抗原抗体反应
临床免疫学抗原抗体反应

第二章抗原抗体反应本章考点1概.述2抗.原抗体反应原理3抗.原抗体反应的特点4抗.原抗体反应的影响因素5抗.原抗体反应的类型第一节抗原抗体反应原理抗原与抗体能够特异性结合是基于抗原决定簇(表位)和抗体超变区分子间的结构互补性与亲和性。
这种特性是由抗原、抗体分子空间构型所决定的。
除两者分子构型高度互补外,抗原表位和抗体超变区必须密切接触,才有足够的结合力。
抗原抗体反应可分为两个阶段:第一阶段为抗原与抗体发生特异性结合的阶段,此阶段反应快,仅需几秒至几分钟,但不出现可见反应;第二阶段为可见反应阶段,这一阶段抗原抗体复合物在适当温度、电解质和补体影响下,出现沉淀、凝集、细胞溶解、补体结合介导的肉眼可见的反应,此阶段反应慢,往往需要数分钟至数小时。
在血清学反应中,以上两阶段往往不能严格分开,往往受反应条件(如温度、电解质、抗原抗体比例等)的影响。
(一)抗原抗体结合力抗原抗体是一种非共价的结合,不形成共价键,需要四种分子间引力参与。
1静.电引力:又称库伦引力。
是因抗原、抗体带有相反电荷的氨基与羧基基团间相互吸引的能力,这种吸引力的大小和两个电荷间的距离平方成反比。
两个电荷距离越近,静电引力越大;2范.德华引力:这是原子与原子、分子与分子相互接近时分子极化作用发生的一种吸引力,是抗原、抗体两个大分子外层轨道上电子相互作用时,两者电子云中的偶极摆动而产生的引力。
这种引力的能量小于静电引力;3氢.键结合力:是供氢体上的氢原子与受氢体上氢原子间的引力。
其结合力较强于范德华引力;4疏.水作用力:水溶液中两个疏水基团相互接触,由于对水分子的排斥而趋向聚集的力。
当抗原表位和抗体超变区靠近时,相互间正负极性消失,周围亲水层也立即失去,从而排斥两者间的水分子,使抗原抗体进一步吸引和结合。
疏水作用力是这些结合力中最强的,因而对维系抗原抗体结合作用最大。
图10抗原与抗体的结合力(二)抗原抗体的亲和性和亲和力亲和性指抗体分子上一个抗原结合点与对应的抗原决定簇之间相适应而存在的引力,它是抗原抗体间固有的结合力。
抗原抗体反应

第二节 抗原抗体反应的特点
1.特异性 2.比例性 3.可逆性 4.阶段性
一、 特异性(specificity)
1、概念:一种抗原分子通常只能与其刺激机体后
产生的抗体结合,这种抗原与抗体结合 反应的专一性称为特异性。
特 异 性 示 意 图
2、决定因素: 由抗原决定簇和抗体分子超变区之间
空间结构的互补性决定的。
Avidity
• The overall strength of binding between an Ag with many determinants and multivalent Abs
Keq =
104
Affinity
106 Avidity
1010 Avidity
二、抗原抗体的结合力
不形成牢固的共价键,通过非共价键结合 这种弱的结合力涉及几种分子间的作用力
3、根据所形成的沉淀物及抗原抗体比例 关系绘制反应曲线。
看书上76表7-1
5、一组概念
最适比(optimal ratio):是指形成沉淀物最多, 上清液清晰,几乎无游离抗原或抗体的抗原抗体 浓度比。 等价带(equivalencezone):形成沉淀物最多的 抗原与抗体分子比例合适的范围。 带现象:在等价带前后,由于抗体和抗原过量, 形成的沉淀物少,上清液中可测出游离的抗体或 抗原的现象。 带现象包括 前带(prozone)抗体过量时称为。
1、概念:是指抗原与相应抗体结合成复合物后,在 一定条件下可解离为游离抗原与抗体的特 性称为抗原抗体结合的可逆性。
2、原因:抗原抗体的结合是分子表面的非共价键 结合,因此形成的复合物不牢固。
3、抗原抗体反应动态平衡式如下:
4、决定抗原抗体解离的因素
抗原抗体反应

