指数与指数函数练习题

合集下载

高三数学指数与指数函数试题

高三数学指数与指数函数试题

高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。

指数函数基础练习.docx

指数函数基础练习.docx

练习题一,选择题1.下列函数是指数函数的是()A.y = -2xB. y = 2x+,C. y = 2_xD. y=l x2.函数y =@—2尸在R上为增函数,则a的取值范围是()A. a>0 且a7^1B. a>3C. a<3D. 2<a<33.函数y=厂2+1@〉0, a^l)的图象必经过点( )A. (0,1)B. (1,1)C. (2,0)D. (2,2)4.f(x)=|jl|x|, xGR,那么班0是()A.奇函数且在(0, + <-)上是增函数B.偶函数且在(0, + 8)上是增函数C.奇函数且在(0, + 8)上是减函数D.偶函数且在(0,5.方程广「命的解为()A. 2B. -2C. -1D. 16.方程4^=令的解为()A. 2B. -2C. -1D. 17.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。

经过3个小时,这种细菌由1个nJ繁殖成()A.511 个B.512 个C.1O23 个D1024 个8.在统一平面直角坐标系中,函数/(兀)8. 设a,b,c,d 都是不等于1的正数,y = a\y = h\y = c\y = d x 在同一•处标系中的图像如图所示,则a,b,c,d 的10. y= 0.3戶的值域是( )4. (-oo,0) B.[l,+x) C.(0,l] 0.(- oo,l]11. 当xe[-l,l]时函数/(x) = 3v -2的值域是()A. --,1 B\-1,1] C. 1,- D.[0,l3 3 2 2 1 1 | £ 512. 化简(/沪)(—3决质)十(丄,沪)的结果 ( ) A . 6a B • -a C . -9a D . 9a 2设指数函数/(x) = a x (a > 0卫主1),则下列等式中不正确的是(0,1] B • (04) C • (0,+o>)13. 14. f(nx) = [f(x)]n (n e Q) f(xyy=[f(x)]n {f(y)Y (n G N") 函数 y = (x-5)°4-(x-2p{x \ x 5,x 工 2} B . {x\x > 2}{x\x>5} D . {x\2< x < 5^x > 5}15. 函数/(x) = 2-,A 1的值域是16. 若指数函数y = (a + \)x 在(—oo, + 00)上是减函数,那么(A 、 0 < a < IB 、 -l<a <0C 、D 、 a <-11&函数/(x) = 2V , g(x) = x + 2,便.f(x) = g(x)成立的x 的值的集合() A 、是0 B 、有且只有一个元索C 、有两个元素D 、有无数个元素19.下列关系式中正确的是( )9 ( 1 \3 ( 1 \3 ( \ \3 A.-<2_L5 < 丄 B.- < - 3 \2 J(2 丿 \ 2> (1 < 1 \3 (1、 1 r 1 \i c. 2-1-5 < 1 —< A D.2 15 < - < 1 (2丿a二,填空题1. 两数y=pa"—1的定义域是( — 8, 0],则实数a 的取值范围为 _________2. 函数 f (x )=(*)_l, xe [ — 1, 2]的值域为 _______ ・3. 函数/(兀)=G 沏+1(。

高中数学《指数函数》针对练习及答案

高中数学《指数函数》针对练习及答案

第二章函数2.4.2 指数函数(针对练习)针对练习针对练习一指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a>0,b>0).(1)a222.计算或化简下列各式:(1)(a-2)·(-4a-1)÷(12a-4)(a>0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0. 3.计算:(1)1111242 114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+-++⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a ba b a b->>⎛⎫⎪⎝⎭4.计算:(1)10132114(2)924---⎛⎫⎛⎫-⨯-+-⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯5.(1)()2163278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .47.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x8.下列函数中为指数函数的是( ) A .23x y =⋅ B .3x y =-C .3x y -=D .1x y =9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠110.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A.1 B .2C D .3针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,5413.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞ C .(,2]-∞ D .[2,)+∞17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,120.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,222.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0 C .5 D .923.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,225.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e --=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .4037.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-第二章 函数2.4.2 指数函数(针对练习)针对练习针对练习一 指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a >0,b >0).(1)a2 2.【答案】(1)52a ; (2)136a ; (3)7362a b ; (4)76a . 【解析】 【分析】由根式与有理数指数幂的关系,结合指数幂的运算性质化简求值即可. (1)原式=11522222a a a a +⋅==. (2)原式=22313333262a a a a +⋅==. (3)原式=1221711333233332622222()()a ab a a b a b a b +⋅===.(4)原式=55722666a a a a --⋅==. 2.计算或化简下列各式: (1)(a -2)·(-4a -1)÷(12a -4)(a >0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0.【答案】(1)-13a ;(2)-1679.【解析】 【分析】直接根据指数幂的运算性质计算即可. 【详解】(1)原式21434114(12)33a a a a ----+=-÷=-=-(2)原式213227118500--⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭213323()5002)12-⎡⎤=-+-+⎢⎥⎣⎦=49+20+1=- 1679. 3.计算:(1)1111242114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+++ ⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭【答案】(1)-16 (2)(0,0)a a b b>> 【解析】 【分析】(1)根据分数指数幂的运算规则化简计算即可; (2)根据分数指数幂的运算规则化简得出结果. (1)原式=111222411010233-⎫⎫⎛⎫⨯⨯++⨯+ ⎪⎝⎭⎝⎭⎝⎭(12410223⎫=⨯-⨯+⎝⎭220216=-+=-(2)原式543311233(0,0)a baa b bab a b-==>> 4.计算:(1)1132114(2)924---⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯【答案】(1)196(2)【解析】 【分析】(1)利用指数幂的运算性质即可求解.(2)利用根式与分数指数幂的互化以及指数幂的运算性质即可求解. (1)原式1111924()1218236=-⨯-+=++-=. (2)原式24119555636333222221[(8)](10)10(2)1010102---=⨯÷=⨯÷=⨯721102=⨯=== 5.(1)()21603278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.【答案】(1)8π+;(2)85. 【解析】 【分析】(1)(2)均根据指数幂的运算性质即可计算; 【详解】(1)原式233(2)=-1+|3﹣π|162(2)+=4﹣1+π﹣3+23=π+8.(2)原式3332223322248510a b a b--⋅==.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】直接根据指数函数的定义依次判断即可. 【详解】根据指数函数的定义,知①①中的函数是指数函数, ①中底数不是常数,指数不是自变量,所以不是指数函数; ①中4x 的系数是1-,所以不是指数函数; ①中底数40-<,所以不是指数函数. 故选:B .7.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x【答案】A 【解析】 【分析】根据指数函数定义判断. 【详解】B 中底数90-<,C 中指数是1x -,不是x ,D 中5x 前面系数不是1,根据指数函数定义,只有A 中函数是指数函数, 故选:A.8.下列函数中为指数函数的是( )A .23x y =⋅B .3x y =-C .3x y -=D .1x y =【答案】C 【解析】 【分析】根据指数函数的定义,逐项判定,即可求解. 【详解】根据指数函数的定义知,()0,1xy a a a =>≠,可得函数23x y =⋅不是指数函数;函数3x y =-不是指数函数;函数3x y -=是指数函数;函数1x y =不是指数函数. 故选:C.9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1【答案】C 【解析】 【分析】根据已知条件列不等式,由此求得正确选项. 【详解】由已知得244101a a a a ⎧-+=⎪>⎨⎪≠⎩,即2301a a a a ⎧+=⎪⎨⎪≠⎩,解得3a =.故选:C10.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A .1 B .2 CD .3【答案】C 【解析】 【分析】由指数函数所过的点求解析式,进而求(1)f -的值. 【详解】由题意,21(2)3f a ==,又a >0,则a =①()x f x =,故1(1)f --== 故选:C针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数的解析式可得函数2x y -=是以12为底数的指数函数,再根据指数函数的图像即可得出答案. 【详解】解:由122xxy -⎛⎫== ⎪⎝⎭,得函数2x y -=是以12为底数的指数函数,且函数为减函数,故D 选项符合题意. 故选:D.12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,54【答案】C 【解析】 【分析】由直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b 即可求解. 【详解】解:直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,511423>>, 所以a ,b ,c ,d 的值分别是12,1354, 故选:C.13.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-【答案】C 【解析】 【分析】令10x -=求出定点的横坐标,即得解. 【详解】解:令10,1-=∴=x x .当1x =时,()1111=2f a -=+,所以函数()f x 的图象过点()1,2. 故选:C.14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +【答案】B 【解析】 【分析】由指数函数过定点的性质进行求解. 【详解】()x f x a =的图象恒过定点()0,1,所以()1x f x a =+的图象恒过定点()0,2故选:B15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1【答案】B 【解析】 【分析】根据指数函数的知识确定正确选项. 【详解】当10x -=,即1x =时,()12f =, 所以()f x 过定点()1,2. 故选:B针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞C .(,2]-∞D .[2,)+∞【答案】D 【解析】 【分析】根据函数的定义域定义求解即可. 【详解】要使得函数y 则390x -≥,39x ≥,233x ≥,解得2x ≥.故函数y [2,)+∞. 故选:D.17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞【答案】D 【解析】求出使函数式有意义的自变量的范围即得、 【详解】由21020x x ⎧-≥⎨-≠⎩得02x x ≥⎧⎨≠⎩,即[0,2)(2,)x ∈⋃+∞.故选:D.18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】求得4x f ⎛⎫= ⎪⎝⎭0,结合指数函数的性质求解即可. 【详解】因为()f x =所以4x f ⎛⎫= ⎪⎝⎭因为44440,44,1,44x x x x -≥≤≤≤,所以4xf ⎛⎫⎪⎝⎭的定义域为(],4-∞,故选A .【点睛】本题主要考查函数的定义域以及指数函数的单调性的应用,是基础题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,1【答案】B 【解析】 【分析】抽象函数的定义域求解,要注意两点,一是定义域是x 的取值范围;二是同一对应法则下,取值范围一致. 【详解】()y f x =的定义域为()0,1,1021x-∴<<,即121121x x ⎧-<-<⎨≠⎩,10x x <⎧∴⎨≠⎩,解得:1x <且0x ≠, ()()21x F x f ∴=-的定义域为()(),00,1-∞⋃.故选:B .20.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1【答案】C 【解析】 【分析】由题意可得10x a -≥,对a 讨论,分1,01a a ><<,运用指数函数的单调性,列不等式即可得到a 的范围. 【详解】要使函数0y a >且1)a ≠有意义, 则10x a -≥, 即01x a a ≥=, 当1a >时,0x ≥;当01a <<时,0x ≤,因为y =的定义域为(],0-∞ 所以可得01a <<符合题意,a ∴的取值范围为01a <<,故选C.【点睛】本题考查函数的定义域以及指数函数的单调性,注意运用偶次根式被开方式非负,意在考查分类讨论思想与运算能力,属于中档题.针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,2【答案】D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.【详解】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,①()222111t x x x =-=--≥-,①(],2120ty ⎛⎫⎪⎭∈= ⎝,①函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D22.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0C .5D .9【答案】A 【解析】 【分析】设23x t =,则2()21=-+f t t t 利用函数()f t 单调性可得答案. 【详解】设23x t =,则()22()211=-+=-f t t t t (3t ), 对称轴为1t =,所以()f t 在[)3,+∞上单调递增,所以2min ()(3)32314f t f ==-⨯+=.故选:A.23.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞【答案】C 【解析】 【分析】将函数化为121xyy+=-,利用20x >列出关于y 的不等式,解出不等式即可. 【详解】设2121x x y -=+,由原式得121xy y +=-,20x >, 101yy+∴>-, ①11y -<<,即函数()f x 的值域为(1,1)-. 故选:C24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,2【答案】A 【解析】 【分析】先求出12x y -=在[)1,+∞上的取值范围,再利用分段函数的值域进行求解.【详解】因为12x y -=在[)1,+∞上单调递增, 所以当1≥x 时,1022=1x y -=≥, 若函数()f x 的值域为R ,则1201231a a a ->⎧⎨-+≥⎩, 解得102a ≤<. 故选:A.25.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32【答案】C 【解析】当0a >且1a ≠时,函数为指数型函数,需要分情况进行讨论解决.当1a >时,函数2x y a =-是增函数;当01a <<时,函数2x y a =-是减函数,由此结合条件建立关于a的方程组,解之即可求得答案. 【详解】当1a >时,2xy a =-在[]1,1-上为增函数, 211523a a-=⎧⎪∴⎨-=-⎪⎩,解得3a =;当01a <<时,2xy a =-在[]1,1-上为减函数,523121a a⎧-=-⎪⎪∴⎨⎪-=⎪⎩,解得13a =.综上可知:3a =或13. 故选:C 【点睛】关键点点睛:本题主要考查了指数函数的单调性和值域,解题的关键是利用函数的单调性求解函数值域,但含有参数时往往需要讨论.针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞【答案】A 【解析】 【分析】利用复合函数的单调性“同增异减”来解题. 【详解】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞. 故选:A.27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】根据复合函数单调性法则“同增异减”求解即可. 【详解】解:因为函数2231y x x =-+在区间3,4⎛⎫-∞ ⎪⎝⎭上单调递减,在3,4⎡⎫+∞⎪⎢⎣⎭上单调递增,函数12xy ⎛⎫= ⎪⎝⎭在定义域内是单调递减函数,所以,根据复合函数单调性法则“同增异减”得223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:D28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-【答案】C 【解析】 【分析】根据复合函数单调性来求得a 的取值范围. 【详解】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-. 故选:C29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据分段函数的性质,以及函数()f x 在R 上单调递减,结合指数函数的性质,可知011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,求解不等式,即可得到结果. 【详解】①函数()f x 在R 上单调递减,①011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,解得1233a <≤,实数a 的取值范围是12,33⎛⎤⎥⎝⎦. 故选:A.30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,【答案】C 【解析】 【分析】根据()f x 的单调性列不等式组,由此求得a 的取值范围. 【详解】 函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,,若()f x 在R 上为单调递增函数,则()14201421a a a a ⎧->⎪>⎨⎪-⨯≤⎩,解得423a ≤<;若()f x 在R 上为单调递减函数,则()142001421a a a a ⎧-<⎪<<⎨⎪-⨯≥⎩,无解. 综上所述,实数a 的取值范围为423⎡⎫⎪⎢⎣⎭,. 故选:C针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<【答案】C 【解析】 【分析】根据指数函数的单调性判断指数式的大小关系. 【详解】由题设,42a -=,2b =,122c =,又2x y =在定义域上递增, ①a c b <<. 故选:C.32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a【答案】B 【解析】 【分析】结合指数函数、幂函数的单调性确定正确选项. 【详解】4x y =在R 上递增,14y x =在()0,∞+上递增.123111334442422893c a b ==<==<==.故选:B33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞【答案】A 【解析】 【分析】根据指数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; 【详解】解:因为12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭等价于214a a +<-,解得1a <,即原不等式的解集为(,1)-∞ 故选:A34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞【答案】B 【解析】【分析】利用指数函数的单调性得到自变量的范围,进而得到指数函数的值域. 【详解】 由221139x x -+⎛⎫ ⎪⎝⎭可得2212(2)1339x x x -+--⎛⎫= ⎪⎝⎭,因为3x y =在R 上单调递增, 所以2124x x +-+即x 2+2x -3≤0, 解得:31x -≤≤ , 所以31222x y -=,即函数2x y =的值域是1,28⎡⎤⎢⎥⎣⎦,故选:B .35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-【答案】D 【解析】 【分析】先根据题干条件和函数13xy ⎛⎫= ⎪⎝⎭的单调性得到a b >,A 选项可以利用函数的单调性进行判断,BC 选项可以举出反例,D 选项用不等式的基本性质进行判断. 【详解】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,若1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则a b >,对于选项A :若a b >,因为()3f x x =单调递增,所以33a b >,故A 错误;对于选项B :当a b >时,若0c ,则ac bc =,故B 错误;对于选项C :由a b >,不妨令1a =,2b =-,则此时11ab>,故C 错误; 对于选项D :由不等式性质,可知D 正确. 故选:D.针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e--=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .40【答案】A 【解析】 【分析】根据()0.1f t =列式,并根据给出参考数据,结合指数函数的性质解相应的指数方程,即可得答案. 【详解】解:因为()0.1f t =,0.22(340)1()1t f t e--=+,所以0.22(340)10.11t e--=+,即0.22(340)011t e --=+,所以0.22(340)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈, 所以0.22(23).240t e e --≈,所以()0.22340 2.2t --≈,解得10t ≈. 故选:A.37.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天【答案】B 【解析】 【分析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为0 3.22R =,10T =,01R rT =+,所以可以得到01 3.2210.22210R r T --===0.2220(0)1I e ⨯==,由题意可知0.2224t e >,ln 42ln 220.696.20.2220.2220.222t ⨯>=≈≈ 所以至少需要7天,累计感染病例数增加至(0)I 的4倍 故选:B38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h【答案】C 【解析】 【分析】根据已知的函数模型以及已知数据,待定系数即可求得结果. 【详解】由题意知1080e b =,1010120e e e k b k b +==⋅,所以()21051201ee 10809kk===, 所以51e 3k =,所以151e 27k =,所以15151ee e 10804027k bk b +=⋅=⨯=. 故选:C .39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时【答案】D 【解析】 【分析】根据题意建立方程组,进而解出11e ,e b k ,然后将22代入即可求得答案. 【详解】由题意,331133e 1922411e e 19282e24b k k k b+⎧=⇒==⇒=⎨=⎩,所以该食品在22C ︒的保鲜时间是2222e e e 1192484k b k b +=⋅=⨯=.故选:D.40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-【答案】A 【解析】 【分析】把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+可求得实数k 的值.【详解】由题意,把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+中得2080e 2060k -+=,可得201e2k-=, 所以,20ln 2k -=-,因此,ln 220k =. 故选:A.。

