图像平滑与锐化算法的研究与分析(完整版)
平滑和锐化

2、改变算法:中值滤波 、改变算法: 中值滤波: 非线性的处理方法, 中值滤波 : 非线性的处理方法 , 在去噪的 同时可以兼顾到边界信息的保留。 同时可以兼顾到边界信息的保留。 选一个含有奇数点的窗口W, 选一个含有奇数点的窗口 , 将这个窗 口在图像上扫描, 口在图像上扫描 , 把该窗口中所含的像 素点按灰度级的升( 或降) 序排列, 素点按灰度级的升 ( 或降 ) 序排列 , 取 位于中间的灰度值, 位于中间的灰度值 , 来代替该点的灰度 值。 (m, n) = Median{ f (m − k , n − l ), (k , l ) ∈ W } g
2 2
= f ( x, y + 1) + f ( x, y − 1) − 2 f ( x, y )
拉普拉斯算子为
∂f +∂f ∇f= ∂x ∂y
2 2 2 2
2
提取边缘的方法有: 提取边缘的方法有: • 第一种方法:使其输出图像的各点等于 第一种方法: 该点处的梯度。 该点处的梯度。即
g (i , j ) = ∇ f (i , j )
例:
4 6 4 4 3 3 2 100 4 5 100 6 6 6 4 2 6 6 100 6 1 6 6 3 6
区域运算
• 某一像素,如果它与周围像素点相比,有明 某一像素,如果它与周围像素点相比, 显的不同,则该点被噪声感染了。 显的不同,则该点被噪声感染了 • 平滑:去除图像中的噪声 平滑: • 算法:处理前图像为:f(x,y) 算法:处理前图像为: 处理后图像为:g :g( 处理后图像为:g(x,y) 模板: 模板:h(x,y)
Gy = f (i, j +1) − f (i, j)
• 对于数字图像来说,我们在x轴方向上的二 对于数字图像来说,我们在 轴方向上的二 阶微分为
实验三 图像的平滑与锐化

实验三图像的平滑与锐化(实验类型:综合性;学时:4)一、实验目的1. 理解图像空域滤波的基本原理及方法,学会采用邻域平均滤波、中值滤波等方法对图像进行平滑增强,以消除或尽量减少噪声的影响,改善图像质量;2. 理解图象锐化的概念,掌握常用空域锐化增强技术,学会编写程序对图像进行锐化增强,感受不同的模板对图像锐化效果的影响。
二、实验环境Matlab 7.0三、实验原理1. 图像平滑MATLAB图像处理工具箱提供了基于卷积的图像滤波函数filter2。
filter2的语法格式为:Y = filter2(h, X)其中Y =filter2(h,X)返回图像X经算子h滤波后的结果,默认返回图像Y与输入图像X大小相同。
fspecial函数用于创建预定义的滤波算子,其语法格式为:h = fspecial(type)h = fspecial(type, parameters)参数type指定算子类型,parameters指定相应的参数,具体格式为:type='average',为均值滤波,参数parameters为n,代表模版尺寸,用向量表示,默认值为[3,3]。
type= 'gaussian',为高斯低通滤波器,参数parameters有两个,n表示模版尺寸,默认值为[3,3],sigma表示滤波器的标准差,单位为像素,默认值为0.5。
type= 'laplacian',为拉普拉斯算子,参数parameters为alpha,用于控制拉普拉斯算子的形状,取值范围为[0,1],默认值为0.2。
type= 'log',为拉普拉斯高斯算子,参数parameters有两个,n表示模版尺寸,默认值为[3,3],sigma为滤波器的标准差,单位为像素,默认值为0.5type= 'prewitt',为prewitt算子,用于边缘增强,无参数。
type= 'sobel',为的sobel算子,用于边缘提取,无参数。
图像的平滑与锐化