Section 1 抗原抗体反应的原理 资料仅供参考,不当之处,请联系改正。
基本原理:
特异性(AD----HVR)
结合力(4种)
可见性(凝集、沉淀、溶血等)
资料仅供参考,不当之处,请联系改正。
抗原 抗体
高度互补(AD-HVR) 紧密接触
产生 结合力
带电离子 异性相吸 静电引力
抗
分子极化 作用最小 范德华引力
2.范德华引力(Van der Waals 资料仅供参考,不当之处,请联系改正。 forces)
分子间(或原子间)相互接近,分子极化产 生引力,其作用取决于分子空间构型,如:凹 槽与凸起互补,抗原与抗体,酶与底物。能量 小于静电引力。
(3)氢键结合力(hydrogen 资料仅供参考,不当之处,请联系改正。 bounding force)
[Ag] + [Ab]
K1 K2
[Ag-Ab]
K1:结合常数;K2:解离常数
资料仅供参考,不当之处,请联系改正。
四、阶段性
两个阶段
特异性结合
数秒~数分钟, 肉眼不可见
可见反应阶段
数分~数小时 肉眼可见
Section 3 影响抗原抗体反应的因素 资料仅供参考,不当之处,请联系改正。
一、Ag/Ab自身因素 (一)Ag
强度
“all points-------all points”
与抗体的结合 价直接相关。 亲合力高, 与抗原结合 牢固不易解离。
Avidity
• The overall strength of binding between an Ag with many determinants and multivalent Abs
指供氢体氢原子与受氢体原子之间的 引力—“氢键桥梁” ,能量大于范德华引力。
植物免疫学-抗原抗体反应

抗原抗体反应概述
抗原与抗体的定义
抗原是能够引起免疫反应的物质, 而抗体是由免疫系统产生的能够 特异性识别并结合抗原的蛋白质。
抗原抗体反应的过
程
包括抗原的识别、抗体的产生以 及抗原抗体结合后的效应等阶段, 是植物免疫应答的核心环节。
抗原抗体反应的意
义
在植物免疫学中,抗原抗体反应 不仅揭示了植物与病原体相互作 用的分子机制,还为植物病害的 诊断和防治提供了新的思路和方 法。
种的推广和应用提供依据。
植物免疫学在生物防治中的应用
01
02
03
生物农药研制
利用植物免疫学原理,研 制具有抗病、杀虫作用的 生物农药,减少化学农药 的使用。
生物防治策略制定
根据植物免疫学原理,制 定针对特定病害的生物防 治策略,提高防治效果。
天敌资源的利用
利用植物免疫学方法,发 掘和利用天敌资源,控制 有害生物的发生和危害。
03 抗原
抗原的定义和分类
抗原定义
抗原是指能与T细胞、B细胞的TCR或BCR结合,促使其增殖、分化,产生致敏淋巴细胞或抗体,并与之结合,进 而发挥免疫效应的物质。
抗原分类
根据抗原性质分为完全抗原和不完全抗原。完全抗原简称抗原,是一类既有免疫原性,又有免疫反应性的物质; 不完全抗原又称半抗原,是只具有免疫反应性而无免疫原性的物质。
植物免疫系统的特点
非特异性免疫
植物免疫系统能够识别并抵御多种病原体,具有非特异性免疫的特 点。
多层次防御
植物免疫系统包括多个层次的防御机制,从细胞壁到细胞内,从局 部到整体,形成全方位的防御体系。
与环境互作
植物免疫系统受到环境因素的影响,如温度、湿度、光照等,同时 也与土壤中的微生物群落存在密切互作关系。
抗原抗体反应

抗原抗体反应
第2页
• 4、前带现象:抗原抗体反应该抗体量过时,不出现 可见反应。
• 5、后带现象:抗原抗体反应该抗原量过剩时,不出 现可见反应。
• 1929年Heidelberger利用等量抗体检测浓度递增抗 原,当抗原浓度较低,抗体浓度相对较高时,沉淀 反应不显著;当抗原浓度增加到与抗体浓度百分比 适当时,沉淀反应显著;继续增加浓度时,沉淀反 应反而减弱。据此绘出双对应答曲线,曲线高峰区 域,抗体、抗原浓度呈最适比,沉淀反应显著,称 等价带。高峰区域左侧,因为抗体浓度过高,沉淀 反应不显著,称前带;高峰区域右侧,因为抗原浓 度过高,沉淀反应也不显著,称后带。抗体浓度过 高所致结果称前带现象,抗原浓度过高所致结果称 后带现象,统称为带现象。1977年Green把此现 象称为钩状效应(hook effect),包含前后带现象 。
抗原抗体反应
第11页
抗原抗体特异性是指抗原分子上抗原决
定簇和抗体分子超变区结合特异性,由二者 之间查问结构互补决定。抗体分子VH 区和 VL 区上各自含有三个高变区共同组成抗原 结合部位,该部位形成一个与抗原决定簇互 补槽沟,决定了抗体特异性。所以,在抗原 抗体反应免疫学试验中,能够用已知抗原或 抗体来检测对应抗体或抗原。但较大分子蛋 白质常含有各种抗原表位。假如两种不一样 抗原分子上有相同抗原表位,或抗原、抗体 间构型个别相同,皆可出现交叉反应。
抗原抗体反应
第10页
二、抗原抗体反应特点
• 抗原抗体反应特点主要有三性:即特异性、
百分比性、可逆性。
(一)特异性:
是抗原抗体反应最主要特征,这种特异性 是由抗原决定簇和抗体分子超变区之间空间 结构互补性确定。这种高度特异性在传染病 诊疗与防治方面得到有效应用。伴随免疫学 技术发展进步,还将在医学和生物学领域得 到愈加深入和广泛应用,比如肿瘤诊疗和特 异性治疗等。
抗原抗体反应

