三段式电流保护整定与接线

合集下载

三段式零序电流保护整定

三段式零序电流保护整定
• ①故障点:本线路末端 • ②故障类型:(假设正序阻抗等于负序阻抗。即 Z
I
(1 ) 0
1
Z2
)ห้องสมุดไป่ตู้
E E
/ ( 2 Z 1 Z 0) / ( Z 1 2 Z 0)
I
( 1,) 1 0
• 当Z0>Z1时,I
(1) 0 (1) 0
>I
( 1,) 1 0
( 1,) 1 0
,采用单相接地故障方式进行计算
本线路全长并延伸至下一线路首端部分零序电流限时速断保护灵敏性校验按本线路末端发生接地故障时最小零序电流校验若不满足改与相邻线段配合用两个灵敏度不同的段改用接地距离保护3
前言: 零序电流保护的组成
• 分为三段(或四段): • 零序Ⅰ段:无时限零序电流速断保护 • 零序Ⅱ段:零序电流限时速断保护 • 零序Ⅲ段:零序过电流保护
• 当Z0<Z1时,I
<I
,采用两相接地故障方式进行计算
(2)躲过由于断路器三相触头不同时合闸所出现的最大三倍零序电流 3I0unb,即
I
I op
K rel 3 I 0 .unb . max
3 I 0 . unb 的计算
①一相先合: ①两相先合:
I ounb ( E m - E n )/(2 Z 1 Z 0 )
I ounb ( E m - E n )/( Z 1 2 Z 0 )
非同期重合闸:就是当线路两侧断路器跳闸以后,不管先线路两侧电源是否同步,一般不 需要附加条件,即可进行重合。
2.零序电流Ⅱ段保护
保护范围:本线路全长并延伸至下一线路首 端部分
I
式中 K rel
Ⅱ Ⅰ
II op

三段式过流保护整定原则

三段式过流保护整定原则

三段式过流保护整定原则一、三段式过流保护概述三段式过流保护由电流速断保护(Ⅰ段)、限时电流速断保护(Ⅱ段)和定时限过电流保护(Ⅲ段)组成,分别用于快速切除近处故障、切除本线路全长范围内的故障以及作为相邻线路保护的后备保护,在电力系统的安全稳定运行中起着重要作用。

二、电流速断保护(Ⅰ段)整定原则1. 动作电流- 按照躲过被保护线路末端的最大短路电流来整定。

这是因为如果不躲过,在被保护线路末端发生短路时,电流速断保护就会误动作,将本线路切断,而实际上故障应该由下一级线路的保护去切除。

其动作电流计算公式为I_{op1}=K_{rel}I_{k.max},其中I_{op1}为电流速断保护的动作电流,K_{rel}为可靠系数(一般取1.2 - 1.3),I_{k.max}为被保护线路末端的最大短路电流。

2. 动作时间- 动作时间一般取t_{1}=0s(实际上考虑到继电器固有动作时间等因素,大约为0.06 - 0.1s),这是为了实现快速切除故障,尽可能减少故障对系统的影响。

三、限时电流速断保护(Ⅱ段)整定原则1. 动作电流- 按照躲过下级线路电流速断保护的动作电流来整定。

这样可以保证在下级线路的速断保护范围以外发生故障时,本级的限时电流速断保护才动作,避免无选择性动作。

其动作电流计算公式为I_{op2}=K_{rel}I_{op1下},其中I_{op2}为本级限时电流速断保护的动作电流,K_{rel}为可靠系数(一般取1.1 - 1.2),I_{op1下}为下级线路电流速断保护的动作电流。

2. 动作时间- 动作时间比下级线路电流速断保护的动作时间高出一个时间级差Δ t,一般Δ t = 0.5s。

这是为了保证动作的选择性,即当下级线路的速断保护先动作时,本级的限时电流速断保护不动作;只有当下级线路速断保护拒动时,本级限时电流速断保护才在高出一个时间级差后动作。