昆明理工大学(数字图像处理)实验报告实验名称:图像的平滑与锐化专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解图像平滑与锐化的基本原理。
2、掌握图像滤波的基本定义及目的。
3、理解空间域滤波的基本原理及方法。
4、编程实现图像的平滑与锐化。
[实验原理]空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。
1、图像的平滑目的:减少噪声方法:空域法:邻域平均法、低通滤波、多幅图像求平均、中值滤波(1)邻域平均(均值滤波器)所谓的均值滤波是指在图像上对待处理的像素给一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值的方法。
(2)中值滤波(统计排序滤波)一般地 , 设有一个一维序列 f1 , f2 , f3 ,…, fn ,取该窗口长度(点数)为 m (m为奇数 ),对一维序列进行中值滤波,就是从序列中相继抽取m 个数 fi-v , … , fi-1, fi,fi+1 , … , fi+v;其中 fi 为窗口的中心点值 ,v = ( m - 1 )/ 2 。
再将这 m 个点 值按 其数值大小排序,取中间的 那个数作为滤波输出 ,用数学公式表示为:yi = med fi-v,…,fi-1,fi,fi+1,…,fi+v其中i ∈Z,v=(m-1)/2 。
中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。
二维中值滤波可有下式表示 :yi = med { fij }中值滤波的性质有 :(1) 非线性 , 两序列 f ( r ) , g ( r )med{ f ( r ) + g ( r ) } ≠ med{ f ( r ) } + med{ g ( r ) }(2) 对尖峰性干扰效果好,即保持边缘的陡度又去掉干扰,对高斯分 布噪声效果差;(3) 对噪声延续距离小于W/2的噪声抑制效果好,W 为窗口长度。
数字图像处置图像平滑和锐化

数字图像处理
21
CTArray< plex > CImageProcessing::Low_pass_filter( CTArray< plex > original_signal ){ long dimension = original_signal.GetDimension(); double threshold = 0; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); if( magnitude > threshold ) threshold = magnitude; } threshold /= 100; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); double eplon = 1.0 / sqrt( 1 + ( threshold / magnitude ) * ( threshold / magnitude ) ); original_signal[ index ].m_re *= eplon; original_signal[ index ].m_im *= eplon; } return original_signal;}
三图像的平滑与锐化

实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。
二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。
统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。
另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。
假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。
为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。
1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。
设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。
除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。
这个假设大体上反映了许多图像的结构特征。
∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。
可用模块反映领域平均算法的特征。
对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。
模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。
(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。
它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。
在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。
图像平滑与锐化算法的研究与分析(完整版)

目录第一章绪论 (2)第二章图像处理简介 (3)2.1概述 (3)2.2基本方法 (3)2.3图像处理阶段 (4)第三章图像平滑 (5)3.1概述 (5)3.2 常用算法 (5)3.2.1空域低通滤波 (5)3.2.2 均值滤波器 (5)3.2.3中值滤波器 (6)3.2.4 频域低通滤波 (7)3.3实验结果 (8)第四章图像锐化 (10)4.1 概述 (10)4.2常用方法 (10)4.3实验结果 (11)结论 (13)参考文献: (14)图像平滑与锐化算法的研究与分析摘要:随着科学技术的迅猛发展,图像信息的处理技术在社会生活中的作用越来越突出。
图像处理技术已成为通信领域市场的热点之一。
在图像处理技术中图像的平滑和锐化是一种最常用也是最基础的图像处理技术。
图像平滑的目的是为了减少和消除图像中的噪声,以改善图像质量,有利于抽取对象特征进行分析。
常见的算法邻域平均法,加权平均法,中值滤波,掩膜平滑法等;图像锐化的目的主要是加强图像中的目标边界和图像的细节,以增强图像的质量。
常见的算法有微分算子方法,Sobel算子,空间高通滤波等。
正因为图像处理技术的火热应用,而平滑锐化是常用且最基础的技术。
本文就是在此背景下对图像锐化与平滑算法分析与实现进行研究和讨论。
关键字:图像处理;图像平滑;边缘检测;图像锐化第一章绪论图像是人类获取和交换信息的主要来源,特别是当前科技发达的时代,图像在很多领域占有举足轻重的地位:1)航天和航空图像的获取与应用,如JPL对月球、火星照片的处理。
以及飞机遥感和卫星遥感中获取的图像,现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水分和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。
图像平滑与锐化处理

图像平滑与锐化处理1 图像平滑处理打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1图1-1 打开Layer Stack对话框在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。
忽略零值,单击OK(如图1-2所示)。
图1-2 Layer Stack对话框设置打开Interpreter>Spatial Enhancement>Convolution对话框。
如图1-3图1-3 打开Convolution对话框在Input File中选择band1.img。
在Output File中选择输出的处理图像,命名为lowpass.img。
在Kernel中选择7*7Low Pass,忽略零值。
单击OK完成图像的增强处理(如图1-4所示)。
图1-4 卷积增强对话框(Convolution)平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。
而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。
图1-5 处理前后的对比为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。
当差小于阈值的时候取原值;差大于阈值的时候取平均值。
这里通过查询得T取4,其表达式为下:g(i,j),当| f(i,j)-g(i,j)|>4G(i,j)=f(i,j),当| f(i,j)-g(i,j)|<=4具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。
先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图1-6,1-7,1-8,1-9,1-10,1-11所示)。
第8章 图像平滑和锐化