高一数学上册第二章--指数函数知识点及练习题(含答案)

高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。

指数与指数函数最有效训练题

指数与指数函数最有效训练题

指数与指数函数最有效训练题(限时45分钟)1.函数2(33)x y a a a =-+是指数函数,则有( )A a=1或a=2B a=1C a=2D 0a >且1a ≠2.设0.90.48 1.512314,8,()2y y y -===,则( )A 312y y y >>B 213y y y >>C 123y y y >>D 132y y y >>3.设函数()f x 定义在实数集上,其图像关于直线x=1对称,且当1x ≥时,()31x f x =-,则有( ) A 132()()()323f f f << B 231()()()323f f f << C 213()()()332f f f << D 321()()()233f f f << 4. 函数()22x x f x -=-是( )A 奇函数,在区间(0,)+∞上单调递增B 奇函数,在区间(0,)+∞上单调递减C 偶函数,在区间(,0)-∞上单调递增D 偶函数,在区间(,0)-∞上单调递减.5.若关于x 的方程9(4)340x x a ++•+=有解,则实数a 的取值范围是( ) A (,8)[0,)-∞-+∞ B (,4)-∞- C [8,4)- D (,8]-∞- 6.函数221(0)(1)(0)(){ax ax x a e x f x +≥-<=在R 上单调,则a 的取值范围是( )A (,(1,2]-∞B [1)[2,)-+∞C (1)D )+∞7.不等式2223330x x a a •-+-->,当01x ≤≤时,恒成立,则实数a 的取值范围为 .8. 函数1(2y =的单调递增区间是 .9.已知关于x 的方程923310x x k -⨯+-=有两个不同实数根,则实数k 的取值范围为 .10. 偶函数()f x 满足 (1)(1)f x f x -=+,且在[0,1]x ∈时,()f x x =,则关于x 的方程1()()10x f x =,在[0,2014]x ∈上的解的个数是 . 11.已知函数()x f x b a =⋅(其中a,b 为常数且0,1)a a >≠的图像经过点A (1,6),B (3,24).(1)确定()f x .(2)若不等式11()()0x x m a b +-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围.12.已知函数1()(),[1,1]3x f x x =∈-,函数2()[()]2()3g x f x af x =-+的最小值为h(a).(1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①3m n >>;②当h(a)的定义域为[n,m]时,值域为22[,]n m .若存在,求出m,n 的值;若不存在,说明理由.。

指数与指数函数练习题

指数与指数函数练习题

指数与指数函数练习题1. 指数运算练习题(1) 计算 $2^4$。

(2) 计算 $(-3)^2$。

(3) 计算 $(-2)^3$。

(4) 计算 $0^5$。

(5) 计算 $1^8$。

2. 指数运算规律练习题(1) 计算 $2^3 \cdot 2^5$。

(2) 计算 $\left(3^2\right)^4$。

(3) 计算 $5^2 \cdot 5^3$。

(4) 计算 $(-2)^4 \cdot (-2)^2$。

(5) 计算 $10^3 \cdot 10^0$。

3. 指数函数绘图练习题(1) 绘制函数 $y = 2^x$ 的图像。

(2) 绘制函数 $y = \left(\frac{1}{2}\right)^x$ 的图像。

(3) 绘制函数 $y = 3^x$ 的图像。

(4) 绘制函数 $y = \left(\frac{1}{3}\right)^x$ 的图像。

(5) 绘制函数 $y = 4^x$ 的图像。

4. 指数函数性质练习题(1) 函数 $y = 2^x$ 是否有对称轴?解释原因。

(2) 函数 $y = \left(\frac{1}{3}\right)^x$ 的图像位于哪个象限?解释原因。

(3) 函数 $y = 5^x$ 是否有零点?解释原因。

(4) 函数 $y = 2^x$ 是否有最大值或最小值?解释原因。

(5) 函数 $y = \left(\frac{1}{4}\right)^x$ 是否有水平渐近线?解释原因。

5. 指数函数方程练习题(1) 解方程 $2^x = 8$。

(2) 解方程 $5^x = 1$。

(3) 解方程 $3^x = 27$。

(4) 解方程 $2^x = \frac{1}{16}$。

(5) 解方程 $\left(\frac{1}{2}\right)^x = 4$。

以上是关于指数与指数函数的练习题,通过解答这些问题,可以加深对指数运算、指数函数绘图、指数函数性质以及解指数函数方程的理解和掌握。

2020-2021学年数学第一册专题强化训练3指数运算与指数函数含解析

2020-2021学年数学第一册专题强化训练3指数运算与指数函数含解析

2020-2021学年新教材北师大版数学必修第一册专题强化训练3指数运算与指数函数含解析专题强化训练(三)指数运算与指数函数(建议用时:40分钟)一、选择题1.若a〈错误!,则化简错误!的结果是()A.错误!B.-错误!C.错误!D.-错误!C[∵a〈错误!,∴2a-1<0,于是,原式=错误!=错误!。

