数字图像处理-图像平滑和锐化变换处理
图像的平滑与锐化
昆明理工大学(数字图像处理)实验报告实验名称:图像的平滑与锐化专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解图像平滑与锐化的基本原理。
2、掌握图像滤波的基本定义及目的。
3、理解空间域滤波的基本原理及方法。
4、编程实现图像的平滑与锐化。
[实验原理]空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。
1、图像的平滑目的:减少噪声方法:空域法:邻域平均法、低通滤波、多幅图像求平均、中值滤波(1)邻域平均(均值滤波器)所谓的均值滤波是指在图像上对待处理的像素给一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值的方法。
(2)中值滤波(统计排序滤波)一般地 , 设有一个一维序列 f1 , f2 , f3 ,…, fn ,取该窗口长度(点数)为 m (m为奇数 ),对一维序列进行中值滤波,就是从序列中相继抽取m 个数 fi-v , … , fi-1, fi,fi+1 , … , fi+v;其中 fi 为窗口的中心点值 ,v = ( m - 1 )/ 2 。
再将这 m 个点 值按 其数值大小排序,取中间的 那个数作为滤波输出 ,用数学公式表示为:yi = med fi-v,…,fi-1,fi,fi+1,…,fi+v其中i ∈Z,v=(m-1)/2 。
中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。
二维中值滤波可有下式表示 :yi = med { fij }中值滤波的性质有 :(1) 非线性 , 两序列 f ( r ) , g ( r )med{ f ( r ) + g ( r ) } ≠ med{ f ( r ) } + med{ g ( r ) }(2) 对尖峰性干扰效果好,即保持边缘的陡度又去掉干扰,对高斯分 布噪声效果差;(3) 对噪声延续距离小于W/2的噪声抑制效果好,W 为窗口长度。
图像的平滑处理与锐化处理
数字图像处理作业题目:图像的平滑处理与锐化处理姓名:***学号:************专业:计算机应用技术1.1理论背景现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。
一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。
图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。
空间域处理是在图像本身存在的二维空间里对其进行处理。
而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。
在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。
1.2介绍算法图像平滑算法:线性滤波(邻域平均法)对一些图像进行线性滤波可以去除图像中某些类型的噪声。
领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。
领域平均法是空间域平滑噪声技术。
对于给定的图像()j i f,中的每个像素点()nm,,取其领域S。
设S含有M个像素,取其平均值作为处理后所得图像像素点()nm,处的灰度。
用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。
领域S的形状和大小根据图像特点确定。
一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。
如S 为3×3领域,点(m,n)位于S 中心,则()()∑∑-=-=++=1111,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1,1,1, 由上式可知,经过平均后,噪声的均值不变,方差221σσM =,即方差变小,说明噪声强度减弱了,抑制了噪声。
数字图像处理要点简述详述
第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。
(2) 重现性能好。
(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。
4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。
)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。
F(u, v)即为f (x, y)的频谱。
频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。
数字图像处置图像平滑和锐化
数字图像处理
21