四、定时限过电流保护(Ⅲ段)整定原则1. 动作电流- 按照躲过被保护线路的最大负荷电流来整定。

三段式电流保护的整定及计算

三段式电流保护的整定及计算

三段式电流保护的整定及计算————————————————————————————————作者:————————————————————————————————日期:2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取1.2~1.3。

I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。

要求最小保护范围不得低于15%~20%线路全长,才允许使用。

2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。

灵敏度分别按近后备和远后备进行计算。

式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。

即:最小运行方式下,两相相间短路电流。

要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

三段式电流保护的整定及计算

三段式电流保护的整定及计算

三段式电流保护的整定及计算电流保护是电力系统中非常重要的一项保护措施,它能有效地保护电路设备免受过电流的损害。

其中,三段式电流保护是一种常用的保护方式,它利用三个不同的电流阈值来触发保护动作,以实现不同级别的保护。

本文将介绍三段式电流保护的整定方法及计算过程。

一、三段式电流保护的原理三段式电流保护是基于不同的电流阈值来触发不同的保护动作,以实现多级保护的目的。

一般来说,三段式电流保护包括低灵敏度段、中灵敏度段和高灵敏度段。

低灵敏度段主要用于对电流异常的早期预警,一般设置在额定电流的80%左右。

当电流超过该阈值时,保护装置会发出警告信号,以提醒操作人员注意。

中灵敏度段是三段式电流保护的核心,一般设置在额定电流的120%左右。

当电流超过该阈值时,保护装置会迅速切断电路,以避免设备过载或短路引起的损坏。

高灵敏度段是为了应对更严重的故障情况而设置的,一般设置在额定电流的150%左右。

当电流超过该阈值时,保护装置会立即切断电路,以确保系统的安全运行。

二、三段式电流保护的整定方法三段式电流保护的整定方法一般包括以下几个步骤:1. 确定低灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将低灵敏度段的整定值设置在额定电流的80%左右。

通过实际测量和分析,确定适合的整定值。

2. 确定中灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将中灵敏度段的整定值设置在额定电流的120%左右。

通过实际测量和分析,确定适合的整定值。

3. 确定高灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将高灵敏度段的整定值设置在额定电流的150%左右。

通过实际测量和分析,确定适合的整定值。

三、三段式电流保护的计算过程三段式电流保护的整定计算可以通过以下步骤进行:1. 确定低灵敏度段的整定值:根据设备的额定电流和保护的要求,将低灵敏度段的整定值设置为额定电流乘以0.8。

2. 确定中灵敏度段的整定值:根据设备的额定电流和保护的要求,将中灵敏度段的整定值设置为额定电流乘以1.2。

35kV线路三段式电流保护整定计算

35kV线路三段式电流保护整定计算

35kV高压进线线三段式电流保护和整定计算对 35~63kV 线路,可按下列要求装设相间短路保护装置:1) 对单侧电源线路可采用一段或两段电流速断或电流闭锁电压速断作主保护,并应以带时限过电流保护作后备保护。

当线路发生短路,使发电厂厂用母线电压或重要用户母线电压低于额定电压的 60%时,应能快速切除故障。

2)35kV线路相间短路的电流保护35kV线路继电保护的主体。

电流保护多采用三段式,即由电流速断保护、限时电流速断保护和过电流保护组成。

电流速断保护(也称为Ⅰ段)动作时间短,速动性好,但其动作电流较大,某些情况下不能保护线路全长;限时电流速断保护(也称为Ⅱ段)有较短的动作时限,而且能保护线路全长,却不能作为相邻线路的后备保护;定时限过电流保护(也称为Ⅲ段)的动作电流较前两段小,保护范围大,既能保护本线路全长又能作为相邻线路的后备保护。

7.3.1 第一段无时限电流速断保护1)应躲过进线末端K2点的最大三相短路电流整定。

其中: Iact保护装置的动作电流,又叫做一次动作电流——K2点的最大三相短路电流Krel——可靠系数,一般取1.25~1. 52) 继电器的动作电流为:(7.2)其中:Kco——接线系数,本设计中取1KLH——电流互感器TA的变流比考虑到系统发展时仍能适应,选用DL-11/50型电流继电器,其动作电流的整定范围为12.5~50A,故动作电流整定值为40A。