(二)Ab
R型Ab :等价带宽, 易出现可见反应。 来源 H型Ab :等价带窄,易出现前带或后带现象
McAb:不宜用于凝集和沉淀反应。
浓度:相对Ag而言,比例要和适,故实验前 需滴定,以求最适Ag与Ab比例。
特异性与亲合力:关键因素,选择特异性 与亲合力高的Ab。
二、环境因素
• 一般:pH6~8为宜,补体参与时pH7.2~7.4。 • 注意:自凝现象------即pH达到或接近颗粒性抗
原的PI时,引起的抗原非特异性自身凝集现象。
(三)温度—影响反应速度
一般:15~40 ℃为宜, 最适温度:37℃, 过高(>56): Ag-Ab解离, Ag、Ab变性,
(一)电解质 作用:中和胶体表面电荷,破坏水化层, 使Ag-Ab聚集。 常用:8.5g/L NaCl溶液,缓冲液、Ca2+、 Mg2+等。 注意:盐析(salting)即电解质浓度过高 引起的非特异性蛋白质沉淀。
(二)酸碱度
• Ag、Ab多为蛋白质,具两性电离特性,有其故有 的PI , pH过高或过低均可影响Ag、Ab反应。
网格学说(图)
抗体的两个Fab段分别 结合两个Ag分子,相互 交叉结合连接成巨大的 网格状立体聚合物, (可见)。
Ab/Ag过剩 过剩方的结合价得不到饱和,大多数游离存在,只 形成小分子复合物(不可见)。
网格学说(图)
切记!!!!
确定 Ag/Ab 的浓度非常重要,即在实验 中需对Ag/Ab进行适当的 稀释 ,调整二 者的比例,产生可见反应。
强度
“all points-------all points”
与抗体的结合 价直接相关。 亲合力高, 与抗原结合 牢固不易解离。
抗原抗体反应的概念

抗原抗体反应的概念
抗原抗体反应是指当抗原(一种物质)进入生物体内时,免疫系统中的抗体与该抗原结合,从而触发一系列免疫反应的过程。
抗原可以是细菌、病毒、寄生虫、过敏原、肿瘤细胞等外来物质,也可以是自身组织中产生的异常的细胞或分子。
抗体是免疫系统中的一种蛋白质,由特定的免疫细胞(例如B细胞)
产生,并具有与抗原结构相互适配的结构。
当抗体与抗原结合时,可以发生多种生物化学反应,如中和、沉淀、凝集和增强免疫细胞活性等。
这些反应有助于清除抗原或保护机体免受抗原引起的损害。
抗原抗体反应是机体应对感染、过敏和疫苗接种等事件的重要机制,同时也是临床诊断、药物研发和免疫疗法的基础。
8抗原抗体反应

免疫荧光技术 (Immunofluorescence Technique)
是用荧光素(常用的有异硫氰酸荧光素, FITC) 与抗体连接成荧光抗体,再与待测 标本的抗原反应,置荧光显微镜下观察, 抗原抗体复合物散发出荧光,借此对标本 中的抗原作鉴定和定位。
RIA法原理及标准曲线
/
结 合 75
未
结 合 50
的
放 射
30
活
性 10
(
0
)
1
10
100
未标记抗原浓度(ng/ml)
1000
%
▼间接凝集抑制试验:将可溶性抗原与相应抗体预 先混合并充分作用后,再加入致敏载体,此时因抗 体已被可溶性抗原结合,阻断了抗体再与致敏载体 上抗原的结合,不再出现凝集现象。临床常用的免 疫妊娠试验即属此类。
(二)沉淀反应(Precipitation)
血清蛋白质、细胞裂解液或组织浸液等 可溶性抗原与相应抗体结合后出现的沉淀物 现象称为沉淀反应。
加样
Ab+琼脂
Ag
Ag
Ag
NS
观察
(含量)
Ab固定于 琼脂
单向免疫扩散
Ag扩散 沉淀环
双向免疫扩散
(Double Immunodiffusion)
是将抗原与抗体分别加入 琼脂凝胶的小孔中,二者 自由向周围扩散并相遇, 在比例合适处形成沉淀线。 如果反应体系中含两种以 上的抗原抗体系统,则小 孔间可出现两条以上的沉 淀线。本法常用于抗原或 抗体的定性 、组成和两种 抗原相关性分析的检测。
敏感性和特异性均较高,但该试验影响因素较多,现在已 有被其它新方法取代的趋势。
抗原抗体反应