CTArray< plex > CImageProcessing::Low_pass_filter( CTArray< plex > original_signal ){ long dimension = original_signal.GetDimension(); double threshold = 0; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); if( magnitude > threshold ) threshold = magnitude; } threshold /= 100; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); double eplon = 1.0 / sqrt( 1 + ( threshold / magnitude ) * ( threshold / magnitude ) ); original_signal[ index ].m_re *= eplon; original_signal[ index ].m_im *= eplon; } return original_signal;}
遥感数字图像处理复习资料(1-4章)
第一章概论1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。
数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。
模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。
2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。
2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。
1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。
图像显示:为了理解数字图像中的内容,或对处理结果进行对比。
图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。
2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。
注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。
3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。
包括图像分割、分类等。
图像分割:用于从背景中分割出感兴趣的地物目标。
分割的结果可作为监督分类的训练区。
图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。
3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。
4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域)2.遥感图像的获取和存储1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。
遥感的实施依赖于遥感系统2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。
数字图像处理-图像平滑和锐化变换处理
图像平滑和锐化变换处理一、实验容和要求1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
2、空域平滑:box、gauss模板卷积。
3、频域平滑:低通滤波器平滑。
4、空域锐化:锐化模板锐化。
5、频域锐化:高通滤波器锐化。
二、实验软硬件环境PC机一台、MATLAB软件三实验编程及调试1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
①灰度拉伸程序如下:I=imread('kids.tif');J=imadjust(I,[0.2,0.4],[]);subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J);subplot(2,2,3),imhist(I);subplot(2,2,4),imhist(J);②直方图均衡程序如下:I=imread('kids.tif');J=histeq(I);Imshow(I);Title('原图像');Subplot(2,2,2);Imshow(J);Title('直方图均衡化后的图像') ;Subplot(2,2,3) ;Imhist(I,64);Title('原图像直方图') ;Subplot(2,2,4);Imhist(J,64) ; Title('均衡变换后的直方图') ;③伽马校正程序如下:A=imread('kids.tif');x=0:255;a=80,b=1.8,c=0.009;B=b.^(c.*(double(A)-a))-1;y=b.^(c.*(x-a))-1;subplot(3,2,1);imshow(A);subplot(3,2,2);imhist(A);imshow(B);subplot(3,2,4);imhist(B);subplot(3,2,6);plot(x,y);④log变换程序如下:Image=imread('kids.tif');subplot(1,2,1);imshow(Image);Image=log(1+double(Image)); subplot(1,2,2);imshow(Image,[]);2、空域平滑:box、gauss模板卷积。
数字图像处理的基本方法