3) 第一段的灵敏性通常用保护范围的大小来衡量,根据本设计的数据,按线路首端(d1点)短路时的最小短路电流校验灵敏系数。

(7.3)其中:Ksen——灵敏系数不满足要求,因此必须进一步延伸电流速短的保护范围,使之与下一条线路的限时电流速断相配合,这样其动作时限就应该选择得比下一条线路限时速断的时限再高一个所以动作时限整定为:=+2=1.0s (7.4)故应装设带时限电流速断保护。

4) 由于其动作时间为0s,为防止其在线路上管型避雷器放电时误动,电流速断保护的动作时间带有0.06~0.08秒的延时。

三段式电流保护

三段式电流保护

QF
QF
Y
+-
+
KA I> KM
• •
TA
信号
+
KS
-
电流速断保护单相原理接线图
KA--电流继电器 KM--热继电器 KS--时间继电器
2 优缺点
缺点:不能保护线路全长,而且随着系统运行方式的以及故障 类型的不同,其保护范围也要发生相应变化。 优点:因为不反应下一段线路的故障,所以动作时限将不受下 一线路保护时限的影响,可以时限瞬时动作。
特殊情况,如线变组时,将Ⅰ段保护区伸入变压器, 可以保护线路全长。
2
P1
M
l
E
1QF
P2
N
2QF
Zs
Ik
Ik 曲线1
曲线2
k
最大运方三相短路
最小运方 两相短路
最小保护区 最大保护区
M
R
Q
N
k1
I act
I (2) k.min
I (3) k.max l
2 A P1 1QF
Ik
B
C
2QF
ห้องสมุดไป่ตู้
P1Ⅰ段保护区
IaIIct.1KIrIelIaIIct.2
t1II
t
II 2
tt
I22t
3
限时电流速断保护单相原理接线图
QF
QF
Y
-
信号
+
+
+
KA I> KT
KS
-
• •
TA
2
黄金替补--定时限过电流保护
3 定时限过电流保护 线路配置了电流Ⅰ段及Ⅱ段后,可以切除本线 路上的故障。

