稳定运行。
2.1 配电网馈线组自动化技术在供电企业中的应用在供电企业中,配电网馈线组自动化技术被广泛应用于各个配电环节,包括配电变压器、高压开关柜、配电线路等,通过实施远动检测、远动控制和远动保护等功能,提高了配电网的智能化水平,减少了人为操作的影响,提高了供电可靠性。
在新能源并网配电网中,配电网馈线组自动化技术通过对新能源发电系统进行监测和调控,实现了新能源与传统能源的协调运行,提高了新能源发电系统的可靠性和经济性,为新能源发展提供了可靠的配电保障。
随着人工智能、大数据和云计算等新技术的不断发展,配电网馈线组自动化技术将更加智能化,智能设备将能够更好地理解运行环境和用户需求,实现更加精准的监测和控制。
随着物联网和5G技术的快速发展,配电网馈线组自动化技术将更加信息化,实现设备之间的实时互联互通,提高了信息传输的速度和精准度。
配电网馈线组自动化技术将更加注重节能减排和环保,推动新能源的应用和发展,实现能源的绿色可持续利用,为环保事业做出更大贡献。
配电网馈线自动化解决方案的技术策略分析
配电网馈线自动化解决方案的技术策略分析摘要:随着国家科技水平的不断提高,我国的电力行业发展速度也非常的迅猛,配电网馈线系统是电网的重要组成部分,对配电网馈线进行完善,将有助于提高我国电网的发展水平。
配电网馈线是供电公司的关键设备,提升配电网馈线技术的含量对于整个电网的发展具有积极作用。
本文通过对当前配电网馈线的自动化需求的分析,提出了相应的技术对策。
关键词:配电网馈线、自动化解决方案、技术策略分析引言:作为国家重点行业之一的发电公司,其发展的快慢关系到国家的经济发展。
当前,我国已对电力系统进行了大规模的投资,而配电网馈线的自动控制工程就是其重点的一部分。
在配电网馈线的线路自动控制中,应结合电力企业的具体情况,改进供电线路的供电方式,以保证配电网馈线能更好地满足供电公司的需要。
一、配电网馈线自动化概述配电网馈线是电力系统中的一个关键环节,配电网馈线的自动控制是实现电力网整体传输功能的有效途径[1]。
在我国的电力市场上,由于电力行业的发展,电力市场上的电力供应企业在电力市场上的投入并不多。
在我国电网的初期,由于传统的自动化技术只能用于单个电网,而不能实现较高的运行。
但从当前的发展状况来看,这项技术在多个电网中得到了广泛的运用,并在此基础上发展出了一些新的技术,以满足配电网的复杂运行。
由于传统的配电自动化设备采用的是地线,所以它的工作机理比较单一,一旦出现了问题,就可以按照预定的方法进行定位。
由于该设备运行时没有联网通讯,因而不具备监控和远程控制的能力。
在进行多个阶段的运行,需要通过切换来实现,从而大大的增加了维修周期。
同时,由于在运行过程中,会发生许多的重复作业,导致电力供应受到很大的冲击,从而导致电力供应效率下降。
因此,为了使配电网有效地进行传输,需要寻找一种较为完善的自动控制方案。
二、配电网馈线自动化的要求(一)配电自动故障的探测和辨识要想准确地确定了系统的运行状态,必须对系统进行准确的故障定位识别。
配电网馈线自动化技术分析
配电网馈线自动化技术分析配电网是电力系统的一个重要组成部分,它将高压输电的电能通过馈线分布到各个用电点,为城市、工业、农业等各个领域提供电力服务。
馈线自动化技术是一项重要的电力自动化技术,在保障电力供应质量、提高供电可靠性等方面发挥了重要作用。
本文将从馈线自动化技术的原理和应用两个方面进行具体分析。
一、馈线自动化技术的原理馈线自动化技术的实现原理是通过自动化控制和监测设备对馈线运行状况进行监测、分析和控制。
馈线自动化技术涉及的具体装置有:1.监测装置:包括电压、电流、功率、电能等量测装置,用于实时监测馈线运行参数。
2.保护装置:主要包括过电流、过负荷、短路等装置,用于及时切断故障电路,保护设备和人身安全。
3.控制装置:主要包括断路器、隔离开关、接地开关等装置,用于实现馈线的控制和切换。
4.通信装置:包括通讯网络、遥控和遥信等装置,用于馈线与调度中心的信息交换和控制。
以上装置通过配合使用,可以实现对馈线的自动化控制和监测,为运行管理人员提供实时运行参数、故障状态等信息,实现对馈线运行的有效管理和控制。
馈线自动化技术在现代配电网的运行中得到广泛应用,主要体现在以下几个方面:1.故障检测和定位配电网馈线故障是影响供电可靠性的重要因素,对于故障的及时检测和定位是提高供电可靠性的关键措施。
馈线自动化技术可以利用过电流、过负荷等保护装置实现故障检测,同时利用通讯装置和配电网监测中心的信息交换,实现对故障位置的快速定位,为故障处理提供便利。
2.供电质量控制现代城市的电力需求不仅关注电量的充足,还要求电力供应的质量,如电压、频率等参数应控制在一定范围内,以保证各类电气设备的正常运行。
馈线自动化技术可以通过电压、频率等量测装置对馈线运行参数进行实时监测和控制,保障电力供应质量。
3.馈线控制和管理配电网馈线的开关控制和切换是馈线自动化技术的关键应用领域,它可以通过隔离开关、接地开关等控制装置实现馈线的各种操作控制,如切换、投切等操作。
配电网馈线组自动化技术及其应用分析
配电网馈线组自动化技术及其应用分析随着配电网的发展,配电网的馈线组也越来越重要。