]2.若函数f(x)=错误!·a x是指数函数,则f错误!的值为() A.2B.-2 C.-2错误!D.2错误!D[∵函数f(x)是指数函数,∴错误!a-3=1,∴a=8.∴f(x)=8x,f错误!=8错误!=错误!=2错误!.]3.函数y=a x+1(a>0且a≠1)的图象必经过点()A.(0,1) B.(1,0)C.(2,1) D.(0,2)D[因为a0=1,所以,当x=0时,y=1+1=2。

]4.已知函数f(x)=3x-错误!错误!,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D .是偶函数,且在R 上是减函数A [∵函数f (x )的定义域为R ,f (-x )=3-x -错误!错误!=错误!错误!-3x =-f (x ),∴函数f (x )是奇函数.∵函数y =错误!错误!在R 上是减函数,∴函数y =-错误!错误!在R 上是增函数.又∵y =3x 在R 上是增函数,∴函数f (x )=3x -错误!错误!在R 上是增函数.故选A 。

]5.函数f (x )=(错误!)错误!的单调递减区间为( )A .(-∞,+∞)B .[-3,3]C .(-∞,3]D .[3,+∞)D [令u =x 2-6x +5=错误!错误!-4,则u 的单调递增区间为错误!,又y =错误!错误!是减函数,所以函数f (x )=(错误!)错误!的单调递减区间为[3,+∞)]二、填空题6.方程3x -1=19的解为________.-1 [∵3x -1=错误!=3-2,∴x -1=-2,∴x =-1.]7.我国的人口约13亿,如果今后能将人口数年平均增长率控制在1%,那么经过x 年后我国人口数为y 亿,则y 与x 的关系式为_____________.y =13×(1+1%)x ,x ∈N * [经过1年后人口数为13×(1+1%)=13(1+1%);经过2年后人口数为13×(1+1%)2;…经过x年后人口数为13×(1+1%)x。

第一单元 指数与指数函数精选考题答案

第一单元 指数与指数函数精选考题答案

第一单元 指数与指数函数1.求下列各式的值:(1(2)(3)(420)a >;(52分析:根式的运算一般都转化成分数的指数计算,当式子中含有根式与分数指数幂时,应统一为分数指数幂进行计算,当根式中式具体数字时,要考虑运用配方计算。

解:(14214171114433346244[3(3)](3)33+⨯=⨯====(2)111111111236332362323()(32)232362-+++=⨯⨯⨯⨯=⨯=⨯= (3)222131131315533342442424124(55)555555555--=-÷=÷-÷=-=-=(41252222362132aaa a a--==== (5331725255101751055555+--===2.化简下列各式: (1)11122()()x x x xx --++-;(2)222222223333x y x y xyxy--------+--+-;(3)3333441()()[(1)()]a a a a a a a a ----+-÷++-分析:在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,尽可能的统一成分数指数幂形式,再利用幂的运算性质进行化简,还要注意平方差、立方差、立方和公式的应用。

解:(1)111133133222222()()()()x x x x x x x xx ----++-=-=-(2)2222222222222222233333333322223333()()[()()]2()x y x y x x yy x x yy xy xyxy-----------------+--=-+-++=-=-+-(3)323232324411441()()[()()][(1)()](1)()a a a a a a a a a a a a a a --------=-÷++-==+++-原式 3.(1)指出下列函数中:①4x y =;②4y x =;③4x y =-;④(4)x y =-;⑤x y π=;⑥24x y =;⑦x y x =;⑧1(21)(,1)2xy a a a =->≠且,其中是指数函数的是:__①⑤⑧___。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.若,则在,,,中最大值是()A.B.C.D.【答案】C【解析】由指数函数的性质,得,;由幂函数的性质得,因此最大的是.【考点】指数函数和幂函数的性质.2.设,,,则()A.b<a<c B.c<a<b C.c<b<a D.a<c<b【答案】B【解析】,,【考点】指数函数和对数函数的性质.3.设均为正数,且,,.则()A.B.C.D.【答案】C【解析】分别为方程的解,由图可知.【考点】函数图像4.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图:,即,故选B.【考点】函数图像5.已知函数和函数,其中为参数,且满足.(1)若,写出函数的单调区间(无需证明);(2)若方程在上有唯一解,求实数的取值范围;(3)若对任意,存在,使得成立,求实数的取值范围.【答案】(1)的单调增区间为,,单调减区间为;(2)或;(3).【解析】(1)当时,,由二次函数的图像与性质可写出函数的单调区间;(2)先将在上有唯一解转化为在上有唯一解,进而两边平方得到或,要使时,有唯一解,则只须或即可,问题得以解决;(3)对任意,存在,使得成立的意思就是的值域应是的值域的子集,然后分别针对与两种情形进行讨论求解,最后将这两种情况求解出的的取值范围取并集即可.试题解析:(1)时, 1分函数的单调增区间为,,单调减区间为 4分(2)由在上有唯一解得在上有唯一解 5分即,解得或 6分由题意知或即或综上,的取值范围是或 8分(3)则的值域应是的值域的子集 9分①时,在上单调递减,上单调递增,故 10分在上单调递增,故 11分所以,即 12分②当时,在上单调递减,故在上单调递减,上单调递增,故所以,解得.又,所以 13分综上,的取值范围是 14分.【考点】1.二次函数的图像与性质;2.指数函数的图像与性质;3.函数的单调性与最值.6.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.7.将函数的图像向左平移一个单位,得到图像,再将向上平移一个单位得到图像,作出关于直线对称的图像,则的解析式为 .【答案】【解析】根据平移口诀“上加下减”可得函数解析式为,函数解析式为,因为图像与图像关于直线对称,所以函数与函数互为反函数。

指数与指数函数题型归纳(非常全)

指数与指数函数题型归纳(非常全)