三段式电流保护的整定及计算

三段式电流保护的整定及计算

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取1.2~1.3。

I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。

要求最小保护范围不得低于15%~20%线路全长,才允许使用。

2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。

灵敏度分别按近后备和远后备进行计算。

式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。

即:最小运行方式下,两相相间短路电流。

要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。

三段式电流保护的整定及计算

三段式电流保护的整定及计算

三段式电流保护的整定及计算一、引言电流保护是电力系统中非常重要的一项保护措施,它能够有效地保护电力设备和电路免受过载和短路等故障的损害。

而三段式电流保护是一种常用的保护方式,通过设置三个不同的整定值,在不同故障情况下分别触发保护动作,提高了保护的精确性和可靠性。

本文将介绍三段式电流保护的整定及计算方法。

二、三段式电流保护的整定方法1. 第一段整定值的确定第一段整定值通常用于检测系统中的过载情况,其整定值应根据所保护设备的额定电流和短时过载能力来确定。

一般情况下,第一段整定值可取设备的额定电流的 1.2倍,以确保设备在短时间内的过载情况下能够正常运行。

2. 第二段整定值的确定第二段整定值主要用于检测系统中的短路故障,其整定值应根据所保护设备的额定电流和短路能力来确定。

一般情况下,第二段整定值可取设备的额定电流的2倍,以确保设备在短路故障发生时能够及时切断电路,保护设备的安全运行。

3. 第三段整定值的确定第三段整定值主要用于检测系统中的严重短路故障,其整定值应根据所保护设备的额定电流和系统的最大短路电流来确定。

一般情况下,第三段整定值可取系统最大短路电流的 1.5倍,以确保设备在严重短路故障发生时能够迅速切断电路,有效地保护电力系统的安全运行。

三、三段式电流保护的计算方法1. 第一段整定值的计算第一段整定值的计算可根据所保护设备的额定电流和短时过载能力来进行。

例如,某设备的额定电流为100A,短时过载能力为150A,那么第一段整定值可取100A×1.2=120A。

2. 第二段整定值的计算第二段整定值的计算可根据所保护设备的额定电流和短路能力来进行。

例如,某设备的额定电流为100A,短路能力为5000A,那么第二段整定值可取100A×2=200A。

3. 第三段整定值的计算第三段整定值的计算可根据所保护设备的额定电流和系统的最大短路电流来进行。

例如,某设备的额定电流为100A,系统的最大短路电流为10000A,那么第三段整定值可取10000A×1.5=15000A。

三段式电流保护整定的计算方法

三段式电流保护整定的计算方法

三段式电流保护整定的计算方法什么是三段式电流保护?三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段),相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。

一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。

为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。

以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。

后面几段线路的电流速断保护整定原则同上。

电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。

但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。

运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。

二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。

三段式电流保护整定校验方案设计-三段式电流保护图

三段式电流保护整定校验方案设计-三段式电流保护图

三段式电流保护整定校验方案设计|三段式电流保护图城市架空线路入地改造预算方案设计前言当保护线路上发生短路故障时,其主要特征为电流增加和电压降低。

电流保护主要包括:无限时电流速断保护、限时电流速断保护和定时限过电流保护。

电流速断、限时电流速断、过电流保护都是反映电流升高而动作的保护装置。

它们之间的区别主要在于按照不同的原则来选择启动电流。

速断是按照躲开某一点的最大短路电流来整定,限时电流速断是按照躲开下一级相邻元电流速断保护的动作电流整定,而过电流保护则是按照躲开最大负荷电流来整定。

但由于电流速断不能保护线路全长,限时电流速断又不能作为相邻元的后备保护,因此,为保证迅速而有选择地切除故障,常将电流速断、限时电流速断和过电流保护组合在一起,构成三段式电流保护。

具体应用时,可以只采用速断加过电流保护,或限时电流速断加过电流保护,也可以三者同时采用。

但是在三段式电流保护电路在实施的过程中会存在着一定的问题,所以需要对于三段式电路进行整定和校验,这样才能够使的线路能够正常的进行传输电量。

摘要三段式电流保护通常用于3-66kV电力线路的相间短路保护。

在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。

在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。

短路电流值还与系统运行方式及短路的类型有关。

所以对于三段式电流保护电路进行整定以及校验是至关重要的。

这样有助于对于线路正常进行运输。

减少安全事故发生的概率。

关键词:整定;校验;三段式电流目录前言1 摘要2 第1章绪言 5 第2章城市架空线路入地改造预算方案设计 62.1任务描述 62.2任务要求 6 第3章信息咨询 73.1三段式电流保护7 3.2三段式电流保护的优缺点12 3.3三段式电流保护动作时限的整定12 3.4三段式电流保护装置灵敏性的校验13 第4章制定三段式电流保护整定校验方案工作计划15 4.1设计进度计划15 4.2设计任务划分15 4.3设计必备工具15 4.4所需设备15 4.5三段式电流保护整定校验工作原理16 第5章实施三段式电流保护整定校验方案工作计划20 5.1前期准备20 5.2三段式电流保护整定计算20 5.3三段式电流保护电路25 第6章过程检查与控制27 第7章技术总结 31 7.1三段式电流保护整定原则 31 7.2.三段式电流保护整定方法 32 7.3设计总结 33 致谢 34 参考文献 35第1章绪言随着社会的不断发展,环境污染与能源枯竭已经成为急需解决的问题,能源的需求已经成为全世界关注的焦点,对新能源的开发利用已迫在眉睫。