因为正态分布的均值为0,所以根据统计数学,均值可以消
除噪声。
精选可编辑ppt
41
在MATLAB图像处理工具箱中,实现中值滤波的函数是
medfilt2,其常用的调用方法如下:
B=medfilt2(A,[m n])
其中A是输入图像,[m,n]是邻域窗口的大小,默认
值为[3,3],B为滤波后图像。
噪声可以理解为“妨碍人们感觉器官对所
接收的信源信息理解的因素”。
精选可编辑ppt
2
噪声来源
数字图像的噪声主要来源于图像的获取和传输过程
图像获取的数字化过程,如图像传感器的质量和
环境条件
图像传输过程中传输信道的噪声干扰,如通过无
线网络传输的图像会受到光或其它大气因素的干扰
精选可编辑ppt
3
图像噪声特点
1. 噪声在图像中的分布和大小不规则
2. 噪声与图像之间具有相关性
3. 噪声具有叠加性
精选可编辑ppt
4
图像噪声分类
一.
按其产生的原因可分为:外部噪声和内部
噪声。
二.
从统计特性可分为:平稳噪声和非平稳噪
声。
三.
按噪声和信号之间的关系可分为:加性噪
声和乘性噪声。
精选可编辑ppt
5
按其产生的原因
外部噪声:指系统外部干扰从电磁波或经电
源传进系统内部而引起的噪声。
内部噪声:
①
由光和电的基本性质所引起的噪声。
②
电器的机械运动产生的噪声。
③
元器件材料本身引起的噪声。
④
系统内部设备电路所引起的噪声。
精选可编辑ppt
6
按统计特性
数字图形处理 实验 图像的平滑与锐化

XXXXXXXX 大学(数字图形处理)实验报告 实验名称 图像的平滑与锐化 实验时间 年 月 日专 业 姓 名 学 号 预 习 操 作 座 位 号 教师签名 总 评一、实验目的:1.了解图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本思想;2.掌握图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本步骤;二、实验原理:1. 邻域平均法的思想是用像素及其指定邻域内像素的平均值或加权平均值作为该像素的新值,以便去除突变的像素点,从而滤除一定的噪声。
邻域平均法的数学含义可用下式表示:∑∑==⎪⎭⎫ ⎝⎛=mn i imn i i i w z w y x g 11),( (1) 上式中:i z 是以),(y x 为中心的邻域像素值;i w 是对每个邻域像素的加权系数或模板系数; m n 是加权系数的个数或称为模板大小。
邻域平均法中常用的模板是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡*=11111111191Box T (2) 为了解决邻域平均法造成的图像模糊问题,采用阈值法(又叫做超限邻域平均法,如果某个像素的灰度值大于其邻域像素的平均值,且达到一定水平,则判断该像素为噪声,继而用邻域像素的均值取代这一像素值;否则,认为该像素不是噪声点,不予取代),给定阈值0T :⎩⎨⎧≥-<-=00),(),(),(),(),(),(),(T y x g y x f y x g T y x g y x f y x f y x h (3) (3)式中,),(y x f 是原始含噪声图像,),(y x g 是由(1)式计算的平均值,),(y x h 滤波后的像素值。
2.中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。
课10(3.2-3.3 图像平滑与锐化)

0
y
R1
否则——权值小。
这可保证平滑的同时,较少模糊边缘和 细节。
x
( x, y )
R2
s
上页
3.2.2
实现:
邻域平均法
“梯度”(简化:灰度差)——反映相邻两像素灰度级接近程度; 灰度差倒数——灰度级接近,灰度差倒数大,分配较大的权值。
定义权系数(掩模元素):
D ( x, y; i , j )
( i , j )s
1 f ( x i , y j ) f ( x, y )
对上式归一化,并保证权系数之和等于 1,有
w( x, y; i, j ) k w( x, y ) 1 k , D ( x, y; i , j )
例如,数列 [5,6,35,10,5] 第一步: Med(5,6,35)=6; Med(6,35,10)=10; Med(53,10,5)=10。 第二步: Med(6,10,10) max[min( 6,10), min(10,10), min( 6,10)] 10 第三步: 结果:
Med(6,10,10) 10 35
w1, 1
f x 1, y 1
w1, 0
f x 1, y
w1,1
f x 1, y 1
w0 ,1
f x , y 1
=
w0 , 1 f x , y 1 w1, 1
f x 1, y 1
w0 , 0 f x, y w1, 0 f x 1, y
w0 ,1 f x , y 1 w1,1 f x 1, y 1
图像平滑及锐化