馈线组是一个集中式的电力系统,由变电站或配电站供电,充当着为业主提供电力稳定供应的角色。
然而,传统的馈线组存在着许多弊端,比如功率不足、传输效率低下等等,这就需要我们进行相关的自动化技术改进。
一、馈线组自动化技术的研究进展1. 基本原理馈线组的自动化技术是将传统的馈线组变得更加智能和高效。
其基本原理是通过计算机技术和通信技术,将馈线组连接到基于互联网的控制系统中,实现馈线组的远程控制。
2. 技术手段馈线组自动化技术主要包括:数据采集、数据传输、数据处理和控制策略等技术手段。
其中,在数据采集方面,采用传感器技术、无线通信等技术手段,对馈线组中的电能参数、状态等信息进行采集。
在数据处理方面,采用计算机技术、数据挖掘等技术手段,对采集的数据进行分析、处理和存储,从而为控制策略制定提供依据。
在控制策略方面,采用模糊控制、神经网络控制等技术手段,制定出使馈线组达到更好状态的控制策略。
3. 技术特点馈线组自动化技术最具有特点的是简单、智能、高效、节能等。
它能够更快更准确地捕获电网中各种异常情况,并快速进行反应和处理。
通过智能化的控制,馈线组的效率也会得到极大的提高。
简单化、智能化的操作也为电网工作人员减轻了很多工作负担,提高了工作效率。
馈线组自动化技术近年来在电网领域得到了广泛应用。
馈线组自动化技术不仅应用于城市配电网,还在农村电网、工业电网以及机场、港口等特殊场所的电网中使用。
当前我国在和其他国家比较,还存在馈线组自动化技术水平较低的问题,但是越来越多的城市已经开始推广使用该技术。
例如,上海市的馈线组自动化技术推广已经有了非常显著的效果。
从馈线组自动化技术推广开始,上海市的电力供应效率迅速提高,大大减轻了电力工作人员的工作负担。
目前,馈线组自动化技术已经在上海市的所有配电站中推广,越来越多的城市也开始引入该技术。
三、结语无论是在城市配电网、农村电网还是其他特殊场所的电网中,馈线组的作用都是至关重要的。
配电网馈线系统保护原理及分析
配电网馈线系统保护原理及分析摘要:随着城市建设的道路上,输配电发挥了不可替代的作用,在改善城乡配电网的改造建设上实现了自动化,主要包括馈线自动化和配电管理的系统。
我国的配电网自动化技术发展迅速,主要由配电主站,配电子站、配电馈线终端构成了三层结构,并且在发展中逐渐获得认可,本文就对馈线系统保护的原理进行详细的分析。
关键词:配电网馈线系统保护远离措施前言:馈线自动化技术的实现是需要建立在光纤通信的基础上的达到快速通信的目的,最终实现更高性能的馈线自动化功能,改进配电玩馈线系统保护的目的。
1.配电网馈线保护的技术现状电力系统是由发电、配电、输电三部分组成,每一部分的保护程序不同,发电注重的是元件保护,输电注重的线路的保护,而配电网的馈线保护则主要针对的是馈线的保护,馈线的故障排除对及时性要求不高。
随着我国经济的进步,时代的发展,电力用户用电的依赖性正在逐渐提高,为用户提供安全电,可靠电成为了电力系统的工作核心,馈线保护保护切除故障,隔离故障,恢复系统的供电目前我国的配电保护技术发展迅速,主要分为以下几种方式:第一,传统的电流保护措施,相对来说,其较为经济可靠,方便、可靠、灵活,但是其在保护的措施上存在着整体性,忽略了无故障区域的供电,降低了经济、合理性;同时,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。
第二,重合器方式的馈线保护,实现馈线的分段保护,增加电源点是确保电力系统安全的基础,重合器保护是将馈线故障限制在一个区域内的技术,其原理是将故障区与非故障区分开,恢复非故障区的供电,迅速对故障予以排除,实现整体的供电。
这一方法简单、有效,但是其在隔离的时候所需时间较长,多次重合会对相关的负荷产生一定的影响。
第三,基于馈线自动化的馈线保护,这是科学技术发展的产物,配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。
这是目前得到认可并且迅速普及的新型技术,在整个电网的自动化中,其弥补了传统方式的不足,充分结合现代技术进行电量的控制,从整体上改善了馈线自动化的保护。
10kV配电网馈线自动化系统控制技术分析实践
10kV配电网馈线自动化系统控制技术分析实践【摘要】现代新型配网技术被运用到各个地区的电网系统中,使电力系统能够给电力用户提供更为完善的电力供给服务。
随着现代电网的覆盖面逐步扩大,配电控制工作的难度也在不断增加,为了可以更加高效地完整配电网全面管控工作,可运用自动化馈线控制技术,打造出全新的电网控制系统,适应各种配电网运行环境。
本文对配电网中使用的新型馈线自动化控制技术展开探讨。
【关键词】10kV配电网;馈线自动化系统;控制技术当前配电网系统中,馈线自动化技术属于基础性技术,其稳定地支持自动化配电网运行,系统在常规的配网条件下,可以实时化手段来远程监控馈线运转情况,监测内容包括馈线电压、电流、联络开关与分段开关等,监测的同时还可实现合闸与开闸等动作,如果配电线路形成故障问题,系统能够自动地记录故障情况,对故障线路实施隔离,其他区域的电路能够继续正常地进行供电活动。
现研究配电网中运用的监管与控制馈线自动化系统技术。