三段电流保护整定实例

三段电流保护整定实例
三段电流保护整定实 例
目录
• 概述 • 整定实例一:变压器保护 • 整定实例二:线路保护 • 整定实例三:电动机保护 • 结论
01
概述
定义与重要性
定义
三段电流保护是电力系统中的一种重 要保护措施,主要用于保护变压器、 发电机和输电线路等设备。
重要性
在电力系统中,当发生短路故障或其 他异常情况时,三段电流保护能够快 速切断故障线路,防止事故扩大,保 障电力系统的安全稳定运行。
整定实例的具体步骤
根据实际情况选择合适的电 流互感器变比和保护装置型
号。
收集线路的参数和运行数据, 包括线路长度、导线截面、
最大负荷电流等。
01
02
03
根据整定公式计算出各项保 护的整定值。
将计算出的整定值输入到保 护装置中进行设置。
04
05
对保护装置进行校验,确保 其功能正常并符合要求。
04
整定实例三:电动机保 护
三段电流保护整定的未来发展方向
智能化发展
随着人工智能和大数据技术的应用,三段电流保护整定将逐步实现 智能化,通过智能算法和数据分析提高保护的准确性和可靠性。
集成化发展
未来三段电流保护整定将趋向于与其他电力设备进行集成,形成一 体化的保护监控系统,便于集中管理和维护。
定制化发展
针对不同电力系统和设备的需求,三段电流保护整定将提供更加定制 化的解决方案,以满足个性化需求和提高系统性能。
收集变压器参数
包括额定容量、额定电流、额 定电压等。
选择继电器
根据计算结果选择合适的差动 继电器、瓦斯继电器和过流继 电器。
调试与验收
对安装好的变压器保护装置进 行调试和验收,确保其正常工 作。

三段式电流保护的整定与接线

三段式电流保护的整定与接线
在最大运行方式下,发生三相短路时,短路电流最
大。利用Xs.min结合线路阻抗可求出线路中某点的
最大短路电流。
• 最小运行方式:对每一套保护装置来讲,通过该
保护装置的短路电流为最小的方式。(Xs.max)
在最小运行方式下,发生两相短路时,短路电流最
小。用Xs.max结合线路阻抗可求出线路中某点的最
小短路电流。
4、 接线:
与第Ⅰ段相同:仅中间继电器变为时间继电 器。
5、 小结:
• ① 限时电流速断保护的保护范围大于本线 路全长
• ② 依靠动作电流值和动作时间共同保证其 选择性
• ③ 与第Ⅰ段共同构成被保护线路的主保护, 兼作第Ⅰ段的后备保护。
单相原理接线图
QF
QF1
LT

+ KA I
+ KT t

信号
IR——本线路末最大负荷电流,通常是电动机自起动 电流
• 3)灵敏度校验: 近后备:Ksen=本线路末端短路时的最小短
路电流 /第III段动作值 ≥1.3—1.5 远后备:Ksen=下线路末端短路时的最小短
路电流 /第III段动作值 ≥1.2
• 3、动作时间:
在线路中某处发生短路故障时, 从故障点至电源之间所有线路上 的电流保护第Ⅲ段的测量元件均 可能动作。例如:上图所示中d短 路时,保护1~4都可能起动。为 了保证选择性,须加延时元件且 其动作时间必须相互配合。
• ② 在后备保护之间,只有灵敏系数和动作时 限都互相配合时,才能保证选择性;
• ③ 保护范围是本线路和相邻下一线路全长; • ④ 电网末端第Ⅲ段的动作时间可以是保护中
所有元件的固有动作时间之和(可瞬时动作), 故可不设电流速断保护;末级线路保护亦可简

三段式电流速断保护详细整定书讲解

三段式电流速断保护详细整定书讲解

许继wxh-820第31页8定值整定说明10.1三段电流电压方向保护由于电流电压方向保护针对不同系统有不同的整定规则,此处不一一详述。

以下内容是以一线路保护整定为实例进行说明,以做为用户定值整定已知条件:最大运行方式下,降压变电所母线三相短路电流I)3(maX.dl为5500A,配电所母线三相短路电流I)3(maXd为5130A,配电变压器低压.2侧三相短路时流过高压侧的电流I)3(maX.3d为820A。

最小运行方式下,降压变电所母线两相短路电流I)2(maX.1d为3966A,配电所母线两相短路电流I)2(maXd为3741A,配电变压器低压侧两相短路.2时流过高压侧的电流I)2(maX.3d为689A。