图像平滑及锐化1.图像锐化的目的是使灰度反差增强,从而增强图像中边缘信息,有利于轮廓抽取。
因为轮廓或边缘就是图像中灰度变化率最大的地方。
因此,为了把轮廓抽取出来,就是要找一种方法把图像的最大灰度变化处找出来。
2.实现图像的锐化可使图像的边缘或线条变得清晰,高通滤波可用空域高通滤波法来实现。
本节将围绕空间高通滤波讨论图像锐化中常用的运算及方法,其中有梯度运算、各种锐化算子、拉普拉斯(Laplacian)算子、空间高通滤波法和掩模法等图像锐化技术。
3.梯度算子——是基于一阶微分的图像增强.梯度算子: 梯度对应的是一阶导数,梯度算子是一阶导数算子。
梯度方向:在图像灰度最大变化率上,反映出图像边缘上的灰度变化。
梯度处理经常用于工业检测、辅助人工检测缺陷,或者是更为通用的自动检测的预处理。
4.拉普拉斯算子——基于二阶微分的图像增强Laplacian算子是不依赖于边缘方向的二阶微分算子,是常用的二阶导数算子.拉普拉斯算子是一个标量而不是向量,具有线性特性和旋转不变,即各向同性的性质。
拉普拉斯微分算子强调图像中灰度的突变,弱化灰度慢变化的区域。
这将产生一幅把浅灰色边线、突变点叠加到暗背景中的图像。
计算数字图像的拉普拉斯值也可以借助于各种模板。
拉普拉斯对模板的基本要求是对应中心像素的系数应该是正的,而对应于中心像素邻近像素的系数应是负的,它们的和应该为零。
将原始图像和拉普拉斯图像叠加在一起的简单方法可以保护拉普拉斯锐化处理的效果,同时又能复原背景信息。
5.同态滤波器图像增强的方法一幅图像f(x,y)能够用它的入射光分量和反射光分量来表示,其关系式如下f(x,y)=i(x,y)r(x,y) 图像f(x,y)是由光源产生的照度场i(x,y)和目标的反射系数场r(x,y)的共同作用下产生的。
该模型可作为频率域中同时压缩图像的亮度范围和增强图像的对比度的基础。
但在频率域中不能直接对照度场和反射系数场频率分量分别进行独立的操作。
第七章 图象增强之平滑与锐化

D0
D(u,v)
20
北京大学遥感所
图象平滑—频域法
§理想低通滤波器与Butterworth滤波器的比较
理想低通滤波器
Butterworth滤波器
21
北京大学遥感所
图象平滑—频域法
§梯形滤波器 传递函数
D (u , v ) D 0 1, D ( u , v ) D1 H (u , v ) , D 0 D (u , v ) D1 D 0 D 1 0, D (u , v ) D1
图象平滑—空域法
§邻域平均法 采用 此法的前提: 图像是由许多灰度恒定的小块组成的,相邻像素间存在很高的空 间相关性,而噪声则是统计独立的。 基本思想: 用图像上点(x,y)及其邻域像素的灰度平均值来代替点(x,y) 的灰度值。
方法: 采用3×3、5×5或7×7邻域不等,以3×3邻域为例 e* = 1/9(a+b+c+d+e+f+g+h+i) a b c
(a)
(b)
(c)
(d)
(a)(c)邻域平均:3×3 5×5 (b)(d)中值滤波:3×3 5×5
14
北京大学遥感所
图象平滑—频域法
§频域法 图像经过二维傅立叶变换后,噪声频率一般位于空间频率较高的区域,而 图像本身的频率分量处于空间频率较低的区域内,因此可以通过低通滤波的方 法使高频分量受到抑制,而让低频分量通过,实现图像的平滑
30
北京大学遥感所
图像锐化—空域法
§空域锐化方法—拉普拉斯算子
0 x-1,y 0 X,y- x,y ,y+ 1 1 x 0 +1, y 0 x 0 1 1 -4 0 1
图像平滑与图像锐化