1 馈线自动化控制系统概述1.1 系统控制方式一般来说,在 10kV 配电网中的馈线自动化系统分为远方控制与就地控制两种方式,而在实际的运行中,选择哪种方式往往是根据可控设备的功能来决定的。
如果可控设备拥有通信功能的电动负荷开关,则可以通过发送远程指令来达到控制开关设备分、合闸的动作的目的。
而如果可控设备为重合器或者分段器,亦或是重合分段器,则要通过将开关的分、合闸控制事先设定到设备上的方式来实现,这也就是常说的就地控制系统。
另外,远方控制系统则可以分为集中式与分散式两种,集中式的原理主要是通过由 FTU 提供的相关信息,经过 SCADA系统技术对信息进行判断和处理后,再做出准确的控制操作,也可以称作主从式控制技术。
分散式就是指由 FTU 向馈线系统中的开关控制设备发出操作指令,当控制器受到指令后,根据指令中的信息进行综合的判断并实施相关动作实现控制的技术。
1.2 主要控制功能馈线自动化系统可监测配电网的实际运行状况,支持的监控内容极为丰富,可对多种不同的配电开关进行有效监管,同时在远程技术条件下控制配电线路中的联络开关与分段开关,达到实时化监控的技术运用目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电网馈线系统保护原理及分析
一引言
配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。
目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。
馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。
二。
配电网馈线保护的技术现状
电力系统由发电、输电和配电三部分组成。
发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。
输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。
配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。
不同的配电网对负荷供电可靠性和供电质量要求不同。
许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。
具体实现方式有以下几种:
2.1传统的电流保护
电流保护实现配电网保护的前提是将整条馈线视为一个单元。
当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。
另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。
2.2重合器方式的馈线保护
实现馈线分段、增加电源点是提高供电可靠性的基础。
重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献」。
参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。
当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C
分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。
同样,分段器B电压恢复后延时合闸。
当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。
目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。
该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。
2.3基于馈线自动化的馈线保护
这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。
该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。
同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。
三。
馈线保护的发展趋势
目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。
但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。
最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。
在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。
目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。
建立在光纤通信基础上的馈线保护的实现由以下三部分组成:
1)电流保护切除故障;
2)集中式的配电主站或子站遥控FTU实现故障隔离;