reaction
广州医科大学金域检验学院 徐霞
本章内容
1.Principle of Ag-Ab reaction 2.Characteristics of Ag-Ab
reaction 3.Influencing factors of Ag-Ab
reaction 4.Types of Ag-Ab reaction
●氢键结合力:供氢体上的氢原子与受氢体原子间的 引力
●疏水作用力:两个疏水基团在水溶液中相互接触时, 由于对水分子排斥而趋向聚集的力.
结合力的强弱:
疏水作用力>氢键结合力>静电引力>范德华引力
抗体 O
氢键结合力 N 静电引力 -
-+
范德华力
+-
抗原
H H + + -+
+-
疏水作用力
排斥的水 抗原抗体结合力示意图
二、抗原抗体的亲和力与亲合力
1.亲和力(affinity):抗体分子上一个抗原结
合点与对应的抗原表位之间的结合强度, 是抗原抗体间固有的结合力
亲和力可用平衡常数K表示,K值越大,亲 和力越高,与抗原结合也越牢固。
2.亲合力:是指一 个抗体分子与抗原 分子表面数个相应
Avidity
• The overall strength of binding between an Ag with many determinants and multivalent Abs
带负电荷,使极化的水分子在其周围形成水化层, 成为亲水胶体。抗原抗体复合物成为疏水胶体。 在适当电解质、PH、温度等影响下,出现可见 反应。
第二节 抗原抗体反应的特点
《抗原抗体反应》课件

夹心反应
总结词
指抗原和抗体结合后,其复合物可与其 他物质结合,形成夹心结构所引发的反 应。
VS
详细描述
在夹心反应中,抗原和抗体结合后,其复 合物可以与另一种物质结合,形成一种夹 心的结构。这种反应可以显著增加反应的 灵敏度,常用于检测低浓度的抗原。例如 在酶联免疫吸附试验(ELISA)中,酶标 板上的抗体与抗原结合后,再与酶标记的 抗体结合,形成夹心结构。
抗体
指由抗原刺激机体免疫系统产生的,能与相应抗原特异性结合的 球蛋白。
抗原抗体的特性
特异性
抗原和抗体之间的结合具有高度的特异性,即一种 抗原只能与相应的抗体发生结合反应。
亲和力
抗原和抗体之间的结合力称为亲和力,亲和力的大 小决定了抗原抗体反应的强弱。
可逆性
抗原抗体结合后形成的复合物在一定条件下可以解 离,即抗原抗体反应具有可逆性。
凝集反应
观察抗原抗体结合后颗粒物的凝集情况,判断反 应结果。
荧光免疫技术
利用荧光物质标记抗体或抗原,通过荧光信号的 强弱判断反应结果。
06
抗原抗体反应的注意事项
实验前的准备
实验材料准备
确保抗原和抗体溶液的浓 度和纯度,选择适当的标 记物如荧光染料、酶等。
实验设备检查
检查实验所需仪器设备, 如离心机、显微镜、酶标 仪等,确保其正常运行。
02
抗原抗体反应的原理
抗原抗体的结合力
02
01
03
静电吸引
抗原和抗体带有相反的电荷,通过静电吸引相互结合 。
氢键
抗原和抗体中的极性基团形成氢键,增强结合力。
疏水相互作用
抗原和抗体的非极性基团相互靠近,形成疏水键。
抗原抗体的亲和力
《抗原抗体反应》课件

免疫测定技术
酶联免疫吸附试验(ELISA)
01
利用抗原抗体反应的原理,通过酶标记技术检测样本中微量抗
原或抗体的方法。
免疫荧光技术
02
利用抗原抗体反应标记荧光物质,通过荧光显微镜观察荧光信
号,对细胞或组织中的抗原进行定位和定性分析。
免疫印迹技术
03
将抗原抗体反应与电泳技术结合,分离并检测复杂样本中的抗
免疫学领域的发展趋势
免疫疗法
随着免疫疗法的发展,抗原抗体反应在肿瘤、感染等疾病的治疗中具有广阔的应用前景。
免疫预防
利用抗原抗体反应,研发新型疫苗,提高预防传染病的效果。
THANKS
感谢观看
亲和力定义
抗原和抗体结合时,它们 之间的亲和力是指它们相 互吸引的强度和稳定性。
亲和力常数
亲和力常数是用来描述抗 原和抗体结合强度的物理 量,其值越大表示结合越 稳定。
亲和力影响因素
亲和力受到多种因素的影 响,如抗原抗体的结构、 电荷分布、溶剂环境等。
抗原抗体反应的动力学
反应速率
抗原抗体反应的动力学特征包括 反应速率和反应机制。
等。
05
抗原抗体反应的实验操作
抗原抗体的制备
抗原的制备
选择适当的抗原物质,经过适当的处理和纯化,确保抗原的纯度和特异性。
抗体的制备
免疫动物以产生特异性抗体,通过细胞培养或杂交瘤技术制备单克隆抗体。
抗原抗体的纯化
亲和层析
利用抗原抗体特异性结合的特性,通 过亲和层析介质分离纯化抗体。
凝胶过滤层析
利用分子大小差异进行分离,排除杂 质,纯化抗原抗体。
详细描述
当抗原和抗体结合后,由于分子量增 大,可形成肉眼可见的沉淀物。这种 沉淀反应可用于检测抗原或抗体的存 在,如免疫比浊法测定抗原的浓度。
抗原抗体反应的原理