图像平滑与图像锐化邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸邻域运算一、实验目的1.巩固对图像增强的认识,明确图像空域处理的类型2.理解图像平滑与图像锐化的概念3.掌握图像模板卷积运算的实现方法4.锻炼编程开发图像处理算法的能力二、实验准备1.了解图像处理点运算和邻域运算的区别2.学习利用模板卷积的方法进行图像邻域运算3.复习均值滤波和中值滤波的原理4.列出常用的模板形式,思考中值滤波要用到的简单排序方法5.分析对比图像平滑和图像锐化模板的差异三、实验内容与步骤1.列出常用的卷积模板2.基于3某3的模板,编写均值滤波的处理程序,处理含有加性高斯噪声和椒盐噪声的图像,观察处理结果3.编写中值滤波程序,处理相同的图像与均值滤波进行比较;改变模板尺寸观察处理结果4.编程实现利用一阶微分算子和二阶拉普拉斯算子进行图像锐化的程序5.对比不同的邻域运算结果,体会图像锐化与图像平滑的区别四、实验报告与思考题1.总结实验内容及步骤方法完成实验报告,报告中要求有关键代码的注释说明及程序运行和图像处理结果2.实验报告中回答以下问题(1)均值滤波和中值滤波分别适用于处理哪类图像?(2)图像平滑和图像锐化所采用的模板有什么不同?(3)邻域运算的模板尺寸对处理结果有什么影响?邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸实验4邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸。
图像平滑与锐化算法的分析与实现

目录第一章引言 (1)1.1 课题研究的目的 (1)1.2 课题研究的可行性分析 (1)第二章基本理论 (2)2.1 傅立叶变换 (2)2.1.1 二维的傅立叶变换基本原理 (2)2.1.2 离散的傅立叶变换 (2)2.1.3 快速傅立叶变换 (2)2.2 卷积定理 (4)2.2.1 卷积定理的基本理论 (4)2.2.2 卷积定理与二维的傅立叶变换 (4)第三章图像 (5)3.1 图像类型 (5)3.2 图像噪声 (5)第四章图像平滑 (7)4.1 图像平滑的基本概述 (7)4.2 图像平滑的基本方法 (7)4.2.1 线性滤波(领域平均法) (7)4.2.2 中值滤波 (8)第五章图像锐化 (9)5.1 图像锐化的基本概述 (9)5.2 图像锐化的基本方法 (9)5.2.1 微分算子法 (9)5.2.2 拉氏算子 (9)第六章图像平滑和锐化的实现 (12)6.1 图像处理程序设计的思路 (12)6.2 图像处理程序设计的图形界面 (12)6.3 图像处理程序设计的实现 (13)结论 (15)致谢 (16)参考文献: (17)附录: (18)图像平滑与锐化算法的分析与实现宋卫,数学计算机科学学院摘要:随着互联网技术和多媒体技术的发展,越来越多的可视化信息的应用得到了人们的重视。
图像作为一个信息载体中最基础的一部分,在数据结构、互联网应用、数据压缩、通信工程等领域得到广泛的应用。
然而,在采集、传递、分析和数据挖掘中往往会因为分析或者应用的需要对其进行加工性的处理。
由于在处理图像时存在着主观因素而导致的差异性需求,图像的处理方式多种多样。
在众多的处理方法中,图像平滑和图像锐化是最常使用的处理方法。
关键词:图像处理算法;图像平滑;图像锐化;MA TLABAnalysis and Realization of Algorithm of Image Smoothing andSharpeningSong Wei, School of Mathematics and Computer ScienceAbstract:With the development of internet technology and multimedia technology, more and more visual information of the application of the attention. Image as the most basic part of an information carrier, data structures, internet applications, data compression, communications engineering and other fields has been widely used. However, often in the collection, transmission, analysis and data mining, application or analysis needs its processing and handling. Differences in demand caused by the existence of subjective factors in the image processing, image processing a variety of ways. Processing method, image smoothing and image sharpening to any of the most commonly used approach.Key words:image processing algorithm; image smoothing; image sharpening; MATLAB第一章引言1.1 课题研究的目的由于现阶段,随着科技的发展,计算机技术的应用已经渗透到社会的方方面面,而与图像有关的通信、网络、传媒、多媒体等已经给人们的生活带来巨大的变化。
基于非线性扩散方程的图像平滑与锐化