一、图像的预处理技术图像处理按输入结果可以分为两类,即输入输出都是一副图像和输入一张图像输出不再是图像的数据。
图像处理是个很广泛的概念,有时候我们仅仅需要对一幅图像做一些简单的处理,即按照我们的需求将它加工称我们想要得效果的图像,比如图像的降噪和增强、灰度变换等等。
更多时候我们想要从一幅图像中获取更高级的结果,比如图像中的目标检测与识别。
如果我们将输出图像中更高级的结果视为目的的话,那么我们可以把输入输出都是一幅图像看作是整个处理流程中的预处理。
下面我们将谈到一些重要的预处理技术。
(一)图像增强与去噪图像的增强是一个主观的结果,原来的图像按照我们的需求被处理成我们想要的效果,比如说模糊、锐化、灰度变换等等。
图像的去噪则是尽可能让图像恢复到被噪声污染前的样子。
衡量标准是可以度量的。
不管是图像的增强与去噪,都是基于滤波操作的。
1.滤波器的设计方法滤波操作是图像处理的一个基本操作,滤波又可分为空间滤波和频域滤波。
空间滤波是用一个空间模板在图像每个像素点处进行卷积,卷积的结果就是滤波后的图像。
频域滤波则是在频率域看待一幅图像,使用快速傅里叶变换将图像变换到频域,得到图像的频谱。
我们可以在频域用函数来保留或减弱/去除相应频率分量,再变换回空间域,得到频域滤波的结果。
而空间滤波和频域滤波有着一定的联系。
频域滤波也可以指导空间模板的设计,卷积定理是二者连接的桥梁。
(1)频域滤波使用二维离散傅里叶变换(DFT )变换到频域:∑∑-=+--==10)//(210),(),(N y N vy M ux i M x e y x f v u F π使用二维离散傅里叶反变换(IDFT )变换到空间域:∑∑-=-=+=1010)//(2),(1),(M u N v N vy M ux i e v u F MN y x f π在实际应用中,由于该过程时间复杂度过高,会使用快速傅里叶变换(FFT )来加速这个过程。
现在我们可以在频域的角度看待这些图像了。
数字图像处理简答题及答案
数字图像处理简答题及答案O ° O本页仅作为文档封面,使用时可以删除This document is for reference only-rar21 year.March数字图像处理简答题及答案简答题1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
2、什么是图像识别与理解3、简述数字图像处理的至少3种主要研究内容。
4、简述数字图像处理的至少4种应用。
5、简述图像儿何变换与图像变换的区别。
6、图像的数字化包含哪些步骤简述这些步骤。
7、图像量化时,如果量化级比较小会出现什么现象为什么8、简述二值图像与彩色图像的区别。
9、简述二值图像与灰度图像的区别。
10、简述灰度图像与彩色图像的区别。
11,简述直角坐标系中图像旋转的过程。
12、如何解决直角坐标系中图像旋转过程中产生的图像空穴问题13、举例说明使用邻近行插值法进行空穴填充的过程。
14、举例说明使用均值插值法进行空穴填充的过程。
15、均值滤波器对高斯噪声的滤波效果如何试分析其中的原因。
16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。
17、中值滤波器对椒盐噪声的滤波效果如何试分析其中的原因。
18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗为什么会出现这种现象19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗为什么会出现这种现象20、写出腐蚀运算的处理过程。
21、写出膨胀运算的处理过程。
22、为什么YUV表色系适用于彩色电视的颜色表示23、简述口平衡方法的主要原理。
24、YUV表色系的优点是什么25、请简述快速傅里叶变换的原理。
26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。
27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。
28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。
29、什么是图像的无损压缩给出2种无损压缩算法。
数字图像处理图像变换实验报告
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
《数字图像处理》教学大纲
《数字图像处理》课程教学大纲Digital Image Processing一、课程说明课程编码:045236001 课程总学时(理论总学时/实践总学时):51(42/9),周学时:3,学分:3,开课学期:第6学期。
1.课程性质:专业选修课2.适用专业:电子信息与技术专业3.课程教学目的和要求《数字图像处理》是信号处理类的一门重要的专业选修课,通过本课程的学习,应在理论知识方面了解和掌握数字图像的概念、类型,掌握数字图像处理的基本原理和基本方法:图像变换、图像增强、图像编码、图像的复原和重建。
并通过实验加深理解数字图像处理的基本原理。