电动机起动时的线路过负荷电流Igh为350A,10kV电网单相接地时取小电容电流IC为15A,10kV电缆线路最大非故障接地时线路的电容电流Icx为1.4A。

系统中性点不接地。

相电流互感器变比为300/5,零序电流互感器变比为50/5。

整定计算(计算断路器DL1的保护定值)电压元件作为闭锁元件,电流元件作为测量元件。

电压定值按保持测量元件范围末端有足够的灵敏系数整定。

10.1.1电流电压方向保护一段(瞬时电流电压速断保护)瞬时电流速断保护按躲过线路末端短路时的最大三相短路电流整定,保护装置的动作电流 A n I K K I l d jx k dz 11160513013.1)3(max .2j=⨯⨯==,取110A保护装置一次动作电流A 6600160110K n I I jx l j.dz dz =⨯== 灵敏系数按最小运行方式下线路始端两相短路电流来校验:2601.066003966I I K dz)2(min,dl lm <===由此可见瞬时电流速断保护不能满足灵敏系数要求,故装设限时电流速断保护。

10.1.2电流电压方向保护二段(限时电流电压速断保护)限时电流速断保护按躲过相邻元件末端短路时的最大三相短路时的电流整定,则保护装置动作电流A A n I K K I l d jx k jdz 20,8.176082013.1)3(max .3.取=⨯⨯==保护装置一次动作电流A 120016020K n I I jx l j.dz dz =⨯== 灵敏系数按最小运行方式下线路始端两相短路电流来校验:23.312003966I I K dz )2(min .dl lm>=== 限时电流速断保护动作时间T 取0.5秒。

三段式电流保护的工作原理及整定计算

三段式电流保护的工作原理及整定计算

三段式电流保护的工作原理及整定计算
嘿!今天咱们来聊聊“三段式电流保护的工作原理及整定计算”这个超重要的话题呀!
哎呀呀,先来说说这三段式电流保护到底是啥呢?它其实就像是电路的三道防线,分别是电流速断保护、限时电流速断保护和过电流保护。

这三道防线相互配合,共同守护着电路的安全哟!
电流速断保护呢,那可真是个厉害的角色!它动作迅速,一旦检测到电流超过设定值,瞬间就会跳闸,就像一个敏捷的卫士,快速出手保护电路哇!但是它也有个小缺点,就是保护范围有限呢。

限时电流速断保护呀,它弥补了电流速断保护范围小的不足。

它会在一定的时限内动作,既能扩大保护范围,又能保证动作的选择性,是不是很神奇呀?
过电流保护就像是个坚实的后盾!当线路的负荷电流超过了允许值,它就会动作啦。

它的动作时限是按照阶梯原则整定的哟,越靠近电源端,动作时限越长,这样就能避免越级跳闸的情况发生呢!
那这三段式电流保护的整定计算又是咋回事呢?这可就有点复杂啦!首先得确定保护装置的动作电流和动作时限。

动作电流的整定要考虑很多因素,比如线路的最大负荷电流、短路电流等等。

而动作时限的整定则要遵循阶梯原则,保证上下级保护之间的配合协调,哎呀呀,这可真是需要精心计算和仔细考量的呢!
总之,三段式电流保护的工作原理和整定计算可是电力系统中非常重要的知识呀!只有掌握了这些,才能确保电力系统的安全稳定运
行,为我们的生活和工作提供可靠的电力保障哇!怎么样,大家是不是对三段式电流保护有了更清晰的认识呢?。