图像平滑和锐化模型
模型描述
u(x,y,t)描述了在t时刻的图像,t是一个人为设定的时间 u 参数。0 ( x, y) 即指原始图像。非线性扩散模型即如下所示:
u g ( u , T (u )) u curv(u ) h( u , T (u ))u t u ( x, y,0) u0 ( x, y )
该方程可以被用于图像的锐化。逆热传导方程通过滤波来增强 图像边缘并恢复模糊的边缘。我们借鉴了上述方程的优点并将其融入 到模型(1)中来达到对图像锐化的目的。图像锐化的程度则是由h来 进行控制的。
与其他模型之间的关系
模型(1)和退化扩散模型
退化扩散模型可以描述如下:
u u g (G u ) (1 h(| u |))u h(| u |) | u | div 4 t | u | .......( ) u ( x, y,0) u0 ( x, y)
研究背景
• 非线性扩散方程是一个图像处理技术中非常有用的工具 • Perona和Malik首次将各向异性扩散方程用于图像平滑并提出 了著名的P-M模型。 P-M模型可以平滑图像并良好地保持边缘 特性,但是对于孤立噪声的去除效果却不太令人满意 • Catte改进了P-M模型并由此提出了选择性平滑模型,但他没 有给出对他的模型的清楚的几何上的解释 • Luo et al. 通过两个各向异性扩散方程展示了一种图像选择性 的平滑模型 • Gilboa et al.使用了复扩散方程来滤波图像,当一个扩散系数 来近似真实的坐标,虚部可以作为一个边缘探测器 • 等曲率移动(Mean Curvature Motion)方程也可以被用于图像 平滑处理,但个模型在消除噪声方面存在这硬伤,例如会导致 边缘扭曲
遥感图像处理平滑与锐化方(详细)法.

任何方向的边缘都将被突出.
拉普拉斯模板
0 1 0 t (m,n)= 1 -4 1 0 1 0
即上下左右四个相邻像元的亮度值相加,然后减 去中心像元值的4倍,作为该中心像元的新值。 均匀的变化将被忽略;用于检测变化率的变化率 即二阶微分。
例2: 拉普拉斯模板应用
t (m,n)= 设窗口像元值为 2 3 5 4 6 8
索伯尔梯度锐化模板, 两个模板同时使用:
1 2 1 t1(m,n)= 0 0 0 -1 -2 -1 -1 0 1 t2(m,n)= -2 0 2 -1 0 1 先用模板t1卷积,结果取绝对 值(获得南北向梯度);再 用t2计算,结果也取绝对值 (获东西向梯度);然后两 个绝对值相加(得总梯度), 写在窗口中心。
m 1 n 1
M
N
图像的卷积运算:
窗口的中心像 元的像元值
窗口上第m列, 第n行的像元值
模板上第m列, 第n行的像元值出现不该有的 亮点,为了抑制噪声和使亮度平缓,所采用的 方法称为平滑 包括:均值平滑与中值滤波
均值平滑
在以像元为中心的领域内 取均值来取代该像元。 常用四邻域或八邻域的模 板
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 8 8 0
0 0 0 0 0 0 24 32 32 24 32 32 0 0 0
定向边缘检测模板
检测垂直边界: 设计特殊模板,可以检测特 定方向的边缘。
t (m,n)=
检测水平边界:
-1 0 1 -1 0 1 -1 0 1
或 t (m,n)=
对比度拉伸的效果
3.非线性变换
1.
当变换函数为非线性时,即为非线性变换。 非线性变换函数很多,常用的有两种方法:
机器视觉检测中的图像预处理方法:平滑模糊处理,锐化