4.本门课程与其他课程关系本课程的先修课程为:数字信号处理和应用5.推荐教材及参考书推荐教材:阮秋琦,《数字图像处理学》(第二版),电子工业出版社,2007年参考书(1)姚敏等,《数字图像处理》,机械工业出版社,2006年(2)何东健,《数字图像处理》(第二版),西安电子工业出版社,2008年(3)阮秋琦,《数字图像处理基础》,清华大学出版社,2009年(4) (美)Rafael C. Gonzalez著,阮秋琦译,《数字图像处理》(第二版),电子工业出版社,2007年6.课程教学方法与手段主要采用课堂教学的方式,通过多媒体课件进行讲解,课外作业,答疑辅导。
并辅以适当的实验加深对数字图像处理的理解。
7.课程考核方法与要求本课程为考查课课程的实验成绩占学期总成绩的50%,期末理论考查占50%;考查方式为笔试。
8.实践教学内容安排实验一:图像处理中的正交变换实验二:图像增强实验三:图像复原详见实验大纲。
二、教学内容纲要与学时分配(一)数字图像处理基础(3课时)1.主要内容:图像处理技术的分类,数字图像处理的特点,数字图像处理的主要方法及主要内容,数字图像处理的硬件设备,数字图像处理的应用,数字图像处理领域的发展动向2.基本要求:了解图像处理技术的分类和特点,数字图像处理的主要方法及主要内容,熟悉数字图像处理的硬件设备。
数字图像处理实验指导书
数字图像处理实验指导书臧兰云电子工程学院实验一图像基本运算一、实验目的:1、了解数字图像处理基础2、掌握数字图像处理的基本运算方法3、学习利用matlab进行数字图像处理的基本方法二、实验内容:1、根据图像采样原理,试对lena图像分别进行4和16倍减采样,查看其减采样效果。
2、对一幅图像加入椒盐噪声,并通过减法运算提取出噪声。
3、两幅二值图像进行逻辑与、或、非运算。
4、实现把一幅图像旋转45°,并分别采用把转出显示区域的图像截去和扩大显示区域范围以显示图像的全部两种方式。
5、选取一幅大小为256*256像素的图像,分别将图比例放大1.5倍,比例缩小0.7倍,非比例放大到420*384像素,非比例缩小到150*180像素。
三、思考与总结:1、将一幅图像如果进行4倍、16倍和64倍增采样会出现什么情况?是否有其他方法可以实现图像的采样?2、图像的选转会导致图像的失真吗?若有,有什么办法可以解决这个问题?3、由非比例缩放得到的图片能够恢复到原图片吗?为什么?实验二图像变换及增强一、实验目的:1、掌握图像变换的应用2、掌握数字图像处理的空间域及频域的增强方法二、实验内容:1、构造一幅图像并对其旋转一定的角度,求原始图像及旋转后图像的频谱图。
2、对一幅灰度图像进行均衡化,灰度等级为8级。
3、对一幅灰度图像采用多种方法实现平滑、锐化滤波。
4、对一幅图像进行幂次变换。
三、思考与总结:1、图像变换在图像处理中的应用?2、什么是傅里叶变换的旋转性?3、以上实验分别可以应用到那些实际问题中? 实验三图像压缩编码一、实验目的:1、掌握图像压缩编码的概念2、比较图像压缩编码的各种方法二、实验内容:1、计算一幅灰度图像的熵。
2、选择一种方法对图像进行压缩,并计算压缩比。
三、思考与总结:1、注释程序功能2、以上实验可以应用到那些实际问题中?实验四图像分割及彩色图像处理一、实验目的:1、掌握图像分割的基本原理2、掌握彩色图像处理方法二、实验内容:1、用全局阈值法对图像进行分割2、实现sobel算子及Roberts等算子的边缘提取算法3、生成一幅大小为256*256的RGB图像。
数字图像处理知识点总结
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解.5.图像处理五个模块:采集、显示、存储、通信、处理和分析.第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)〈∞ ,反射分量0 <r(x,y)<1。
7.图像数字化:将一幅画面转化成计算机能处理的形式-—数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样.采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠.9.将像素灰度转换成离散的整数值的过程叫量化.10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像.12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度.例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像的处理与分析
数字图像的处理与分析数字图像处理与分析是计算机视觉领域中的重要基础环节。
数字图像处理与分析包括图像增强、图像压缩、图像滤波、图像分割、图像识别、图像复原等多个方面。
本文将从这些方面进行深入探讨。
一、图像增强图像增强是指对图像进行强调、突出、增加对比度等的操作。
图像增强主要针对低对比度、可识别度低的图像进行处理,目的在于提升图像的质量和清晰度。
图像增强方法分为两大类:基于空间域的增强和基于频域的增强。
基于空间域的增强是由图像的像素点进行操作产生的,包括常用的直方图均衡化、图像平滑和锐化等。
而基于频域的增强是利用傅里叶变换的方法进行处理,分为高通滤波和低通滤波两种。
二、图像压缩图像压缩是指对图像进行无损或有损的压缩操作,以减小其存储或传输的大小。
基于无损压缩的方法有Huffman编码、LZW编码、算术编码等;而基于有损压缩的方法有JPEG、MPEG等。
三、图像滤波图像滤波是指对图像进行平滑、锐化、去噪等操作,以改善图像质量。
常用的图像滤波方法包括中值滤波、高斯滤波、均值滤波、边缘保护滤波、非线性滤波等。