抗原抗体反应的原理抗原抗体反应是机体对外来抗原的特异性免疫反应,是免疫系统对抗原的一种保护性反应。
在这一过程中,抗原与抗体结合,从而触发一系列免疫反应,保护机体免受外来病原体的侵害。
抗原抗体反应的原理涉及到抗原和抗体的结构、相互作用以及免疫反应的调节等方面。
首先,抗原是一种能够诱导机体产生抗体的物质,可以是蛋白质、多糖、脂质等。
抗原通常具有一定的分子特异性,能够被机体的免疫系统所识别。
抗原通常被抗体所识别并结合,从而引发免疫反应。
抗体是机体对抗原产生的一种特异性蛋白质,由B细胞产生。
抗体的结构包括两条重链和两条轻链,通过二硫键连接成Y形结构。
抗体的结构决定了其与抗原的特异性结合,这种结合是通过抗原与抗体的互补决定区域相互作用而实现的。
抗原抗体反应的原理在于抗原与抗体的特异性结合。
当抗原与抗体结合时,会发生一系列的生物化学反应,包括激活补体系统、调节炎症反应、促进巨噬细胞的吞噬等。
这些反应共同作用,最终达到清除抗原的目的。
此外,抗原抗体反应还包括免疫记忆和免疫调节等过程。
一旦机体接触到抗原,免疫系统会产生特异性的记忆细胞,使得再次接触同一抗原时,机体能够更快速、更有效地产生抗体,从而加强免疫应答。
免疫调节则是指机体对免疫应答的调控,保持免疫系统的平衡状态,避免过度的免疫反应对机体造成伤害。
总的来说,抗原抗体反应的原理涉及到抗原与抗体的特异性结合,以及免疫反应的调节和记忆等过程。
这一反应是机体对外来抗原的一种保护性反应,对维持机体的免疫平衡具有重要意义。
对抗原抗体反应的深入研究,有助于更好地理解免疫系统的功能,为免疫相关疾病的治疗和预防提供理论基础。
抗原抗体反应

是主要供氢体,而羧基氧、羧基碳和肽键氧等
原子是主要受氢体,能的大小取决于方向即氢
键具有高度的方向性,因此范德华力更具有特
异性。氢键结合力与供氢体和受氢体之间距离
的6次方成反比,键能约20·9kJ/mol。
4.疏水作用力
❖
两个疏水基团在水溶液中相互接触时,
由于对水分子排斥而趋向聚集的力称为疏水作
用力,或称为疏水键。当抗原抗体反应时,抗
抗原决定簇与抗体超变区必须紧密接触,才能有
足够的结合力,使抗原抗体分子结合在一起。
一、抗原抗体结合力
❖
抗原和抗体的结合虽然是互补性的特异性
结合,但并不形成牢固的共价键,只是通 过非共价
键结合,结合方式类似蛋白质和细胞受体或酶与底
物之间的结合。抗原与抗体这种弱的结合力涉及下
列几种分子间的作用力。
l. 静电引力
❖ ×游离抗体浓度
❖
K代表抗体结合抗原的亲和力。K值
大的抗体与抗原牢固结合,不易解离,称该抗
体有高亲和力。
三、亲水胶体转化为疏水胶体
❖
抗体和大多数抗原同属蛋白质。在通
常的血清学反应条件下均带有负电荷,使极化
的水分子在其周围形成水化层,成为亲水胶体,
因此蛋白质不会自行凝集出现沉淀。当抗原与
❖
实验证明,在同一抗原抗体反应系统
中,不管抗原和抗体浓度如何变化,其沉淀反
❖ 比例性是指抗原与抗体发生可见反应需遵循一 定的量比关系,只有当二者浓度比例适当时,才出现 可见反应。以沉淀反应为例,在加入固定量抗体的一 排试管中再依次加入一定体积的递增浓度的抗原进行 反应时,发现随着抗原浓度的增加,沉淀很快大量出 现,但超过一定范围之后,沉淀速度和沉淀量随抗原 浓度增加反而迅速降低,甚至到最后不出现沉淀。沉 淀反应的速度反映了参加反应的抗原和抗体浓度的适 合程度,适合程度高反应快,反之则慢。通常把最迅 速出现沉淀时的抗原抗体的浓度比或量比称为抗原抗 体反应的最适比。
简述抗原抗体反应的特点