机器视觉检测中的图像预处理方法:平滑模糊处理,锐化一、平滑模糊处理以Dalsa sherlock软件为例,一起来了解一下视觉检测中平滑模糊的图像处理方法。
1、观察灰度分布来描述一幅图像称为空间域,观察图像变化的频率被称为频域。
2、频域分析:低频对应区域的图像强度变化缓慢,高频对应的变化快。
低通滤波器去除了图像的高频部分,高通滤波器去除了图像的低频部分平滑模糊处理(低通)高斯滤波,中值滤波,均值滤波都属于低通滤波,一副图像的边缘、跳跃部分以及颗粒噪声代表图像信号的高频分量,而大面积的背景区则代表图像信号的低频信号,用滤波的方式滤除其高频部分就能去掉噪声。
在Sherlock中,采用低通处理来平滑图像的算法包括:Lowpass,Lowpass5X5,Gaussian ,Gaussian5X5,GaussianWXH,Median,Smooth。
低通滤波:Lowpass Lowpass5X5在Sherlock中的这两个算法,直接理解为低通滤波,根据文档中的描述,这两个算法分别是对3x3和5x5大小尺寸内进行均值平滑图像,可重复多次执行,未能理解与smooth算法的区别。
(1)均值滤波:Smooth均值滤波最简单的低通滤波,根据设定的尺寸,将相邻像素取平均值,Sherlock中使用的是3x3大小的尺寸,每个点的像素值由其原像素值和其周围的8个像素值的平均值取代。
例如下图,在3x3大小的过滤尺寸内,中心点原来的像素值为1,相邻像素取平均值为2,则经过均值滤波处理过,中心点的像素为2。
(2)中值滤波:Median根据设定的尺寸,将区域内的像素进行排序,中心点的像素值由过滤尺寸内的位于中间的像素值取代,中值滤波对于去除小的噪点或者脉冲噪声效果非常好,中值滤波会改变图像的结构,图像的强度被改变。
(3)高斯滤波:Gaussian Gaussian5X5 GaussianWXH高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到,模糊了图像的细节。
实验三图像的平滑与锐化