指数与指数函数题型归纳(非常全)-CAL-FENGHAI.-(YICAI)-Company One1指数式及指数函数题型归纳(2019.10.25)一. 指数幂与根式的互化:题组一:根式化为分数指数幂(1) 化简√a 12√a 12√a =________. (2) 计算2√a ⋅√a23=________.(3)若a <0,则√aa 3=________. (4)√a √a a 的值为( )题组二:运用分数指数幂进行化简:(1)下列各式中错误的是( ) 1. A. 225×2 52=2B. (127)−13=3 C. √26=√23 D. (−18)23=2. 化简(a 23a 12)×(-3a 12a 13)÷(13a 16a 56)的结果( )A. 6aB. −aC. −9aD. 9a 23.(1)计算:1612+(181)−0.25−(−12)0 (2)化简:(2a 14a −13)(−3a −12a23)÷(−14a −14a −23).(3)(√23×√3)6+(√22)43-4(1649)−12-√24×80.25-(-2009)0.题组三:指数式的条件求值问题:1.已知a 12+a −12=3,求下列各式的值(写出过程):(1)a 1+a −1 (2)a 2+a −2 (3)a 32+a −32=2.(1)已知a +a −1=3,求a 12+a −12a 2+a −2+3的值.(2)已知2x +2-x =3,则 4x +4-x =______ .题组四:利用指数函数比较大小;1.下列各式比较大小正确的是: 1.72.3______ 1.74 ; 0.6−1______ 0.62 ; 1.70.3______ 0.92.3 0.8−0.1______ 1.250.22.已知a =(13)−1.1,a =a 0,a =30.9,则a ,b ,c 三者的大小关系是()A. a <a <aB. a <a <aC. a <a <aD. a <a <a3. 已知a =(35)25,b =(25)35,c =(25)25,则()A. a <a <aB. a <a <aC. a <a <aD. a <a <a题组五:指数函数过定点问题;1.函数f (x )=2-a x +1(a >0且a ≠1)的图象恒过定点( )A. (0,2)B. (1,2)C. (−1,1)D. (−1,2) 2.函数y =a x -3+1(a >0且a ≠1)图象一定过点______ .3.函数y =a −a2+2a +3(a >0,a ≠1)的图象经过定点为______4. 题组六:指数函数解方程(或不等式);1. 设集合A ={x |-1<x <2},{x |18<(12)x <1},则A ∩B =()A. (0,3)B. (1,3)C. (0,2)D. (1,+∞)2.(1)不等式3−a2+2a>13a +4的解集为________.(2)不等式2x-2>22x+4的解集为______(3)求不等式a 2x -7>a 4x -1(a >0,且a ≠1)中x 的取值范围3.方程4x -6×2x +8=0的解是______ .题组七:指数函数有关图像问题;1.函数a (a )=a a +a −1(其中0<a <1且0<a <1)的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2. 若函数y =a x +b 的部分图象如图所示,则( )A. 0<a <1,−1<a <0B. 0<a <1,0<a <1C. a >1,−1<a <0D. a >1,0<a <13.函数f (x )=-3|x |+1的图象大致是( )A. B. C. D.4.函数a =aa a|a |(a >1)的图象的大致形状是( )A. B.C. D.5.如图①a =a a ,②a =a a ,③a =a a ,④a =a a ,根据图象可得a 、b 、c 、d 与1的大小关系为( )A. B. C.D.题组八:指数函数有关复合函数问题:1.(1)函数a =(13)a 2−6a的单调递增区间为______( 2 ) 函数a =2−a2−4a的单调递减区间为_____ 2.(1)函数y =(12)−a2+2a的值域是( ) A. RB. [12,+∞)C. (2,+∞)D. (0,+∞)(2)函数a (a )=(13)a 2−6a +5的值域为_____ (3)函数a =2a2−1的值域是______ 3.求函数y =3−a 2+2a +3的定义域、值域和单调区间.题组九:指数函数与其它函数交汇问题: 1.已知a (a )=a a 1+a a(a ≠0),则a (−2018)+a (−2017)+⋯+a (2017)+a (2018)=( )A. 2018B.40372C. 2019D.403922.已知函数a (a )={3a −1,a >0−2a 2−4a ,a ⩽0,若方程a (a )=a 有3个不等的实根,则实数a 的取值范围是________.3.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是______.4.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =______.5.函数a (a )=4a −2a +1+3的定义域为a ∈[−12,12]. (Ⅰ)设a =2a ,求t 的取值范围; (Ⅱ)求函数a (a )的值域.6.已知函数a (a )=a −2a 1+2a(a ∈a ),且a ∈a 时,总有a (−a )=−a (a )成立.(1)求a 的值;(2)判断并证明函数a (a )的单调性; (3)求a (a )在[0,2]上的值域.6.已知定义域为R的函数,a(a)=−2a+a2a+1+a是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.答案和解析1.【答案】C【解析】【分析】本题主要考查指数幂的计算,要求熟练掌握指数幂的运算法则,属基础题. 根据分数指数幂的运算法则进行求解即可.【解答】解:由条件知a≥0,则√a12√a12√a=√a12√a12+12=√a12⋅√a=√a12⋅a12=a12.故选C.2.【答案】A【解析】【分析】本题考查有理指数幂的运算法则的应用,考查计算能力,属于基础题.利用已知条件,通过开方运算,求解即可,利用a12+a−12=√(a12+a−12)2,即可得.【解答】解:由a+1a=7,可得a>0,a12+a−12>0,∴a12+a−12=√(a12+a−12)2=√7+2=3,故选A.3.【答案】B【解析】【分析】本题考查指数运算及倒序相加法进行求和,属于中档题.由已知a (a )+a (−a )=a a1+a a +a −a1+a −a =1+a a1+a a =1,再利用倒序相加进行求和即可求解. 【解答】解: 由已知有a (a )+a (−a )=a a 1+a a+a −a 1+a −a =1+a a1+a a =1,设a =a (−2018)+a (−2017)+⋯+a (2017)+a (2018), 则a =a (2018)+a (2017)+⋯+a (−2017)+a (−2018), 两式相加得2T =4037×1, 所以a =40372.故选B .4.【答案】C【解析】【分析】本题考查有理指数幂的化简求值,是基础的计算题.化根式为分数指数幂,再由有理指数幂的运算性质化简求值. 【解答】 解:2√a ⋅√a23=a 2⋅a −12⋅a −23=a 2−12−23=a 56. 故选C . 5.【答案】A【解析】解:原式=a 32−12a 14−14=a ,故选:A根据指数幂的运算性质计算即可.本题考查了指数幂的运算性质,属于基础题. 6.【答案】A【解析】【分析】本题考查了指数函数解析式,由已知解析式得到5a +b =3,所求为5a •5b ,利用同底数幂的乘法运算转化即可,属于中档题. 【解答】解:因为f (x )=5x ,因为f (a +b )=3,所以5a +b =3, 则f (a )•f (b )=5a •5b =5a +b =3. 故选A . 7.【答案】B【解析】【分析】本题主要考查函数值的计算,利用指数幂的运算性质是解决本题的关键,比较基础.根据指数幂的运算性质,进行平方即可得到结论. 【解答】解:∵f (x )=3x +3-x , ∴f (a )=3a +3-a =4, 平方得32a +2+3-2a =16, 即32a +3-2a =14.即f (2a )=32a +3-2a =14. 故选B . 8.【答案】D【解析】解:∵a <0,ax 3≥0, ∴x ≤0,∴√aa 3=|x |√aa =-x √aa ,故选:D由题意可得x ≤0,即可求出答案.本题考查了根式的化简,属于基础题. 9.【答案】B【解析】【分析】本题考查了交、并、补集的混合运算,考查了不等式的解法,是基础题. 求解一元二次不等式和指数不等式化简集合M ,N ,然后直接利用补集和交集的运算求解. 【解答】解:由题意,集合M ={x |x 2+x -6<0}={x |-3<x <2}, N ={x |(12)a ≥4}={x |x ≤-2},全集为R ,所以∁a a ={x |x >-2},所以M ∩(∁a a )={x |-2<x <2}, 所以M ∩(∁a a )=(-2,2). 故选B .10.【答案】A【解析】解:A 、原式=225+52=22910; B 、原式=(3−3)−13=3;C 、原式=√26=(22)16=√23;D 、原式=(−2−3)23=(−2)−2=14.故选:A根式与分数指数幂的互化公式是√a a a =a aa ,分数指数幂公式是x -n =1a a (x ≠0),按公式运算即可.本题考查了根式与分数指数幂的互化以及负分数指数幂的运算问题,是基础题.11.【答案】C【解析】【分析】根据指数幂的运算性质计算即可.本题考查了分数指数幂和根式的互化,以及指数幂的运算性质,属于基础题.【解答】解:√a√a a=(a·(a·a12)12)12=a78,故选C.12.【答案】C【解析】解:(a23a12)(−3a12a13)÷(13a16a56)=(−3)÷13×a23+12−16a12+13−56=-9a故选:C.由指数幂的运算法则直接化简即可.本题考查指数式的化简、指数幂的运算法则,考查运算能力.13.【答案】D【解析】解:a=(13)−1.1=31.1,a=a0=1,a=30.9,∵指数函数a=3a在R上单调递增,∴31.1>30.9>30=1,即有a>c>b,即b<c<a.故选:D.运用指数函数的单调性,可得31.1>30.9>1,即可得到a,b,c的大小关系.本题考查指数函数的单调性的运用:比较大小,考查运算能力,属于基础题.14.【答案】B【解析】【分析】本题考查函数的定义域与值域,以及函数图象的判断,属于基础题.先求出函数的定义域,再分别讨论x>0,x<0时函数的范围,由此判断函数的图象即可.【解答】解:函数f(x)=a aa的定义域为:(−∞,0)∪(0,+∞),排除选项A.当x>0时,函数f(x)=a aa>0,选项C不满足题意.当x<0时,函数f(x)=a aa<0,选项D不正确,故选B.15.【答案】C【解析】【分析】本题考查识图问题,利用特值或转化为比较熟悉的函数,利用图象变换或利用函数的性质是识图问题常用的方法.f(x)中含有|x|,故f(x)是分段函数,根据x的正负写出分段函数的解析式,对照图象选择即可.【解答】解:f(x)是分段函数,根据x的正负写出分段函数的解析式,f(x)={a a(a>0)−a a(a<0),∴x>0时,图象与y=a x(a>1)在第一象限的图象一样,x<0时,图象与y=a x(a>1)的图象关于x轴对称,故选C.16.【答案】B【解析】解:函数y=(2a-1)x在R上为单调减函数,∴0<2a-1<1解得1<a<12故选:B.指数函数y=a x,当0<a<1时为定义域上的减函数,故依题意只需0<2a-1<1,即可解得a的范围本题主要考查了指数函数的单调性,通过底数判断指数函数单调性的方法,属基础题17.【答案】C【解析】【分析】本题考查指数函数的图象过定点问题,即a0=1的应用,属于基础题.由x+1=0得x=-1代入解析式后,再利用a0=1求出f(-1)的值,即可求出答案.【解答】解:由x+1=0得x=-1,则f(-1)=2-a0=1,∴函数f(x)=2-a x+1的图象恒过定点(-1,1).故选C.18.【答案】A【解析】【分析】本题考查的知识点是函数的图象,其中根据函数的解析式分析出函数的性质及与坐标轴交点位置,是解答的关键.根据已知可分析出函数的奇偶性,进而分析出函数图象的对称性,将x=0代入函数解析式,可判断函数图象与y轴交点的位置,利用排除法可得函数的图象.【解答】解:∵函数f(x)=-3|x|+1,∴f(-x)=-3|-x|+1=-3|x|+1=f(x),即函数为偶函数,其图象关于y轴对称,故排除B、D,当x=0时,f(0)=-30+1=0,即函数图象过原点,故排除C.故选A.19.【答案】C【解析】【分析】本题主要考查了指数函数的图象的应用及函数图像的平移变换,属于基础题,由0<a<1可得函数y=a x的图象单调递减,且过第一、二象限,再利用图象的平移,可得结论.【解答】解:由0<a<1可得函数y=a x的图象单调递减,且过第一、二象限,∵0<b<1,∴-1<b-1<0,∴0<1-b<1,∵y=a x的图象向下平移1-b个单位即可得到y=a x+b-1的图象,∴y=a x+b的图象一定在第一、二、四象限,一定不经过第三象限.故选C.20.【答案】A【解析】【分析】此题考查复合函数的单调性,属于基础题,利用二次函数及指数函数的单调性可得出函数的单调性.【解答】解:∵函数a=(13)a2−9是由函数a=a2−9与a=(13)a复合而成,因为a=a2−9的单调递减区间为(−∞,0),又a=(13)a单调递减,所以函数a=(13)a2−9的单调递增区间为(−∞,0).故选A.21.【答案】C【解析】【分析】本题考查指数型函数图象恒过定点问题,关键是掌握该类问题的求解方法,是基础题.由指数式的指数等于0求解x值,进一步求得y值得答案.【解答】解:由x-3=0,得x=3,此时y=a0+1=2.∴函数y=a x-3+1(a>0且a≠1)图象一定过点(3,2).故选:C.22.【答案】B【解析】【分析】本题考查了指数函数的单调性的应用,属于基础题.根据指数函数的单调性判断数的大小即可.【解答】解:y=1.7x为增函数,2.5<3,∴1.72.5<1.73,故A错误,y=0.6x为减函数,-1<2,∴0.6-1>0.62,故B正确,由于1.70.3>1.70=1,0.93.1<0.90=1,故C错误,由于0.8-0.1=1.250.1,对于指数函数y=1.25x为增函数,0.1<0.2,∴0.8-0.1<1.252,故D错误,故选B.23.【答案】B【解析】【分析】本题主要考查复合函数的单调性、指数函数的定义域和值域,属于基础题,令t=-x2+2x,则y=(12)a,再根据t≤1以及指数函数的单调性求得y的值域.【解答】解:令a=−a2+2a=−(a−1)2+1≤1,则y=(12)a,由于t≤1,∴y≥(12)1=12,所以函数y=(12)−a2+2a的值域是[12,+∞).故选B.24.【答案】D【解析】【分析】本题考查了利用指数函数、幂函数的单调性判断数的大小,属于基础题.解题时利用指数函数、幂函数的单调性即可判断.【解答】解:∵y=(25)a为减函数,且35>25,∴b<c,又∵y=a25在(0,+∞)为增函数,∴a>c,∴b<c<a,故选D.25.【答案】C【解析】【分析】本题考查描述法表示集合的定义及表示形式,指数式的运算,以及指数函数的单调性,交集的运算.可写出18=(12)3,1=(12)0,然后根据指数函数单调性即可求出集合B={x|0<x<3},根据交集的定义运算即可得出A∩B.【解答】解:18=(12)3,1=(12)0;∴由18<(12)a<1得,0<x<3;∴B={x|0<x<3},且A={x|-1<x<2};∴A∩B=(0,2).故选C.26.【答案】A【解析】解:由图象可以看出,函数为减函数,故0<a<1,因为函数y=a x的图象过定点(0,1),函数y=a x+b的图象过定点(0,b+1),∴-1<b<0,故选A.根据指数函数的图象和性质即可判断.本题主要考查函数图象的应用,利用函数过定点是解决本题的关键.27.【答案】C【解析】【分析】本题主要考查指数函数的图象和性质,比较函数值的大小即可,比较基础.根据指数函数的图象和性质即可得到结论.【解答】解:很显然a,b均大于1;且y=b x函数图象比y=a x变化趋势小,故b<a,综上所述:a>b>1.故选:C.28.【答案】B【解析】【分析】本题考查对数函数的图象与性质,作出直线x=1,给出直线与四条曲线的交点坐标是正确解答本题的关键,本题的难点是意识到直线x=1与四条曲线交点的坐标的纵坐标恰好是四个函数的底数,此也是解本题的重点.可在图象中作出直线x=1,通过直线与四条曲线的交点的位置确定出a、b、c、d 与1的大小关系,选出正确选项【解答】解:由图,直线x=1与四条曲线的交点坐标从下往上依次是(1,b),(1,a),(1,d),(1,c)故有b<a<1<d<c故选:B.29.【答案】C【解析】【分析】本题考查指数型函数的图象与性质,由函数的图象可以看出其变化趋势,由图象特征推测出参数的范围.观察到函数是一个指数型的函数,不妨作出其图象,从图象上看出其是一个减函数,并且是由某个指数函数向下平移而得到的,故可得出结论.【解答】解:如图所示,图象与y轴的交点在y轴的负半轴上(纵截距小于零),即a0+b-1<0,且0<a<1,∴0<a<1,且b<0.故选C.30.【答案】C【解析】【分析】令x-1=0,求出x的值,从而求出对应的y的值,从而求出定点的坐标.本题考查了指数函数的性质,是一道基础题.【解答】解:令x-1=0,解得:x=1,故x=1时,y=1,故函数过(1,1),故选C.31.【答案】D【解析】【分析】本题主要考查复合函数求单调区间的问题,复合函数求单调区间时,一般分离成两个简单函数根据同增异减的特性来判断.)a,z=x2-6x+5,根据同增异减性可得答将原函数分离成两个简单函数y=(13案.【解答】解:令z=x2-6x+5是开口向上的二次函数,x∈(-∞,3]上单调递减,x∈[3,+∞)上单调递增.则原函数可以写为:y=(13)a,t=x2-6x+5,因为y=(13)a单调递减,故原函数的单调递减区间为:[3,+∞).故选D.32.【答案】C【解析】【分析】本题考查了指数函数的定义,属于容易题.函数a=(a2−5a+5)a a是指数函数,所以必须满足{a 2−5a+5=1a>0,且a≠1,解出即可.【解答】解:∵函数a=(a2−5a+5)a a是指数函数,∴{a 2−5a+5=1a>0,且a≠1,解得a=4.故选C.33.【答案】C【解析】【分析】本题考查指数函数的单调性的应用,考查计算能力.直接判断a,b的大小,然后求出结果.【解答】解:由题意可知1>a=0.60.6>b=0.61.5,c=1.50.6>1,可知:c>a>b.故选C.34.【答案】5【解析】【分析】本题考查对数式、指数式化简求值,属于基础题.利用指数,对数的性质、运算法则求解.