三段式电流保护的整定与接线

三段式电流保护的整定与接线
特点
三段式电流保护由速断保护、限时速断保护和过流保护三段组成,各段之间相 互配合,能够有效地切除被保护设备内部的故障,并避免设备受到进一步损害。
工作原理
速断保护
过流保护
根据躲过被保护设备启动时的最大启 动电流来整定,一旦线路中出现大于 这个电流值的情况,保护装置就会立 即动作,切断电流。
根据躲过被保护设备的最大负荷电流 来整定,当线路中出现大于这个电流 值的情况时,保护装置会动作,切断 电流。
缺点
1 2
接线复杂
三段式电流保护的接线较为复杂,需要配置多个 保护装置,增加了调试和维护的难度。
保护范围有限
三段式电流保护的保护范围受到电流互感器变比 和系统运行方式的影响,可能存在保护死区。
3
对系统运行方式敏感
三段式电流保护的保护定值和延时需要根据系统 的运行方式和负荷变化进行调整,否则可能导致 误动作或拒动。
限时速断保护
根据躲过被保护设备出口的最大短路 电流和一定的延时来整定,在出现大 电流的情况下,保护装置会在延时后 动作,切断电流。
适用范围
01
适用于10kV及以上的电力系统中 的变压器、发电机和输电线路等 设备的保护。
02
对于某些特定设备,如大型电动 机和并联电容器等,也可以采用 三段式电流保护进行保护。
住宅小区供电系统中的应用
住宅小区供电系统需要满足居民的日常生活需求,对供电的连续性和稳定性要求较高。三段式电流保 护能够有效地检测和切除故障线路,保障居民用电的可靠性。
在住宅小区供电系统中,三段式电流保护的整定值需要考虑居民用电负荷的特点,如峰谷用电、季节 性用电等。同时,还需要根据配电线路的长度、导线截面等因素进行合理配置,以确保保护装置能够 快速、准确地切除故障线路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在最大运行方式下,发生三相短路时,短路电流最
大。利用Xs.min结合线路阻抗可求出线路中某点的
最大短路电流。
• 最小运行方式:对每一套保护装置来讲,通过该
保护装置的短路电流为最小的方式。(Xs.max)
在最小运行方式下,发生两相短路时,短路电流最
小。用Xs.max结合线路阻抗可求出线路中某点的最
小短路电流。
三段式电流保护
整定与接线
一、瞬时电流速断保护
三段式电流保护中的I段 整定计算:指确定保护装置动作值 的计算
对于仅反应于电流增大(短路电流)而瞬时动作电 流保护,称为瞬时电流速断保护。
• 1、短路电流的计算 :
Ik
ES Xs X1l
ES——系统等效电势
XS ——发生短路时系统等值阻抗
X1l ——线路阻抗, X1为线路单位长度阻抗, l为故障点至电源的距离
3
L3
2、A 整定值的计算和B灵敏性校验
C
D
为保证选择性80k及m 最小动作时限8,0km首先考虑其保8护0k范m 围不
超出下一条线路第Ⅰ段的保护范围。即整定值与相邻
线路第Ⅰ段配合。 分析
• 整定原则:躲过下一线路第Ⅰ段整定电流
• 动作电流:一第I线aIIII段c路.1t电的流第K动Ir段e作Il动aI值c作.2t=值可靠系数 乘 下
KS触点闭合
发信号
接通跳闸回路(QF1、LT)
QF跳闸
返回过程
跳闸回路的返回: QF断开
LT线圈失电返回 KA与KM的返回: QF断开
电流互感器二次侧电流为0
QF1断开
跳闸回路断电
电流互感器一次侧电流为0 KA线圈失电, KA触点返回(打开)
KM线圈失电,KM触点返回(打开)
KS的返回:略
• 中间继电器的作用: ① 接点容量大,可直接接LT去跳闸 ② 当线路上装有管型避雷器时,利用其固有动
在最大运行方式下发生三相短 路时,保护范围最大
灵敏度:lmin / l≥15%—20%
最大短路 电流曲线
0 lmin
lmax l
最小短路Biblioteka 电流曲线l4、单相原理接线图
QF
QF1
LT