简述抗原抗体反应的特点
抗原抗体反应是免疫系统中重要的生物化学反应,其特点包括以下几个方面:
1. 特异性:抗原抗体反应是高度特异性的,即抗体只能与特定的抗原结合。
抗体的结构与其所识别的抗原的结构高度匹配,形成抗原-抗体复合物。
2. 反应性:抗原抗体反应是可逆的。
抗原与抗体结合后,可以通过改变条件(如温度、pH值等)来破坏抗原-抗体复合物,使其分离。
3. 亲和力:抗原抗体反应的亲和力是指抗原与抗体结合的力量。
亲和力高的抗体与抗原结合更紧密,稳定性更高。
4. 多样性:抗体可以针对多个不同的抗原产生反应。
一个抗体分子可以同时与多个相同或不同的抗原结合,这种多样性使得抗体能够识别和中和多种病原体。
5. 交叉反应:有时,抗体可能与与其原始抗原相似的其他抗原结合。
这种交叉反应可能会导致误诊或误判。
6. 免疫记忆:抗原抗体反应具有免疫记忆的特点。
一旦免疫系统接触到某个抗原并产生抗体,之后再次遇到相同的抗原时,免疫系统能够迅速产生更多的抗体,从而更快地对抗原进行应对。
抗原抗体反应是免疫系统的重要机制,对于保护机体免受病原体感染以及诊断疾病具有重要意义。
《抗原抗体反应原理》课件