【解答】解:=1+3×23+lg100=1+2+2=5.故答案为5.35.【答案】7【解析】解:∵2x+2-x=3,∴4x+4-x=(2x+2-x)2-2=32-2=7.故答案为:7.直接把要求解的式子配方后代入已知条件得答案.本题考查了有理指数幂的化简求值,关键是完全平方式的应用,是基础题.36.【答案】19【解析】【分析】本题考查有理指数幂的化简求值,考查计算能力,直接利用有理指数幂化简求值即可. 【解答】解:0.027−13-(-17)-2+25634-3-1+(√2-1)0 =103-49+64-13+1=19.故答案为19. 37.【答案】-6b【解析】解:(−3a 13a 23)·(a 12a 12)÷(12a 56a 16)=−6a 13+12−56a 23+12−16=−6a 0a 1=-6b故答案为-6b .本题考查了指数的运算法则,与单项式相乘除的法则相同,系数相乘除作系数,同底数幂相乘除,底不变,指数相加减,即可得出. 38.【答案】x =1或x =2 【解析】【分析】求解关于2x 的一元二次方程,然后进一步求解指数方程得答案.本题考查有理指数幂的化简与求值,考查了一元二次方程的解法,是基础题.【解答】解:由4x -6×2x +8=0,得 (2x -2)(2x -4)=0, 即2x =2或2x =4. ∴x =1或x =2.故答案为:x =1或x =2. 39.【答案】3【解析】【分析】本题主要考查了根式的化简,属于基础题. 根据根式的特点化简即可. 【解答】解:由4<x <7,则式子√(a −4)44+√(a −7)44=|x -4|+|x -7|=x -4+7-x =3,故答案为3.40.【答案】(−1,4) 【解析】【分析】本题考查指数函数单调性的应用,一元二次不等式的解法等基础知识, 考查运算求解能力与转化思想.先利用指数函数单调性,得−a 2+2a >−a −4, 解不等式即可. 【解答】解:原不等式可化为3−a2+2a>3−a −4,∵函数y=3x为R上的增函数,∴−a2+2a>−a−4,解得−1<a<4故答案为(−1,4).41.【答案】(2,2)【解析】【分析】本题考查指数函数的图象过定点问题,属基础题,本题也可利用指数函数的图象变换求出.令x-2=0,则x=2,即为定点横坐标,代入函数式可得定点纵坐标.【解答】解:令x=2,得a=a0+1=2,所以函数a=1+a a−2的图象恒过定点坐标是(2,2).故答案为(2,2).42.【答案】(0,3]【解析】【分析】本题考查了指数函数的性质,复合函数的值域,利用换元法求函数的值域,属于基础题.令t=x2-1,将求函数a=(13)a2−1的值域的问题转化为求a=(13)a在[-1,+∞)上的值域问题,再利用函数a=(13)a的单调性求值域. 【解答】解:令t=x2-1,t∈[-1,+∞),即a=(13)a,t∈[-1,+∞),函数a=(13)a在区间[-1,+∞)上是减函数,故y≤(13)−1=3 ,故函数a=(13)a2−1的值域是(0,3].故答案为(0,3].43.【答案】(0,2)【解析】【分析】本题考查函数的零点个数,函数的图象的应用,属于中档题. 利用分段函数画出函数的图象,然后判断m的范围即可. 【解答】解:画出函数a(a)={3a−1,a>0−2a2−4a,a⩽0的图象如下:由函数f(x)=m有3个不等实根,即函数a(a)与直线a=a有3个交点,结合图象得:0<m<2,即m∈(0,2).故答案为(0,2).44.【答案】0<a<12【解析】解:①当0<a<1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,∴0<a<1.2②当a>1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,此时无解..综上:a的取值范围是0<a<12故答案为:0<a<12先分:①0<a<1和a>1时两种情况,作出函数y=|a x-1|图象,再由直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,作出直线,移动直线,用数形结合求解.本题主要考查指数函数的图象和性质,主要涉及了函数的图象变换及函数的单调性,同时,还考查了数形结合的思想方法.45.【答案】[3,+∞)【解析】【分析】本题主要考查了函数的定义域问题,由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x-8≥0,得2x≥8,则x≥3,∴函数y=a=√2a−8的定义域为[3,+∞).故答案为[3,+∞).46.【答案】(2,3)【解析】【分析】本题考查指数型函数的图象恒过定点问题,关键是掌握此类问题的求法,是基础题.由指数式的指数等于0求得x 值,进一步求得y 值,则答案可求. 【解答】解:由x -2=0,得x =2,此时y =3.∴函数y =a x -2+2(a >0且a ≠1)一定过定点(2,3). 故答案为(2,3). 47.【答案】−32【解析】【分析】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题. 对a 进行分类讨论,结合指数函数的单调性列出方程组,解得答案. 【解答】解:当a >1时,函数f (x )=a x +b 在定义域上是增函数,所以{1+a =0a −1+a =−1,解得b =-1,1a =0不符合题意舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数,所以{1+a =−1a −1+a =0,解得b =-2,a =12, 综上a +b =−32, 故答案为:−32 .48.【答案】(1)解:原式=aaa 322×8329-52aaa 53=2-32=-7.(2)解:原式=(32)2×12-1-(32)3×23+(32)2=32-1-94+94=12.【解析】本题考查了指数幂与对数的运算性质,考查了计算能力,属于基础题.(1)利用对数的运算性质即可得出. (2)利用指数的运算性质即可得出.49.【答案】解:(1)√(3−a )44+(0.008)13-(0.25)12×(√2)-4=π-3+0.2-0.5×4=π-3+0.2-2 =π-4.8.(2)(√23×√3)6+(√2√2)43-4(1649)−12-√24×80.25-(-2009)0=4×27+(234)43-7-1614-1=108+2-7-2-1=100.【解析】本题主要考查指数式化简求值,是基础题.解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用. (1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.50.【答案】解:(1)原式=53−(23)3×13-1+2−2×(−12)=53−23-1+2=2.(2)原式=aa8×1252×512aa10×(−aa10)=aa102−12=-4.(3)∵a ,b ,c 为正实数,a x =b y =c z =k >0,k ≠1. ∴x =aaaaaa ,y =aaaaaa ,z =aaaaaa , ∵1a +1a +1a =0,∴aaa +aaa +aaa aaa =aa (aaa )aaa=0,∴abc =1.【解析】(1)本题考查了指数幂的运算性质,考查了推理能力与计算能力,属于基础题.利用指数幂的运算性质即可得出.(2)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.利用对数的运算性质即可得出.(3)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.设a x =b y =c z =k >0,可得x =aaa aaa ,y =aaa aaa ,z =aaaaaa ,再利用对数的运算性质即可得出.51.【答案】解:(1)(214)12−(−0.96)0−(338)−23+(1.5)−2=32−1−[(32)3]−23+(32)−2=12−(32)−2+(32)−2 =12. (2)∵10x =3,10y =4, ∴102x -y =102a10a=(10a )210a=94.【解析】本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用. (1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.52.【答案】解:(1)原式=0.82×(−12)+33×23-1-23=54+9-1-8=54.(2)原式=aaa 3(102×0.81)=aaa 334=4.【解析】(1)利用指数的运算性质即可得出. (2)利用对数的运算性质即可得出.本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.53.【答案】解:(1)原式=(8116)0.5−1÷(43)2+(2764)23=94−916+916=94.(2)原式=aaa 3332+aa 1004+aa4+2+1=32+2−aa4+aa4+3=132.【解析】(1)本题考查指数式化简求值,是基础题.利用有理数指数幂的性质及运算法则求解,解题时要认真审题,注意有理数指数幂的性质及运算法则的合理运用.(2)本题考查对数式和指数式的化简求值,是基础题.利用对数的运算性质化简即可.54.【答案】解:(1)(279)12-(2√3-π)0-(21027)−23+0.25−32,原式=√259-1-(6427)−23+(14)−32=53-1-(2764)23+432 =23-916+8=8548.(2)由题意:0<x <1, ∴a 12−a −12<0所以:(a 12−a −12)2=x +x -1-2. ∵x +x -1=3,∴(a 12−a −12)2=1, 故得a 12−a −12=-1.【解析】本题考查了指数幂的运算性质,属于基础题. (1)利用指数幂的运算性质即可得出. (2)由题意0<x <1,且x +x -1=3,判断x 12-x−12的值为负,采用两边平方后,再开方可得答案. 55.【答案】解(1)原式=(94)12−1−(278)−23+(110)−2=32-1-49+100=180118.(2)∵(a 12+a −12)2=x +x -1+2=5, ∴a 12+a −12=√5, ∴(x +x -1)2=x 2+x -2+2=9, ∴x 2+x -2=7, ∴a 12+a −12a 2+a −2+3=√510.【解析】本题考查了幂的运算性质,属于基础题. (1)根据幂的运算性质计算即可, (2)根据幂的运算性质计算即可.56.【答案】解:(1)(2a23b12)(-6a12b13)÷(-3a16b56)(a>0,b>0)=4a23+12−16a12+13−56=4a.(2)2(aa√2)2+aa√2×aa5+√(aa√2)2−aa2+1=lg√2(lg2+lg5)+√(lg√2−1)2=lg√2+1−aa√2=1.【解析】本题考查指数、对数的化简求值,是基础题,解题时要认真审题,注意指数式、对数式性质、运算法则的合理运用.(1)利用指数式性质、运算法则求解.(2)利用对数性质、运算法则求解.57.【答案】解:1612+(181)−0.25−(−12)0=4+3-1 =6.(2a14a−13)(−3a−12a23)÷(−14a−14a−23)= 24a14−12+14a−13+23+23= 24b.【解析】本题考查指数性质、运算法则的应用,是基础题,解题时要认真审题,注意指数性质、运算法则的合理运用.利用指数性质、运算法则直接求解.58.【答案】解:根据题意,函数的定义域显然为(-∞,+∞).令u=f(x)=3+2x-x2=4-(x-1)2≤4.∴y=3u是u的增函数,当x=1时,u max=f(1)=4,而u∈(−∞,4).∴0<3u≤34,即值域为(0,81].(3)当x≤1时,u=f(x)为增函数,y=3u是u的增函数,根据同增异减原则.即原函数单调增区间为(-∞,1],单调减区间为(1,+∞);其证明如下:任取x1,x2∈(-∞,1]且令x1<x2,则a(a1)a(a2)=3−a12+2a1+3÷3−a22+2a2+3=3−a12+2a1+3+a22−2a2−3=3(a22−a12)+2(a1−a2)=3(a1−a2)(2−a1−a2)∵x1<x2,x1,x2∈(-∞,1]∴x1-x2<0,2-x1-x2>0∴(x1-x2)(2-x1-x2)<0∴3(a1−a2)(a1+a2+2)<1∴f (x 1)<f (x 2)∴原函数单调增区间为(-∞,1]同理可证,原函数单调减区间为[1,+∞).即原函数单调增区间为(-∞,1],单调减区间为(1,+∞).【解析】根据题意,定义域的求解易知为(-∞,+∞),值域的求解通过换元法将3+2x -x 2换成u ,通过二次函数的知识求得u 的范围为(-∞,4],再根据指数函数y =3u 的单调性即可求解利用复合函数的单调性的特点(根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,在同一定义域上,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数)判断出函数的单调区间,在根据定义:(就是定义域内的任意取x 1,x 2,且x 1<x 2,比较f (x 1),f (x 2)的大小,或f (x 1)<f (x 2)则是增函数;反之则为减函数)证明即可本题考查了以指数函数为依托,通过换元法进行求解函数值域,另外还有复合函数的单调性问题,属于基础题.59.【答案】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0, 即a −1a +2=0⇒a =1,∴a (a )=1−2a a +2a +1,又由f (1)=-f (-1)知1−2a +4=−1−12a +1⇒a =2.所以a =2,b =1.经检验a =2,b =1时,a (a )=−2a +12a +1+2是奇函数.(Ⅱ)由(Ⅰ)知a (a )=1−2a 2+2a +1=−12+12a +1,易知f (x )在(-∞,+∞)上为减函数. 又因为f (x )是奇函数,所以f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), 因为f (x )为减函数,由上式可得:t 2-2t >k -2t 2. 即对一切t ∈R 有:3t 2-2t -k >0,从而判别式a =4+12a <0⇒a <−13. 所以k 的取值范围是(−∞,−13).【解析】本题主要考查函数奇偶性与单调性的综合应用,同时考查一元二次不等式恒成立问题的解决策略,属于中档题.(Ⅰ)利用奇函数的定义,在f (x )=-f (-x )中运用特殊值求a ,b 的值; (Ⅱ)首先确定函数f (x )的单调性,然后结合奇函数的性质把不等式f (t 2-2t )+f (2t 2-k )<0转化为关于t 的一元二次不等式,最后由一元二次不等式知识求出k 的取值范围.60.【答案】解:(1)∵f (-x )=-f (x ), ∴a −2−a 1+2−a=-a −2a 1+2a, 即a ⋅2a−11+2a=2a −a1+2a,∴a =1, ∴f (x )=1−2a 1+2a;(2)函数f(x)为R上的减函数. ∵f(x)的定义域为R,∴任取x1,x2∈R,且x2>x1,∴f(x2)-f(x1)=1−2a21+2a2−1−2a11+2a1=2(2a1−2a2)(1+2a1)(1+2a2),∵x2>x1,∴2a2>2a1>0,∴a(a2)−a(a1)<0即f(x2)<f(x1),∴函数f(x)为R上的减函数;(3)由(2)知,函数f(x)在[0,2]上为减函数,∴f(2)≤f(x)≤f(0),即−35≤f(x)≤0,即函数的值域为[-35,0].【解析】本题主要考查函数奇偶性的应用以及函数单调性和值域的求解,利用定义法是解决本题的关键.(1)根据条件建立方程关系即可求a的值;(2)根据函数单调性的定义判断并证明函数f(x)的单调性;(3)结合函数的单调性即可求f(x)在[0,2]上的值域.61.【答案】解:(Ⅰ)∵t=2x在x∈[−12,12]上单调递增,∴t∈[√22,√2] ;(Ⅱ)函数可化为:f(x)=g(t)=t2-2t+3 ,∵g(t)在[√22,1]上单减,在[1,√2]上单增,比较得g(√22)<g(√2),∴f(x)min=g(1)=2,f(x)max=g(√2)=5-2√2,∴函数的值域为[2,5-2√2].【解析】本题考查了指数函数的值域的求法,指数函数与一元二次函数组成的复合函数的值域的求法,属于基础题.解题的关键是熟练掌握指数函数的性质与二次函数的性质,本题的重点在第二小题,将求复合函数的值域转化为求两个基本函数的值域,先求内层函数的值域再求外层函数的值域,即可得到复合函数的值域,求复合函数的值域问题时要注意此技能使用.(Ⅰ)由题意,可先判断函数t=2x,x∈[−12,12]单调性,再由单调性求出函数值的取值范围,易得;(Ⅱ)由于函数f(x)=4x-2x+1+3是一个复合函数,可由t=2x,将此复合函数转化为二次函数g(t)=t2-2t+3,此时定义域为t∈[√22,√2],求出二次函数在这个区间上的值域即可得到函数f(x)的值域.62.【答案】解:由a2x-7>a4x-1知需要进行分类,具体情况如下:当a>1时,∵y=a x在定义域上递增,∴2x-7>4x-1,解得x<-3;当0<a<1时,∵y=a x在定义域上递减,∴2x-7<4x-1,解得x>-3;综上得,当a>1时,x的取值范围为(-∞,-3);当0<a<1时,x的取值范围为(-3,+∞).【解析】根据不等式需要对a进行分两类:a>1时和0<a<1时,再分别利用指数函数的单调性列出不等式求解,最后要把结果分开表示.本题考查了利用指数函数的单调性求有关指数不等式的解,关键是根据底数判断函数的单调性,考查了分类讨论思想.63.【答案】解:(1)根据题意,a(a)=(12a−1+12)a,则有2x-1≠0,解可得x≠0,则函数的定义域为{x|x≠0},(2)设任意x≠0,∵a(−a)=(12−a−1+12)(−a)=(2a1−2a+12)(−a)=(2a−1+11−2a+12)(−a)=(11−2a−1 2)(−a)=(12a−1+12)a=a(a).∴f(x)为偶函数;(3)根据题意,f(x)为偶函数,f(-x)=f(x),当x>0时,2x-1>0,则a(a)=(12a−1+12)a>0,又由f(x)为偶函数,则当x<0时,f(x)>0,综合可得:f(x)>0.【解析】本题考查函数奇偶性与单调性的综合应用,判定函数的奇偶性时要先分析函数的定义域.(1)根据题意,由函数的解析式可得2x-1≠0,解可得x的范围,即可得答案;(2)由(1)的结论,进而分析f(-x)=f(x),结合函数奇偶性的定义即可得答案;(3)根据题意,当x>0时,分析易得a(a)=(12a−1+12)a>0,结合函数的奇偶性分析可得答案.。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。