+
+
KA I
KM

信号
+
KS
TA
动作分析:正常运行状态下
QF
QF1
LT

+
+
KA I
KM

信号
+
KS
TA
发生短路
动作分析:保护动作过程
Krel:范围1.1~1.2,常取Ia1IIc..11t , KreIlaI c.2t 为L2的I
段动作电流
• 动作时间: 动t第1I作III段时动间t作加2I时 0间.5 s=下t(一实线际路就的是第0.5I段s)
1
2
3
A
B
C
IK
短路点离电源
越大,短路电流
越大.
0
某种运行方式下,发生某种类 l 型短路时的短路电流曲线
Ik的大小与运行方式(发生短路时系统的接线)、故
障类型(三相还是二相)及故障发生点有关,以下两 种运行方式是在整定计算中用到的:
• 最大运行方式:对每一套保护装置来讲,通过该
保护装置的短路电流为最大的方式。(Xs.min)
可见, I段保护不能保护 线路全长。
另而不可而大外言是见言,,保固,对保,,对短护于定护于I路范不段范I段电围变保围保流越的护并护越大. , 短路电流越小保 护范围越小.
某种运行方式下,发生某种类 l 型短路时的短路电流曲线
1
L1
2
L2
3
L3
A
B
C
D
IK
Iact.1
Ik.B.max
在最小运行方式下发生两相短 路时,保护范围最小
•计算公式:乘Ia本I c.1线t路K 末r最eIl大K.B 短.m路a电x流
Iact.1——I段保护的动作值 Krel——可靠系数 IK.B.max——线路末端的最大短路电流(用Xs.min)
•动作时间t =0s
注:保护装置的动作电流:能使该保护装置起动的最小电流 值,用电力系统一次测参数表示。
3.保护范围:
13+0.4×80
Iact.1= 1.2 ×1.475=1.77(KA)
•灵敏度校验:(略)
二、即时电流速断保护
电流保护的第Ⅱ段
• 1、 要求 • ① 任何情况下能保护线路全长,并具
有足够的灵敏性
• ② 在满足要求①的前提下,力求动作 时限最小。
因动作带有延时,故称限时电流速断保护。
1
L1
2
L2
1 L1
2 L2
3 L3
A
B
80km
C 80km
D 80km
课后作业:求L2线路L3的第 I段动作值和动作时限
解:(1)第I段 1.2
• 动作电流:Iac.1tKreIlK.B.max
• 动作时限: t=0
IK(.3)B.max=
ES XS.min+X1l
ES 115/ 3KV
=
=1.475(KA)
QF
QF1
LT

+
+
KA I
KM

信号
+
KS
TA
动作分析:结果与返回
QF
QF1
LT

+
+
KA I
KM

I段电流保护动作
+
KS
TA
动作过程
第I段保护的接线
线路上发生短路
电流互感器一次侧电流增大
电流互感器二次侧电流增大
当电流大于或等于I段动作 值
KA起动, KA触点闭合
KM线圈加电,KM触点闭合
KS线圈加电
作时间(60ms)防止避雷器放电时保护误动
• 小结 ① 仅靠动作电流值来保证其选择性 ② 能无延时地保护本线路的一部分(不是一
个完整的电流保护)。
例子:下图所示的单侧电源辐射网络,线路L1、L2上 均装设三段式电流保护。已知 ES 115/ 3KV ,最 大运行方式下系统的等值阻抗Xs.min =13Ω,最小 运 行方式下系统的等值阻抗Xs.max= 14Ω,线路单位长度 正序电抗X1=0.4 Ω/km, L1正常运行时最大负荷电流 为120A,线路L2的过电流保护的动作时限为2.0s.计算 线路L1三段式电流保护的动作电流、动作时限并校验 保护的灵敏系数。
1
L1
2
L2
3
L3
A
B
C
D
IK
在最大运行方式下(XS.min),发生d(3),短路 电流最大.
最大短路 电流曲线
0
最小短路
电流曲线
l
在最小运行方式下(XS.max),发生d(2),短路 电流最小.
2、整定值计算 整定原则:为了保护的选择性,动作电流按躲过 本线路末端短路时的最大短路短路整定
第I段电流动作值=可靠系数
有选择性的电流速断保护不可能保护线路的 全长
• 灵敏性:用保护范围的大小来衡量
一般用lmin来校验
最小保护范围
要求:lmin / l ≥(15~20)%
课堂作业
1 A
IK
IaIct.1
保护范围: 从IK曲线 与起动电 流的交点
0 到电源这
段距离。
2
3
B
C
在保护范围内发生短路 时,短路电流大于或等于 I段整定电流时,I段保 护才动作,保护范围之外 的不动作.
相关文档
最新文档