3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。
这种实现方式实质上是在自动装置无选择性动作后的恢复供电。
如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。
这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。
四。
馈线系统保护基本原理
4.1 基本原理
馈线系统保护实现的前提条件如下:
1)快速通信;
2)控制对象是断路器;
3)终端是保护装置,而非TTU.
在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。
基本原理如下:
参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。
变电站N则对应于C至F之间的部分。
N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。
当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。
但出现低电压。
此时系统保护将执行步骤:
Step2:保护计算故障区段信息;
Step3:相邻保护之间通信;
Step4:UR2、UR3动作切除故障;
Step5:UR2重合。
如重合成功,转至Step9;
Step6:UR2重合于故障,再跳开;
Step7:UR3在△T内未测得电压恢复,通知UR4合闸;
Step8:UR4合闸,恢复CD段供电,转至Step10;
Step9:UR3在△T时间内测得电压恢复,UR3重合;
Step10:故障隔离,恢复供电结束。
4.2 故障区段信息
定义故障区段信息如下:
逻辑1:表示保护单元测量到故障电流,
逻辑0:表示保护单元未测量到故障电流,但测量到低电压。
当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。
为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。
4.3 系统保护动作速度及其后备保护
在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。
光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。
断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。
4.4 馈线系统保护的应用前景
馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。
由于配电网的通信条件很可能十分理想。
在此基础之上实现的馈线保护功能的性能大大提高。
馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:
(1)快速处理故障,不需多次重合;
(2)快速切除故障,提高了电动机类负荷的电能质量;
(3)直接将故障隔离在故障区段,不影响非故障区段;
(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。
四。
系统保护展望
继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。
微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。
通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。
系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。
电流保护、距离保护及主设备保护都是采集就地信息,利用局部电气量完成故障的就地切除。
线路纵联保护则是利用通信完成两点之间的故障信息交换,进行处于异地的两个装置协同动作。
近年来出现的分布式母差保护则是利用快速的通信网络实现多个装置之间的快速协同动作如果由位于广域电网的不同变电站的保护装置共同构成协同保护则很可能将继电保护的应用范围提高到一个新的层次。
这种协同保护不仅可以改进保护间的配合,共同实现性能更理想的保护,而且可以演生于基于继电保护相角测量的稳定监控协系统,基于继电保护的高精度多端故障测距以及基于继电保护的电力系统动态模型及动态过程分析等应用领域。
目前,在输电网中已经出现了基于GPS的动态稳定系统和分散式行波测距系统。
在配电网,伴随贼配电自动化的开展。
配电网馈线系统保护有可能率先得到应用。
五。
结论
建立在快速通信基础上的系统保护是继电保护的发展方向之一。
随着配电网改造的深入及配电网自动化技术的发展,系统保护技术可能在配电网中率先得以应用。
本文讨论了配电网馈线保护的发展过程,提出了建立在配电自动化和光纤通信基础之上的馈线系统保护新原理。
这种新原理能够进一步提高供电可靠性。
同时,系统保护分布式的功能也将提高配电自动化的主站及子站的性能,是一种极具前途的馈线自动化新原理。