所以,故D正确。

【考点】指数对数函数的单调性。

7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。

2-6第六节 指数与指数函数练习题(2015年高考总复习)

2-6第六节 指数与指数函数练习题(2015年高考总复习)

第六节 指数与指数函数时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.下列等式36a 3=2a ;3-2=6(-2)2;-342=4(-3)4×2中一定成立的有( )A .0个B .1个C .2个D .3个解析 36a 3=36a ≠2a ;3-2=-32<0, 6(-2)2=622=32>0,∴3-2≠6(-2)2; -342<0,4(-3)4×2>0,∴-342≠4(-3)4×2. 答案 A2.下列函数中值域为正实数的是( ) A .y =-5x B .y =(13)1-x C .y =(12)x-1D .y =1-2x答案 B3.(2013·浙江卷)已知x ,y 为正实数,则( ) A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg yD .2lg(xy )=2lg x ·2lg y解析 由对数的运算性质得2lg(xy )=2(lg x +lg y )=2lg x ·2lg y . 答案 D4.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析 若a <0,则由f (a )<1得⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8=⎝ ⎛⎭⎪⎫12-3,∴-3<a <0;若a ≥0,则由f (a )<1得a <1,∴0≤a <1.综上a 的取值范围是-3<a <1,选C.答案 C5.(2014·佛山模拟)不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是( )A.⎝ ⎛⎭⎪⎫1,-12B.⎝ ⎛⎭⎪⎫1,12C.⎝⎛⎭⎪⎫-1,-12D.⎝⎛⎭⎪⎫-1,12解析 y =a (2x-12)-2x ,令2x-12=0, 得x =-1,y =-12, ∴这个定点是(-1,-12). 答案 C6.(2014·烟台模拟)已知f (x )=a x -2,g (x )=log a |x |(a >0,a ≠1),若f (4)·g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )解析 由f (4)·g (-4)<0知a 2·log a 4<0, ∴log a 4<0.∴0<a <1.∴f (x )为减函数,因此可排除A 、C ,而g (x )在x >0时也为减函数,故选B.答案 B二、填空题(本大题共3小题,每小题5分,共15分)解析答案 -238.若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.解析 f (1)=a 2=19,a =13,f (x )=⎩⎪⎨⎪⎧(13)2x -4,x ≥2,(13)4-2x,x <2.∴单调递减区间为[2,+∞). 答案 [2,+∞)9.(2014·杭州模拟)已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.解析 令t =2x ,∵0≤x ≤2,∴1≤t ≤4. 又y =22x -1-3·2x +5, ∴y =12t 2-3t +5=12(t -3)2+12. ∵1≤t ≤4,∴t =1时,y max =52. 答案 52三、解答题(本大题共3小题,每小题10分,共30分) 10.求下列函数的定义域和值域.(1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y =32x -1-19.解 (1)显然定义域为R , ∵2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.∴⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12.故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞. (2)由32x -1-19≥0,得32x -1≥19=3-2,∵y =3x为增函数,∴2x -1≥-2,即x ≥-12.此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,∴y ≥0. 即函数的值域为[0,+∞).11.(2014·西安模拟)已知函数f (x )=a -12x +1:(1)求证:无论a 为何实数f (x )总是增函数; (2)确定a 的值,使f (x )为奇函数; (3)当f (x )为奇函数时,求f (x )的值域. 解(3)由(2)知f (x )=12-12x +1.∵2x +1>1,∴0<12x +1<1.∴-12<12-12x +1<12.∴f (x )的值域为(-12,12).12.(2014·汕头一模)已知函数f 1(x )=e |x -a |,f 2(x )=e bx .(1)若f (x )=f 1(x )+f 2(x )-bf 2(-x ),是否存在a ,b ∈R ,y =f (x )为偶函数.如果存在,请举例并证明你的结论;如果不存在,请说明理由;(2)若a =2,b =1,求函数g (x )=f 1(x )+f 2(x )在R 上的单调区间. 解 (1)存在a =0,b =-1使y =f (x )为偶函数.证明如下:当a =0,b =-1时,f (x )=e |x |+e -x +e x ,x ∈R , ∴f (-x )=e |-x |+e x +e -x =f (x ),∴y =f (x )为偶函数. (注:a =0,b =0也可以)(2)∵g (x )=e |x -2|+e x=⎩⎪⎨⎪⎧e x -2+e x(x ≥2),e 2-x +e x (x <2),①当x ≥2时,g (x )=e x -2+e x ,∴g ′(x )=e x -2+e x >0. ∴y =g (x )在[2,+∞)上为增函数. ②当x <2时,g (x )=e 2-x +e x ,则g ′(x )=-e 2-x +e x ,令g ′(x )=0得到x =1.(ⅰ)当x <1时,g ′(x )<0,∴y =g (x )在(-∞,1)上为减函数; (ⅱ)当1≤x <2时,g ′(x )>0,∴y =g (x )在[1,2)上为增函数. 综上所述:y =g (x )的增区间为[1,+∞),减区间为(-∞,1).。