四、图像分割图像分割是将图像中的目标分离出来或将其分为若干个区域的过程。
图像分割方法主要包括基于阈值的分割、基于边缘的分割、基于区域的分割等。
常用的图像分割算法有K-均值算法、Watershed算法、基于边缘的分割算法等。
五、图像识别图像识别是指对图像进行自动化分析和识别,以达到自动化处理的目的。
图像识别在许多领域中有广泛的应用,如人脸识别、车牌识别、文字识别等。
常用的图像识别算法有SVM、CNN、神经网络等。
六、图像复原图像复原是指对损坏的图像进行恢复和重建的过程。
图像损坏的原因有多种,如模糊、噪声、失真等。
图像复原方法主要包括基于模板的方法、基于反卷积的方法、基于小波变换的方法等。
综上所述,数字图像的处理与分析是计算机视觉领域的基础环节,其应用范围广泛,包括工业、医疗、交通等众多领域。
随着人工智能和机器学习的发展,数字图像处理与分析在未来将会有更加广阔的应用前景。
数据图像处理期末复习
数据图像处理期末复习1.1数字图像处理及特点1、什么是数字图像?什么是数字图像处理?数字图像:数字图像是物体的一个数字表示,是以数字格式存放的图像,它传递着物理世界事物状态的信息,是人类获取外界信息的主要途径。
数字图像处理:它指将图像信号转换成数字信号并利用计算机对其进行处理的过程,已提高图像的实用性,达到人们所要求的的预期结果。
2、图像处理的目的①提高图像的视觉质量,以达到赏心悦目的目的。
②提取图像中所包含的某些特征或特殊信息,便于计算机分析。
③对图像数据进行变换、编码和压缩,便于图像的存储和传输。
3、数字图像的特点①处理信息量很大②数字图像处理占用的频带较宽③数字图像中各个像素相关性大1.2数字图像处理系统1、数字图像处理系统的组成(结构)数字图像处理系统由输入设备、输出设备、存储、处理组成。
图像输入设备将图像输入的模拟物理量转变为数字化的电信号,以供计算机处理。
图像输出设备则是将图像处理的中间结果或最后结果显示或打印记录。
图像处理计算机系统是以软件方式完成对图像的各种处理和识别,是数字图像处理系统的核心部分。
由于图像处理的信息量大,还必须有存储设备。
2、数字图像处理的优点①精度高②再现性好③通用性、灵活性强1.3数字图像处理的主要研究内容1、数字图像处理的主要研究内容①图像增强②图像编码③图像复原④图像分割⑤图像分类⑥图像重建1.4数字图像处理的应用和发展1、举例说明数字图像处理有哪些应用和发展?①航天和航空技术方面的应用②生物医学工程方面的应用③通信工程方面的应用④工业和工程方面的应用⑤军事、公安方面的应用⑥文化艺术方面的应用⑦其他方面的应用2、数字图像处理领域的发展方向①图像处理的发展向着高速率、高分辨率、立体化、多媒体化、智能化和标准化方向发展。
②图像、图形结合朝着三维成像或多维成像的方向发展③结合多媒体技术,硬件芯片越来越多,把图像处理的众多功能固化在芯片上将会有更加广阔的应用领域④在图像处理领域近年来引入了一些新的理论并提出了一些新的算法,如神经网络。
精品文档-数字图像处理系统导论(郭宝龙)-第4章
2 f (x, y) f (x 1, y) f (x-1, y) f (x, y 1) f (x, y-1)-4 f (x, y)
下面以一幅3×2像素的简单图片(见图4-5)为例,来说明 灰度直方图均衡化的算法。
图 4-4 直方图变化
图 4-5 原图像灰度值分布
求出每个色阶的百分比之后,再乘255,就可以求出与其 对应的灰度值来。表4-1所示为对应灰度值转换。
表4-1 对应灰度值转换
根据每个色阶的百分比的对应关系组成一个灰度映射表, 然后根据映射表来修改原来图像每个像素的灰度值。对于图45,用128替换50,用212替换100,用255替换200。这样,灰 度直方图的均衡化就完成了,如图4-6所示。
2. 图像中的均匀与不均匀反映了频率高低不同,抑制低频 (增强高频)对应于锐化滤波器,而抑制高频(增强低频)对应 于平滑滤波器。以下讨论考虑对F(u,v)的实部、虚部影响完 全相同的滤波转移函数——零相移滤波器。 1) 理想低通滤波器 理想低通滤波器的传递函数为
1 H (u, v) 0
D(u, v) D0 D(u, v) D0
图 4-10 原始图像及其傅里叶频谱图
1. 假定原图像为f(x,y),经傅里叶变换为F(u,v)。频率 域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分 进行处理G(u,v)=H(u,v)F(u,v),然后经逆傅里叶变换得 到增强的图像g(x,y)=F-1({G(u,v)} 假设f(x,y)和h(x,y)的大小分别为A×B和C×D。如果 直接进行傅里叶变换和乘积,会产生折叠误差(卷绕)。为解决 这一问题,需通过对f和h补零,构造两个大小均为P×Q的函 数,使其满足
锐化滤波和平滑滤波
锐化滤波和平滑滤波锐化滤波和平滑滤波是数字图像处理中常用的两种滤波方法。
它们可以用来提高图像质量、减少噪声或者改变图像外观。
本文将详细介绍这两种滤波方法的原理和应用。
一、锐化滤波锐化滤波是一种增强图像细节和边缘的方法。
它是通过加强图像的高频部分来实现的。
在数字图像中,高频部分指的是像素值变化幅度较大的区域,也就是图像中的边缘和细节。
我们可以使用一些特定的算子来实现锐化滤波。
这些算子一般被称为锐化滤波器或者边缘增强算子。
常见的锐化滤波器包括拉普拉斯算子、索贝尔算子、普瑞瓦特算子等。
这些算子可以通过卷积运算来实现。