免疫应答机制研究
通过研究抗原与抗体的相互作用,深 入了解免疫应答的机制和过程,为疫 苗研发、免疫治疗等提供理论基础。
自身免疫性疾病机制研究
通过对自身抗体与自身抗原的反应进 行研究,揭示自身免疫性疾病的发病 机制,为治疗提供新思路。
免疫细胞功能分析
利用抗原抗体反应检测免疫细胞表面 的抗原标志,分析免疫细胞的功能和 亚型,为免疫学研究提供有力工具。
抗体的纯化
通过一系列分离纯化技术,去除血清中的其 他成分,提高抗体的纯度,常用的方法有离 心、凝胶电泳、亲和层析、离子交换层析等 。
抗原抗体反应的检测方法
沉淀反应
抗原和抗体结合后,在一定条 件下形成肉眼可见的沉淀物, 常用的方法有单向免疫扩散、 双向免疫扩散、对流免疫电泳 等。
凝集反应
抗原和抗体结合后,引起颗粒 性抗原的凝集现象,常用的方 法有直接凝集、间接凝集等。
Байду номын сангаас
抗原抗体的分类
按作用对象分类
外源性抗原和内源性抗原。外源性抗原是指来自机体外部的抗原,如细菌、病 毒等;内源性抗原是指来自机体内部的抗原,如变性或损伤的组织细胞。
按功能分类
完全抗原和半抗原。完全抗原是指具有免疫原性和反应原性的抗原物质,能够 刺激机体产生免疫应答;半抗原是指仅有反应原性而无免疫原性的抗原物质, 不能刺激机体产生免疫应答。
影响因素
亲和力受到抗原和抗体分子间的电荷分布、空间构象、结合位点数目以及溶液环 境等多种因素的影响。
抗原抗体的特异性
特异性的含义
特异性是指抗原和抗体结合的专一性,即一种抗原只能与相 应的抗体发生特异性结合。
决定因素
抗原抗体的特异性是由其分子表面的化学基团决定的,这些 化学基团在空间构象上互补,使得抗原和抗体能精确地结合 在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章抗原抗体反应抗原抗体反应(antigen-antibodyreaction)是指抗原与相应抗体之间所发生的特异性结合反应。
可发生于体内(invivo),也可发生于体外(invitro)。
体内反应可介导吞噬、溶菌、杀菌、中和毒素等作用;体外反应则根据抗原的物理性状、抗体的类型及参与反应的介质(例如电解质、补体、固相载体等)不同,可出现凝集反应、沉淀反应、补体参与的反应及中和反应等各种不同的反应类型。
因抗体主要存在于血清中,在抗原或抗体的检测中多采用血清作试验,所以体外抗原抗体反应亦称为血清反应(serologicreaction)。
第一节抗原抗体反应的原理抗原与抗体能够特异性结合是基于两中分子间的结构互补性与亲和性,这两种特性是由抗原与抗体分子的一级结构决定的。
抗原抗体反应可分为两个阶段。
第一为抗原与抗体发生特异性结合的阶段,此阶段反应快,仅需几秒至几分钟,但不出现可见反应。
第二为可见反应阶段,抗原抗体复合物在环境因素(如电解质、pH、温度、补体)的影响下,进一步交联和聚集,表现为凝集、沉淀、溶解、补体结合介导的生物现象等肉眼可见的反应。
此阶段反应慢,往往需要数分钟至数小时。
实际上这两个阶段以严格区分,而且两阶段的反应所需时间亦受多种因素和反应条件的影响,若反应开始时抗原抗体浓度较大且两者比较适合,则很快能形成可见反应。
(一)亲水胶体转化为疏水胶体抗体是球蛋白,大多数抗原亦为蛋白质,它们溶解在水中皆为胶体溶液,不会发生自然沉淀。
这种亲水胶体的形成机制是因蛋白质含有大量的氨基和羧基残基,这些残基在溶液中带有电荷,由于静电作用,在蛋白质分子周围出现了带相反电荷的电子云。
如在pH7.4时,某蛋白质带负电荷,其周围出现极化的水分子和阳离子,这样就形成了水化层,再加上电荷的相斥,就保证了蛋白质不会自行聚合而产生沉淀。
抗原抗体的结合使电荷减少或消失,电子云也消失,蛋白质由亲水胶体转化为疏水胶体。
此时,如再加入电解质,如NaC1,则进一步使疏水胶体物相互靠拢,形成可见的抗原抗体复合物。
(二)抗原抗体结合力有四种分子间引力参与并促进抗原抗体间的特异性结合。
1.电荷引力(库伦引力或静电引力)这是抗原抗体分子带有相反电荷的氨基和羧基基团之间相互吸引的力。
例如,一方在赖氨酸离解层带阳离子化的氨基+),另一方在天门冬氨酸电离后带有阴离子化的羧基(-COO-)时,残基(-NH3即可产生静电引力,两者相互吸引,可促进结合。
这种引力和两电荷间的距离的平方成反比。
两个电荷越接近,静电引力越强。
反之,这种引力便很微弱。
2.范登华引力这是原子与原子、分子与分子互相接近时发生的一种吸引力,实际上也是电荷引起的引力。
由于抗原与抗体两个不同大分子外层轨道上电子之间相互作用,使得两者电子云中的偶极摆而产生吸引力,促使抗原抗体相互结合。
这种引力的能量小于静电引力。
3.氢键结合力氢键是由分子中的氢原子和电负性大的原子如氮、氧等相互及-COOH)的抗体与相对应吸引而形成的。
当具有亲水基团(例如-OH,-NH2的抗原彼此接近时,可形成氢键桥梁,使抗原与抗体相互结合。
氢键结合力较范登华引力强,并更具有特异性,因为它需要有供氢体和受氢体才能实现氢键结合。
4.疏水作用抗原抗体分子侧链上的非极性氨基酸(如亮氨酸、缬氨酸和苯丙氨酸)在水溶液中与水分子间不形成氢键。
当抗原表位与抗体结合点靠近时,相互间正、负极性消失,由于静电引力形成的亲水层也立即失去,排斥了两者之间的水分子,从而促进抗原与抗体间的相互吸引而结合。
这种疏水结合对于抗原抗体的结合是很重要的,提供的作用力最大。
第二节抗原抗体反应的特点(一)特异性抗原抗体的结合实质上是抗原表位与抗体超变区中抗原结合点之间的结合。