专题检测题组-指数与指数函数

专题检测题组-指数与指数函数

3.3 指数与指数函数一、选择题1.(2020成都嘉祥外国语学校考试,3)已知ab=-5,则a √-b a +b √-a b的值是( ) A.2√5 B.0 C.-2√5 D.±2√5答案 B ∵ab=-5,∴a 与b 异号,∴a √-b a +b √-a b =a √-ab a 2+b √-ab b 2=a √5a 2+b √5b 2=a √5|a|+b √5|b|=0,故选B. 2.(2022届河南名校联盟11月月考,9)函数f(x)的定义域为D,若对于任意x 1、x 2∈D,当x 1+x 2=2a 时,恒有f(x 1)+f(x 2)=2b,则函数f(x)的图象关于点(a,b)中心对称.已知函数f(x)=x3x +√3,则f (12 022)+f (22 022)+f (32 022)+…+f (2 0212 022)的值为( ) A.4 042 B.2 021√3C.2 022D.2 021答案 D 因为f(x)+f(1-x)=2·3x 3x +√3+2·31−x 31−x +√3=23x 3x +√3+33+√3·3x =2(3x 3x +√3+√3√3+3x )=2,所以由题意可得当x 1+x 2=1时,恒有f(x 1)+f(x 2)=2.令S=f (12 022)+f (22 022)+f (32 022)+…+f (2 0212 022), 则S=f (2 0212 022)+f (2 0202 022)+f (2 0192 022)+…+f (12 022), 两式相加得2S=2 021×2,所以S=2 021.故选D.3.(2017北京,5,5分)已知函数f(x)=3x-(13)x ,则f(x)( ) A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数答案 B 易知函数f(x)的定义域为R,∵f(-x)=3-x-(13)-x =(13)x -3x =-f(x), ∴f(x)为奇函数,又∵y=3x在R 上为增函数,y=-(13)x 在R 上为增函数,∴f(x)=3x -(13)x 在R 上是增函数.故选B.4.(2022届安徽安庆月考,4)已知函数f(x)=e|x|,记a=f(log23),b=f(log312),c=f(2.11.2),则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.b<c<a答案B函数f(x)=e|x|的定义域为R,且f(-x)=e|-x|=e|x|=f(x),则f(x)为偶函数.当x>0时,f(x)=e x,f(x)在(0,+∞)上单调递增,∵2=log24>log23>log22=1,0<log32<log33=1,2.11.2>2.11=2.1>2,∴2.11.2>log23>log32>0,则f(2.11.2)>f(log23)>f(log32),又f(log312)=f(-log32)=f(log32),∴f(2.11.2)>f(log23)>f(log312),即b<a<c,故选B.5.(2021河北唐山模拟,5)已知f(x)=2x-(12)x,若f(m)+f(n)>0,则()A.m+n>0B.m+n<0C.m-n>0D.m-n<0答案A由f(x)=2x-(12)x,x∈R得f(-x)=2-x-(12)-x=(12)x-2x=-f(x),所以f(x)是定义域R上的奇函数,因为y=2x和y=-(12)x均是R上的增函数,所以f(x)是增函数.又f(m)+f(n)>0,所以f(m)>-f(n)=f(-n),所以m>-n,所以m+n>0.思路分析先判断f(x)是定义域R上的奇函数,且是增函数,再由f(m)+f(n)>0得出m>-n,即可得出结论.6.(2021郑州模拟,4)已知函数f(x)=ax3-bx+1,若f(2)=5,则f(-2)=()A.-5B.-3C.3D.5答案B f(x)=ax3-bx+1,x∈R,则f(-x)=a(-x)3-b×(-x)+1=-ax3+bx+1,则f(x)+f(-x)=2,则有f(2)+f(-2)=2,而f(2)=5,所以f(-2)=-3,故选B.解题关键根据题意,求出f(-x)的表达式,进而可得f(x)+f(-x)=2,由f(2)的值计算可得答案.7.(2021四川南充第二次适应性模拟,10)定义在R上的函数f(x)=-3|x+m|+2为偶函数,a=f(log212 ),b=f((12)13),c=f(m),则()A.c<a<bB.a<c<bC.a<b<cD.b<a<c答案C根据函数f(x)=-3|x+m|+2为偶函数,得f(-x)=f(x),即-3|-x+m|+2=-3|x+m|+2,变形可得|-x+m|=|x+m|,必有m=0.则f(x)=-3|x|+2, f(x)在[0,+∞)上单调递减,a=f (log 212)=f(-1)=f(1),b=f ((12)13)=f (√123),c=f(m)=f(0),则有a<b<c,故选C. 思路分析 由函数f(x)为偶函数求出m 的值,即可得f(x)的解析式,分析可得f(x)在[0,+∞)上单调递减,据此分析可得答案.8.(2022届广西柳州“韬智杯”大联考,12)已知函数y=f(x)的定义域为R,y=f(x+1)为偶函数,对任意x 1,x 2,当x 1>x 2≥1时, f(x)单调递增,则关于a 的不等式f(9a +1)<f(3a-5)的解集为( ) A.(-∞,1) B.(-∞,log 32)C.(log 32,1)D.(1,+∞)答案 B 因为y=f(x+1)为偶函数,所以f(-x+1)=f(x+1),得函数y=f(x)的图象关于直线x=1对称. 因为y=f(x)在[1,+∞)上为增函数,所以函数y=f(x)在(-∞,1]上为减函数.不等式f(9a +1)<f(3a-5)等价于|9a +1-1|<|3a -5-1|,即|3a -6|>9a ⇒3a -6>9a 或3a -6<-9a ,令3a =t(t>0),得t 2-t+6<0或t 2+t-6<0.解得0<t<2,即0<3a <2,所以a<log 32.故选B.9.(2022届河南重点中学模拟一,11)f(x)=2x -e |x|e |x|的最大值与最小值之差为( ) A.-4 B.4e C.4e-4 D.0 答案 B f(x)=2x -e |x|e |x|=2x e |x|-1,设g(x)=2x e |x|,x ∈(-∞,+∞),则g(x)=f(x)+1.∵g(-x)=-2x e|-x|=-g(x),∴g(x)为奇函数,图象关于原点对称,且g(x)的最大值与最小值互为相反数.又∵g(x)max =f(x)max +1,g(x)min =f(x)min +1,且g(x)max +g(x)min =0,∴f(x)max -f(x)min =(g(x)max -1)-(g(x)min -1)=g(x)max -g(x)min =2g(x)max .当x>0时,g(x)=2x e x ,g'(x)=2−2x e x =2(1−x)e x, 故g(x)=2x e x (x>0)的单调增区间为(0,1),单调减区间为(1,+∞),所以g(x)max =g(1)=2e,所以f(x)的最大值与最小值之差为4e.故选B. 10.(2020陕西安康月考,12)设函数f(x)的定义域为D,若满足:①f(x)在D 内是单调增函数;②存在[m,n]⊆D(n>m),使得f(x)在[m,n]上的值域为[m,n],那么就称y=f(x)是定义域为D 的“成功函数”.若函数g(x)=log a (a 2x +t)(a>0且a ≠1)是定义域为R 的“成功函数”,则t 的取值范围是( )A.{t|0<t <14} B.{t|0<t ≤14} C.{t|t <14} D.{t|t >14}答案 A 因为g(x)=log a (a 2x+t)(a>0且a ≠1)是定义域为R 的“成功函数”,所以g(x)为增函数,且g(x)在[m,n]上的值域为[m,n],故g(m)=m,g(n)=n,即g(x)=x 有两个不相同的实数根.log a (a 2x +t)=x,即a 2x -a x +t=0.令s=a x ,s>0,即s 2-s+t=0有两个不同的正数根,可得{t >0,Δ=1−4t >0.解得0<t<14.故选A. 方法点睛 利用“成功函数”的定义以及对数函数的单调性可构造a 2x -a x +t=0,换元后利用方程有两个正根列不等式组求解即可.二、填空题11.(2020黑龙江大庆龙凤模拟,13)函数f(x)=a x+1+1(a>0,且a ≠1)的图象过定点P,则P 点坐标为 .答案 (-1,2)解析 由于函数y=a x (a>0,且a ≠1)的图象过定点(0,1),所以令x+1=0,可得x=-1, f(-1)=2,故函数f(x)=a x+1+1(a>0,且a ≠1)的图象过定点(-1,2).12.(2019北京,13,5分)设函数f(x)=e x +ae -x (a 为常数).若f(x)为奇函数,则a= ;若f(x)是R 上的增函数,则a 的取值范围是 .答案 -1;(-∞,0]解析 ∵f(x)=e x +ae -x 为奇函数,∴f(-x)+f(x)=0,即e -x +ae x +e x +ae -x =0,∴(a+1)(e x +e -x )=0,∴a=-1.∵f(x)是R 上的增函数,∴f '(x)≥0恒成立,∴e x -ae -x ≥0,即e 2x -a ≥0,∴a≤e 2x ,又∵e 2x >0,∴a≤0.当a=0时, f(x)=e x是增函数,满足题意,故a ≤0.13.(2021安徽阜阳太和一中月考,16)下列说法中,正确的是 (填序号).①任取x>0,均有3x >2x;②当a>0,且a ≠1时,有a 3>a 2;③y=(√3)-x 是增函数; ④y=2|x|的最小值为1; ⑤在同一坐标系中,y=2x 与y=2-x的图象关于y 轴对称. 答案 ①④⑤解析 对于②,当0<a<1时,a 3<a 2,故②不正确. 对于③,y=(√3)-x =(√33)x,因为0<√33<1,故y=(√3)-x是减函数,故③不正确.易知①④⑤正确. 14.(2022届长春月考,16)函数y=2-x 2+2的值域为 .答案 (0,4]解析 由于y=-x 2+2≤2,且y=2x在R 上单调递增,故0<2-x 2+2≤4.即函数的值域为(0,4]. 15.(2022届合肥联考,16)已知函数f(x)=|4x -3|+2,若函数g(x)=[f(x)]2-3mf(x)+2m 2+m-1有4个零点,则m的取值范围是 .答案 (32,2)∪(2,3)解析 令[f(x)]2-3mf(x)+2m 2+m-1=0,解得f(x)=2m-1或f(x)=m+1. f(x)的图象如图所示,只需{2<2m -1<5,2<1+m <5,且2m-1≠m+1.解得m ∈(32,2)∪(2,3).三、解答题16.(2020广东梅州模拟,18)已知函数f(x)=(a 2-3a+3)a x是指数函数. (1)求f(x)的解析式;(2)判断函数F(x)=f(x)-f(-x)的奇偶性,并证明;(3)解不等式log a (1-x)>log a (x+2).解析 (1)由f(x)是指数函数得{a 2-3a +3=1,a >0且a ≠1,解得a=2或a=1(舍去),∴f(x)=2x. (2)F(x)为奇函数.证明:F(x)=2x -2-x ,定义域为R,则F(-x)=2-x -2x =-(2x -2-x )=-F(x),∴F(x)是奇函数.(3)由log 2(1-x)>log 2(x+2)得1-x>x+2>0,∴-2<x<-12,∴原不等式的解集为{x |-2<x <−12}. 思路分析 (1)利用指数函数的定义求出a,即可求f(x)的表达式;(2)利用奇偶函数定义即可判断F(x)=f(x)-f(-x)的奇偶性;(3)根据(1)中所求a 的值及函数y=log a x 的单调性化简不等式并求解集.。