卷积运算是指将一个算子和图像中的每一个像素做乘积,并将相邻像素的乘积相加。
具体来说,假设我们需要使用一个3x3的拉普拉斯算子:0 101 -4 10 10对一个灰度图像进行锐化滤波。
我们需要将该算子与图像中的每一个像素进行卷积运算。
运算公式为:f(x,y) = ∑g(i,j)h(x-i,y-j)其中,f(x,y)表示卷积运算后的像素值,g(i,j)表示图像中位置为(i,j)的像素值,h(i,j)表示拉普拉斯算子中位置为(i,j)的元素值。
在运用锐化滤波器时需要注意,过强的锐化可能会使图像出现噪点。
此外,图像中一些边缘和细节可能会被误认为噪声而被消除,从而使图像质量降低。
二、平滑滤波平滑滤波又称为模糊滤波,是一种减少图像噪声和平滑图像细节的方法。
它是通过对图像进行低频滤波来实现的。
低频部分指的是像素值变化比较缓慢或者连续性比较强的区域,也就是图像中的平滑区域或者背景。
我们可以使用一些特定的算子来实现平滑滤波。
这些算子一般被称为平滑滤波器或者模糊滤波器。
常见的平滑滤波器包括均值滤波器、中值滤波器、高斯滤波器等。
这些滤波器也可以通过卷积运算来实现。
均值滤波器就是最简单的平滑滤波器之一。
它是将像素周围的值取平均数,用平均值来代替该像素的值。
假设我们需要使用一个3x3的均值滤波器:1 1 11 1 11 1 1对一个灰度图像进行平滑滤波。
【数字图像处理】图像的平滑处理
【数字图像处理】图像的平滑处理图像平滑的⽬的模糊:在提取较⼤⽬标前,去除太⼩细节,或将⽬标内的⼩间断连接起来。
消除噪声:改善图像质量,降低⼲扰。
平滑处滤波对图像的低频分量增强,同时削弱⾼频分量,⽤于消除图像中的随机噪声,起到平滑作⽤。
图像平滑处理的基本⽅法领域平均法领域加权平均法选择式掩模法中值滤波领域平均法模板在图像上移动,模板的中⼼对应⽬标像素点,在模板范围内对⽬标像素点进⾏卷积运算(对应系数乘对应像素点),然后相加除上模板⼤⼩得到均值,这个均值就是⽬标像素点处理后的值。
如图,对5⾏四列的图像进⾏3*3模板的邻域平均法处理:邻域平均法存在的问题抑制了⾼频成分,使⽤图像变得模糊,平滑效果不好,减少噪⾳的同时,损失了⾼频信息。
注意:模板不宜过⼤,因为模板越⼤对速度有直接影响,且模板⼤⼩越⼤变换后图像越模糊,特别是在边缘和细节处优点:算法简答,计算速度快。
缺点:造成图像⼀定程度上的模糊。
3*3模板邻域平均法⽰例:Use_ROWS:⾏Use_Line:列图像边界不处理:只处理1-----n-1。
int count = 0;for(int i = 1; i < Use_ROWS-1; i++){for(int j = 1; j < Use_Line-1; j++){//邻域平均法count=0;count = Image_Use[i][j]+Image_Use[i][j-1]+Image_Use[i][j+1]+Image_Use[i-1][j]+Image_Use[i-1][j-1]+Image_Use[i-1][j+1]+Image_Use[i+1][j]+Image_Use[i+1][j-1]+Image_Use[i+1][j+1]; Image_Use[i][j] = (int)(count/9);}}邻域加权平均法加权:系数不再全部为1。
选择式掩模法中值滤波中值滤波器,使⽤滤波器窗⼝包含区域的像素值的中值来得到窗⼝中⼼的像素值,本质上是⼀种⾮线性平滑滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像平滑和锐化变换处理
一、实验内容和要求
1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
2、空域平滑:box、gauss模板卷积。
3、频域平滑:低通滤波器平滑。
4、空域锐化:锐化模板锐化。
5、频域锐化:高通滤波器锐化。
二、实验软硬件环境
PC机一台、MATLAB软件
三实验编程及调试
1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
①灰度拉伸程序如下:
I=imread('');
J=imadjust(I,[,],[]);
subplot(2,2,1),imshow(I);
subplot(2,2,2),imshow(J);
subplot(2,2,3),imhist(I);
subplot(2,2,4),imhist(J);
②直方图均衡程序如下:
I=imread('');
J=histeq(I);
Subplot(2,2,1);
Imshow(I);
Title('原图像');
Subplot(2,2,2);
Imshow(J);
Title('直方图均衡化后的图像') ; Subplot(2,2,3) ;
Imhist(I,64);
Title('原图像直方图') ;
Subplot(2,2,4);
Imhist(J,64) ; Title('均衡变换后的直方图') ;
③伽马校正程序如下:
A=imread('');
x=0:255;
a=80,b=,c=;
B=b.^(c.*(double(A)-a))-1;
y=b.^(c.*(x-a))-1;
subplot(3,2,1);
imshow(A);
subplot(3,2,2);
imhist(A);
subplot(3,2,3);
imshow(B);
subplot(3,2,4);
