山东省烟台市龙口市龙矿学校(五四制)2020中考数学压轴题分类复习之抛物线综合问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学压轴题分类复习--抛物线综合问题

1.科技馆是少年儿童节假日游玩的乐园.

如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.

(1)请写出图中曲线对应的函数解析式;

(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

2.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,

①直接写出O、P、A三点坐标;

②求抛物线L的解析式;

(2)求△OAE与△OCE面积之和的最大值.

3.如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;

(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;

(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.

4.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)

(1)求抛物线的解析式;

(2)直接写出B、C两点的坐标;

(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)

注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)

5.如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).

(1)求∠OBC的度数;

(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;

(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.

6.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.

(1)求这条抛物线的解析式;

(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;

(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.

7.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.

问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线经过B 、C 两点,顶点D 在正方形内部.

(1)直接写出点D (m ,n )所有的特征线;

(2)若点D 有一条特征线是y=x+1,求此抛物线的解析式;

(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?

8.已知抛物线c bx x y ++-=22

1与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,

0).

(1)求抛物线的解析式;

(2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;

(4)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.

相关文档
最新文档