2023届高考数学---指数与指数函数综合练习题(含答案解析)

2023届高考数学---指数与指数函数综合练习题(含答案解析)

2023届高考数学---指数与指数函数综合练习题(含答案解析)1、已知a ,b ∈(0,1)∪(1,+∞),当x >0时,1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <bC [∵当x >0时,1<b x ,∴b >1.∵当x >0时,b x <a x ,∴当x >0时,(ab )x >1. ∴ab >1,∴a >b .∴1<b <a ,故选C.]2、设f (x )=e x ,0<a <b ,若p =f (ab ),q =f (a +b2),r =f (a )f (b ),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >qC [∵0<a <b ,∴a +b 2>ab ,又f (x )=e x 在(0,+∞)上为增函数,∴f (a +b2)>f (ab ),即q >p .又r =f (a )f (b )=e a e b =e a +b2=q ,故q =r >p .故选C.]3、已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值为________.12或32 [当0<a <1时,a -a 2=a 2, ∴a =12或a =0(舍去). 当a >1时,a 2-a =a2, ∴a =32或a =0(舍去). 综上所述,a =12或32.]4、已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. [解] (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1,所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a, 解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13. 故k 的取值范围为(-∞,-13).5、设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎨⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1D [根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.]6、已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2).(1)若λ=32,求函数f (x )的值域;(2)若函数f (x )的最小值是1,求实数λ的值. [解] (1)f (x )=14x -λ2x -1+3=(12)2x -2λ·(12)x +3(-1≤x ≤2). 设t =(12)x ,得g (t )=t 2-2λt +3(14≤t ≤2). 当λ=32时,g (t )=t 2-3t +3 =(t -32)2+34(14≤t ≤2).所以g (t )max =g (14)=3716,g (t )min =g (32)=34. 所以f (x )max =3716,f (x )min =34, 故函数f (x )的值域为[34,3716]. (2)由(1)得g (t )=t 2-2λt +3 =(t -λ)2+3-λ2(14≤t ≤2),①当λ≤14时,g (t )min =g (14)=-λ2+4916, 令-λ2+4916=1,得λ=338>14,不符合,舍去; ②当14<λ≤2时,g (t )min =g (λ)=-λ2+3,令-λ2+3=1,得λ=2(λ=-2<14,不符合,舍去);③当λ>2时,g(t)min=g(2)=-4λ+7,令-4λ+7=1,得λ=32<2,不符合,舍去.综上所述,实数λ的值为 2.一、选择题1.设a>0,将a2a·3a2表示成分数指数幂的形式,其结果是()A.a 12B.a 5 6C.a 76D.a32C[a2a·3a2=a2a·a23=a2a53=a2a56=a2-56=a76.故选C.]2.已知函数f(x)=4+2a x-1的图像恒过定点P,则点P的坐标是()A.(1,6) B.(1,5)C.(0,5) D.(5,0)A[由于函数y=a x的图像过定点(0,1),当x=1时,f(x)=4+2=6,故函数f(x)=4+2a x-1的图像恒过定点P(1,6).]3.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<aC[y=0.6x在R上是减函数,又0.6<1.5,∴0.60.6>0.61.5.又y=x0.6为R上的增函数,∴1.50.6>0.60.6,∴1.50.6>0.60.6>0.61.5,即c>a>b.]4.函数y =xa x|x |(0<a <1)的图像的大致形状是( )A BC DD [函数的定义域为{x |x ≠0},所以y =xa x |x |=⎩⎨⎧a x,x >0,-a x ,x <0,当x >0时,函数是指数函数y =a x ,其底数0<a <1,所以函数递减;当x <0时,函数y =-a x 的图像与指数函数y =a x (0<a <1)的图像关于x 轴对称,所以函数递增,所以应选D.]5.已知函数f (x )=⎩⎨⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减C [易知f (0)=0,当x >0时,f (x )=1-2-x ,-f (x )=2-x -1,此时-x <0,则f (-x )=2-x -1=-f (x );当x <0时,f (x )=2x -1,-f (x )=1-2x ,此时,-x >0,则f (-x )=1-2-(-x )=1-2x =-f (x ).即函数f (x )是奇函数,且单调递增,故选C.]二、填空题1、若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.[2,+∞) [由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上单调递减,在[2,+∞)上单调递增, 所以f (x )在(-∞,2]上单调递增,在[2,+∞)上单调递减.] 2、不等式2-x 2+2x>(12)x +4的解集为________.(-1,4) [原不等式等价为2-x 2+2x>2-x -4,又函数y =2x 为增函数,∴-x 2+2x >-x -4, 即x 2-3x -4<0,∴-1<x <4.]3、若直线y 1=2a 与函数y 2=|a x -1|(a >0且a ≠1)的图像有两个公共点,则a 的取值范围是________.(0,12) [(数形结合法)当0<a <1时,作出函数y 2=|a x -1|的图像,由图像可知0<2a <1, ∴0<a <12;同理,当a >1时,解得0<a <12,与a >1矛盾. 综上,a 的取值范围是(0,12).] 三、解答题4、已知函数f (x )=(13)ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值. [解] (1)当a =-1时,f (x )=(13)-x 2-4x +3,令u =-x 2-4x +3=-(x +2)2+7.则u 在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =(13)u 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,则f (x )=(13)h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1.因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.(3)由f (x )的值域是(0,+∞)知,函数y =ax 2-4x +3的值域为R ,则必有a =0. 5、已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图像经过点A (1,6),B (3,24).(1)求f (x )的表达式;(2)若不等式(1a )x +(1b )x -m ≥0在(-∞,1]上恒成立,求实数m 的取值范围. [解] (1)因为f (x )的图像过A (1,6),B (3,24), 所以⎩⎨⎧b ·a =6,b ·a 3=24. 所以a 2=4,又a >0,所以a =2,b =3. 所以f (x )=3·2x .(2)由(1)知a =2,b =3,则x ∈(-∞,1]时,(12)x +(13)x -m ≥0恒成立,即m ≤(12)x +(13)x 在(-∞,1]上恒成立.又因为y =(12)x 与y =(13)x 均为减函数,所以y =(12)x +(13)x也是减函数,所以当x=1时,y=(12)x+(13)x有最小值56.所以m≤56.即m的取值范围是(-∞,56].本课结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()()()
2
6.
102730211.11.21248.102.x .93
.
064.00625.0833416.82121S ,2121212121.72
122.62
?1
a ,.51
222
2312523.430
313)22()4
16()027.0(.30
0224.22222.13
13
33
23323
13
43
23
2
322
23232220
5
25
.2314
31
32121
41811613212222222
12
11032
2
1
3
1122)12()12(--+-⨯⎪⎪⎭⎫ ⎝⎛⋅-÷+⋅+-----++-⎥⎦

⎢⎣
⎡⎪
⎭⎫ ⎝⎛++-⎪⎪

⎫ ⎝⎛
-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=-->=++=+=-++++--++-==-+-+----------------------------+-计算:化简:化简:计算:等于?
则若的值是?
,则且已知则设化简:的值。

计算的解是?
方程等于?ab
ab a b a ab b b
a a xy y x y x y x y S x x x x x m a
m a a x x x k k k k ππ500
10011000100131001210011)2(1
)1()()1(,102
44)(.154
33253223.14)
,0(31)1,0()(.13.
1)()9();1()8();()7()
()6(;1)()5();()4();()3();1()2();1()1(21)(.12的值。

的值;试求:
,若设的取值范围是?
有负数根,则实数的方程关于的定义域为?
,那么的定义域为已知函数数的图像:
的图像,作出下列各函利用函数⎪⎭
⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫
⎝⎛+
⎪⎭
⎫ ⎝⎛-+<<+=<<-
-+=⎪⎭

⎝⎛+∞⎥⎥⎦⎤
⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+------+-⎪⎭

⎝⎛=f f f f a f a f a x f a a a a x f x f x f x f x f x f x f x f x f x f x f x f x x
x
x x
()
[)(]8,a 043)4(9.170)()2(3a )()1()9
41,2()1(21)(.16∞-=+++∞+=>+=
-的取值范围是?
有解,则实数的方程若关于定义法证明单调性。

上是增函数。

,在证明;
的解析式。

求的图像经过点函数x x x x a x x f x f a a a x f

的正负?
试判断是实数,且已知的实根个数?
方程的大小。

试比较时,
是偶函数,且当上的函数,满足条件是定义在设y x y x x f f f f f f x x x f x f x y y x x
x ++>+=+<<-=≥+=--,5353,.202
22.19)3
1
()23()32()31
(),23(),32(,12)(f 1)1(y R )(.18
.23,)5(;0)4(;0)3(;0)2(;0)1(,3121,.22.
10,
0)1()1()1,1(),1,0()(.212
其中不可能成立的是?下列五个关系式:
满足等式已知实数的范围。

求时,恒有且且设函数b a a b b a b a a b b a m m m f m f x a a a a x f b
a
x
x
=<<<<<<<<⎪⎭

⎝⎛=⎪⎭⎫ ⎝⎛=<<<-+--∈≠>-=- 的大小。

与,试比较
设明;上的单调性,并予以证在判断函数的大小;
与时,比较当求证:成立。

时,当且仅当都有上的函数,对任意是定义在设的图像。

的图像画出根据函数,的单调递增区间是?函数⎪⎭

⎝⎛++∈<=<<>⋅=+∈=-=⎥⎦

⎢⎣⎡⎪⎭⎫ ⎝⎛=++-22)(R ,)4(R )()3(1)(0)2(;
1)0()1(1)(00),()()(,,R )(f .25)()(g 22)(.2422121.232121212
2x x f x x f x x x f x f x f x f x y f x f y x f R y x x x f x x f y x x x [][]⎪⎭
⎫ ⎝⎛+≥+∴≥⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-+=⎥⎦⎤⎢⎣⎡+-+++=⎪⎭⎫
⎝⎛+-+2)()(2
1
0)2()2(21)2()2(2)2()2(21)22(2)22()22(212)()(21)4(2521212
212122122122112121x x f x f x f x f x f x f x f x f x f x x f x x f x x f x x f x f x f 解析:
:。

相关文档
最新文档