实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。
二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。
统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。
另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。
假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。
为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。
1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。
设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。
除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。
这个假设大体上反映了许多图像的结构特征。
∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。
可用模块反映领域平均算法的特征。
对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。
模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。
(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。
它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。
在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章绪论 (2)第二章图像处理简介 (4)2.1概述 (4)2.2基本方法 (4)2.3图像处理阶段 (6)第三章图像平滑 (7)3.1概述 (7)3.2 常用算法 (8)3.2.1空域低通滤波 (8)3.2.2 均值滤波器 (8)3.2.3中值滤波器 (9)3.2.4 频域低通滤波 (10)3.3实验结果 (12)第四章图像锐化 (14)4.1 概述 (14)4.2常用方法 (14)4.3实验结果 (15)结论 (18)参考文献: (19)图像平滑与锐化算法的研究与分析摘要:随着科学技术的迅猛发展,图像信息的处理技术在社会生活中的作用越来越突出。
图像处理技术已成为通信领域市场的热点之一。
在图像处理技术中图像的平滑和锐化是一种最常用也是最基础的图像处理技术。
图像平滑的目的是为了减少和消除图像中的噪声,以改善图像质量,有利于抽取对象特征进行分析。
常见的算法邻域平均法,加权平均法,中值滤波,掩膜平滑法等;图像锐化的目的主要是加强图像中的目标边界和图像的细节,以增强图像的质量。
常见的算法有微分算子方法,Sobel算子,空间高通滤波等。
正因为图像处理技术的火热应用,而平滑锐化是常用且最基础的技术。
本文就是在此背景下对图像锐化与平滑算法分析与实现进行研究和讨论。
关键字:图像处理;图像平滑;边缘检测;图像锐化第一章绪论图像是人类获取和交换信息的主要来源,特别是当前科技发达的时代,图像在很多领域占有举足轻重的地位:1)航天和航空图像的获取与应用,如JPL对月球、火星照片的处理。
以及飞机遥感和卫星遥感中获取的图像,现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水分和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。
我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。
在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用;2)生物医学工程方面图像获取与处理,如CT、X光肺部图像增强、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面等等都与图像紧密相关;3)通信工程方面的应用当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。
具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。
其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。
要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。
在一定意义上讲,编码压缩是这些技术成败的关键。
除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
这里面牵涉的图像尤为巨量,在通信工程中必不可少;4)工业和工程方面;5)军事公安方面;6)文化艺术方面;由此,如何保证获取高质量的图像,在以上各个领域都显得尤为重要。
要获取高质量图像,就需对图像进行处理,而我们即将探讨的课题正是从数字图像处理方面,通过图像平滑与锐化算法实现对图像的处理。
本文就图像处理中平滑与锐化方法进行研究。
第二章图像处理简介2.1概述图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术,又称影像处理。
基本内容图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。
图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。
常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分析和图像分割。
图像处理一般指数字图像处理。
虽然某些处理也可以用光学方法或模拟技术实现,但它们远不及数字图像处理那样灵活和方便,因而数字图像处理成为图像处理的主要方面。
2.2基本方法1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4)图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5)图像描述:图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
6)图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
2.3图像处理阶段对于一个图像处理系统来说,可以将流程分为三个阶段,在获取原始图像后,首先是图像预处理阶段、第二是特征抽取阶段、第三是识别分析阶段。
图像预处理阶段尤为重要,如果这阶段处理不好,后面的工作根本无法展开。
之所以需要进行预处理,是因为在实际应用中,我们的系统获取的原始图像不是完美的,例如对于系统获取的原始图像,由于噪声、光照等原因,图像的质量不高,需要进行预处理,以有利于提取我们感兴趣的信息。
图像的预处理包括图像增强、平滑滤波、锐化等内容。
第三章图像平滑3.1概述图像平滑主要是为了消除噪声。
噪声并不限于人眼所能看的见得失真和变形,有些噪声只有在进行图像处理时才可以发现。
图像的常用噪声主要有加性噪声、乘性噪声和量化噪声等。
图像中的噪声往往和信号交织在一起,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边界轮廓、线条等变得模糊不清,如何既平滑掉噪声又尽量保持图像细节,是图像平滑主要研究方向。
一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时系统中所要提取的汽车边缘信息也主要集中在其高频部分,因此,如何去掉高频干扰又同时保持边缘信息,是我们研究的内容。
为了去除噪声,有必要对图像进行平滑,可以采用低通滤波的方法去除高频干扰。
图像平滑包括空域法和频域法两大类,在空域法中,图像平滑的常用方法是采用均值滤波或中值滤波,对于均值滤波,它是用一个有奇数点的滑动窗口在图像上滑动,将窗口中心点对应的图像像素点的灰度值用窗口内的各个点的灰度值的平均值代替,如果滑动窗口规定了在取均值过程中窗口各个像素点所占的权重,也就是各个像素点的系数,这时候就称为加权均值滤波;对于中值滤波,对应的像素点的灰度值用窗口内的中间值代替。
实现均值或中值滤波时,为了简便编程工作,可以定义一个n*n的模板数组。
另外,读者需要注意一点,在用窗口扫描图像过程中,对于图像的四个边缘的像素点,可以不处理;也可以用灰度值为"0"的像素点扩展图像的边缘3.2 常用算法3.2.1空域低通滤波将空间域模板用于图像处理,通常称为空间滤波,而空间域模板称为空间滤波器。
空间域滤波按线性和非线性特点有:线性、非线性平滑波器。
线性平滑滤波器包括领域平均法(均值滤波器),非线性平滑滤波器有中值滤波器。
3.2.2 均值滤波器对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。
邻域平均法是空间域平滑技术。
这种方法的基本思想是,在图像空间,假定有一副N ×N 个像素的原始图像f(x ,y),用领域内几个像素的平均值去代替图像中的每一个像素点值的操作。
经过平滑处理后得到一副图像 g(x ,y),其表达式如下:∑∈=s n m n m f My x g ),(),(/1),( 式中: x ,y=0,1,2,…,N-1;s 为(x ,y )点领域中点的坐标的集合,但不包括(x ,y )点;M 为集合内坐标点的总数。
领域平均法有力地抑制了噪声,但随着领域的增大,图像的模糊程度也愈加严重。
为了尽可能地减少模糊失真,也可采用阈值法减少由于领域平均而产生的模糊效应。
其公式如下:(3-1)⎪⎩⎪⎨⎧>-=∑∑∈∈其他),(),(/1),(),(/1),(),(),(y x f T n m f M y x f n m f M y x g s n m s n m 式中:T 为规定的非负阈值。
上述方法也可称为算术均值滤波器,除此之外还可以采用几何均值滤波器、谐波均值滤波器和逆谐波均值滤波器。
几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图像细节。
谐波均值滤波器对“盐”噪声效果更好,但是不适用于“胡椒”噪声。
它善于处理像高斯噪声那样的其他噪声。
逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。
3.2.3中值滤波器中值滤波是一种常用的去除噪声的非线性平滑滤波处理方法,其基本思想用图像像素点的领域灰度值的中值来代替该像素点的灰度值。