imhist(B);
subplot(3,2,6);
plot(x,y);
④log变换程序如下:
Image=imread('');
subplot(1,2,1);imshow(Image);
Image=log(1+double(Image));
subplot(1,2,2);imshow(Image,[]);
2、空域平滑:box、gauss模板卷积。
A=imread('');
B=rgb2gray(A);
figure,subplot(3,2,1);imshow(B);
title('原始图象');
H=imnoise(B,'gaussian');
subplot(3,2,2);imshow(H);
title('高斯噪声');
Q=imnoise(B,'salt & pepper');
subplot(3,2,3);imshow(Q);
title('椒盐噪声');
M=fspecial('average',3*3);
E=imfilter(Q,M);
subplot(3,2,4);imshow(E);
title('3*3平均模板');
N=fspecial('average',5*5);
K=imfilter(Q,N);
subplot(3,2,5);imshow(K);
title('5*5平均模板');
Z=fspecial('average',7*7);
J=imfilter(Q,Z);
subplot(3,2,6);imshow(J);
title('7*7平均模板');
3、频域平滑:低通滤波器平滑。
频域低通滤波处理噪声的程序如下:[f1,f2]=freqspace(25,'meshgrid');
Hd=zeros(25,25);
d=sqrt(f1.^2+f2.^2)<;%为截止半径大小Hd(d)=1;
h=fsamp2(Hd);
figure(1),freqz2(h,[64,64]);
RGB=imread('');
I=rgb2gray(RGB);
I1=imnoise(I,'gaussian');
I2=imnoise(I,'salt & pepper',;
I3=imnoise(I,'speckle');
J=imfilter(I,h,'replicate');
J1=imfilter(I1,h,'replicate');
J2=imfilter(I2,h,'replicate');
J3=imfilter(I3,h,'replicate');
figure(2),subplot(221),imshow(J);
title('原图像滤波后');
subplot(222),imshow(J1);
title('高斯污染图像滤波后');
subplot(223),imshow(J2);
title('椒盐污染图像污染后');
subplot(224),imshow(J3);
title('乘法污染图像滤波后');
4、空域锐化:锐化模板锐化。
I=imread('');
A=RGB2gray(I);
figure,subplot(2,3,1);
imshow(A);
title('原图');
hs=fspecial('sobel');
S=imfilter(A,hs);
hp=fspecial('prewitt');
P=imfilter(A,hs);
A=double(A);%双精度型
H=[0,1,0;1,-4,1;0,1,0];%拉普拉斯算子J=conv2(A,H,'same');
K=A-J;
subplot(2,3,2),imshow(K);
title('拉普拉斯锐化图像');
B=edge(A,'roberts',;
subplot(2,3,3),imshow(B);
title('罗伯特锐化图像');
subplot(2,3,4),imshow(S);
title('sobel算子锐化图像');
subplot(2,3,5),imshow(P);
title('prewitt算子锐化图像');
5、频域锐化:高通滤波器锐化。
A=imread('');
B=rgb2gray(A);
figure,subplot(131),imshow(B);
title('原图');
B=double(B);
B=fftshift(fft2(B));
E=B;
[M,N]=size(B);
k1=round(M/2);
k2=round(N/2);
D=50;
for i=1:1:M
for j=1:1:N
juli=sqrt((i-k1)^2+(j-k2)^2);
K(i,j)=1-exp((-1/2)*juli^2*(1/D^2));E(i,j)=K(i,j)*E(i,j);
end
end
E=ifft2(ifftshift(E));
E=uint8(real(E));
subplot(132),imshow(E);title('高斯高通滤波器');
四、实验结果及分析
1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
①灰度拉伸运行结果如下:
②直方图均衡运行结果如下:
③伽马校正运行结果如下:
④log变换运行结果如下:
2、空域平滑:box、gauss模板卷积。
3、频域平滑:低通滤波器平滑。
用频率采样法构建的二维滤波器:figure(1)
图像经过二维滤波器滤波后图像,figure(2)
4、空域锐化:锐化模板锐化。
5、频域锐化:高通滤波器锐化。