由于两者在化学结构和空间构型上呈互补关系,所以抗原与抗体的结合具有高度的特异性。
这种特异性如同钥匙和锁的关系。
例如白喉抗毒素只能与相应的外毒素结合,而不能与破伤风外毒素结合。
但较大分子的蛋白质常含有多种抗原表位。
如果两种不同的抗原分子上有相同的抗原表位,或抗原、抗体间构型部分相同,皆可出现交叉反应。
图9-1沉淀反应中没淀量与抗原抗体的比例关系Ag:抗原;Ab:抗体(二)按比例在抗原抗体特异性反应时,生成结合物的量与反应物的浓度有关。
无论在一定量的抗体中加入不同量的抗原或在一定量的抗原中加入不同量的抗体,均可发现只有在两者分子比例合适时才出生现最强的反应。
以沉淀反应为例,若向一排试管中中入一定量的抗体,然后依次向各管中加入递增量的相应可溶性抗原,根据所形成的沉淀物及抗原抗体的比例关系可绘制出反应曲线(图9-1)。
从图中可见,曲线的高峰部分是抗原抗体分子比例合适的范围,称为抗原抗体反应的等价带(zoneofequivalence)。
在此范围内,抗原抗体充分结合,沉淀物形成快而多。
其中有一管反应最快,沉淀物形成最多,上清液中几乎无游离抗原或抗体存在,表明抗原与抗体浓度的比例最为合适,称为最适比(optimalratio)。
在等价带前后分别为抗体过剩则无沉淀物形成,这种现象称为带现象(zonephenomenon)。
出现在抗体过量时,称为前带(prezone),出现在抗原过剩时,称为后带(postzone)。
关于抗原抗体结合后如何形成聚合物,曾经有过不少解释。
结合现代免疫学的成就呼电镜观察所见,仍可用Marrack(1934)提出的网格学说(latticetheory)加以说明。
因为大多数抗体的巨大网格状聚集体,形成肉眼可见的沉淀物。
但当抗原或抗体过量时,由于其结合价不能相互饱和,就只能形成较小的沉淀物或可溶性抗原抗体复合物。
在用沉淀反应对不同来源的抗血清进行比较后,发现抗体可按等价带范围大小分为两种类型,即R型抗体和H型抗体。
R型抗体以家兔免疫血清为代表,具有较宽的抗原抗体合适比例范围,只在抗原过量时,才易出现溶性免疫复合物,大多数动物的免疫血均属此型。
H型抗体以马免疫血清为代表,其抗原与抗体的合适比例范围较窄,抗原或抗体过量,均可形成可溶性免疫复合物。
人和许多大动物的抗血清皆属H型。
(三)可逆性抗原抗体反应遵循生物大分子热动力学反应原则,其反应式为:[Ab-Ag]/[Ab].[Ag]=k1/k2=k式中各反应项的单位以mol表示,k1表示反应速度常数,k2为逆反应速度常数,K是反应平衡时的速度常数。
由上式可知,K值是反映抗原抗体间结合能力的指示,所以抗体亲和力通常以K值表示。
抗原抗体复合物解离取决于两方面的因素,一是抗体对相应抗原的亲和力;二是环境因素对复合物的影响。
高亲和性抗体的抗原结合点与抗原表位的空间构型上非常适合,两者结合牢固,不容易解离。
反之,低亲和性抗体与抗原形成的复合物较易解离。
解离后的抗原结合牢固,不容易解离。
反之,低亲和性抗体与抗原形成的复合物较易解离。
解离后的抗原或抗体均能保持未结合前的结构、活性及特异性。
在环境因素中,凡是减弱或消除抗原抗体亲和力的因素都会使逆向反应加快,复合物解离增加。
如pH改变,过高或过低的pH值均可破坏离子间电引力消失。
对亲合力本身较弱的反应体系而言,仅增加离子强度即可解离抗原抗体复合物的目的;增加温度可增加分子间的热动能,加速已结合的复合物的解离,但由于温度变化易致蛋白变性,所以实际工作中极少应用。
改变pH和离子强度是最常用的促解离方法,免疫技术中的亲和层析就是以此为根据纯化抗原或抗体。
第三节影响抗原抗体反应的因素(一)电解质抗原与抗体发生特异性结合后,虽由亲水胶体变为疏水胶体,若溶液中无电解质参加,仍不出现可见反应。
为了促使沉淀物或凝集物的形成,常用0.85%氯化钠或各种缓冲液作为抗原及抗体的稀释液。
由于氯化钠在水溶液中解离成Na+和C1-,可分别中和胶体粒子上的电荷,使胶体粒子的电势下降。
当电势降至临界电势(12~15mV)以下时,则能促使抗原抗体复合物从溶液中析出,形成可见的沉淀物或凝集物。
(二)酸碱度抗原抗体反应必须在合适的pH环境中进行。
蛋白质具有两性电离性质,因此每种蛋白质都有固定的等电点。
抗原抗体反应一般在pH为6~8进行。
PH过高或过低都将影响抗原与抗体的理化性质,例如pH达到或接近抗原的等电点时,即使无相应抗体存在,也会引起颗粒性抗原非特异性的凝集,造成假阳性反应。
(三)温度在一定范围内,温度升高可加速分子运动,抗原与抗体碰撞机会增多,使反应加速。
但若温度高于56℃时,可导致已结合的抗原抗体再解离,甚至变性或破坏;在40℃时,结合速度慢,但结合牢固,更易于观察。
常用的抗原抗体反应温度为37℃。
每种试验都有其独特的最适反应温度,例如冷凝集素在4左右与红细胞结合最好,20℃以上反而解离。
此外,适当振荡也可促进抗原抗体分子的接触,加速反应。
第四节抗原抗体反应的类型根据抗原和抗体性质的不同和反应条件的差别,抗原抗体反应表现为不同的形式。
颗粒性抗原表现为凝集反应;可溶性抗原表现为沉淀反应;补体参与下细菌抗原表现为溶菌反应,红细胞抗原表现为溶血反应;毒素抗原表现为中和反应等。
利用这些类型的抗原抗体反应建立了各种免疫学技术,在医学检验中广泛用于抗原和抗体的检测。
为了提高反应的敏感性和特异性,便发展了一些新的试验类型,如种种标记的抗原抗体反应等。
这些类型各有其特点,将在以下各章中详细叙述。