无土栽培营养液的配置
无土栽培营养液的配制技术

利用物联网、大数据等技术,实现营养液的智能化管理,提高生 产效率。
无土栽培技术的创新
研究新的无土栽培技术,如水肥一体化、气雾栽培等,以适应现代 农业的发展。
营养液的发展趋势与前景
环保与可持续发展
随着环保意识的提高,营养液的环保和可持续发展成为未来的趋 势,研究环保型肥料和可持续发展的无土栽培技术将具有重要意 义。
营养液的应用范围
园艺生产
无土栽培营养液广泛应用于蔬菜 、水果、花卉等园艺作物的生产 中。
农业领域
在粮食作物方面,无土栽培技术 在一些特殊环境下也有应用,如 在水资源匮乏的地区或需要高度 洁净的场所(如医院、实验室等 )。
生态保护
无土栽培技术对于生态保护和修 复也有积极的作用,例如在治理 沙漠、盐碱地等困难立地条件下 的植被恢复。
确保其质量稳定。
营养液的更新与更换
更新来源
通过不断监测植物生长情况和土壤肥力,判断是否需要更新营养液配方或调整肥 料种类和比例。
更换频率
根据植物生长阶段、土壤肥力和气候条件等因素,确定更换营养液的频率,以保 证植物获得持续、稳定的养分供应。
04
无土栽培营养液的优化与发展趋势
营养液的优化改良
营养成分的优化
02
选择合适的肥料原料,如固体肥料、液体肥料或浓缩肥料,以
满足营养液配方的要求。
确保使用的肥料原料质量可靠,不含有害物质,符合安全标准
03 。
配制步骤和方法
根据配方比例将各种 营养元素和微量元素 按照所需浓度混合在 一起。
将混合好的营养液原 料加入水中,搅拌均 匀,确保各元素充分 溶解。
对于浓缩肥料,需按 照说明书上的比例加 入适量的水进行稀释 ,然后加入到营养液 中。
无土栽培营养液如何配置

无土栽培营养液如何配置
工具/原料
•大量元素:硝酸钾3克;硝酸钙5克;硫酸镁3克;磷酸铵2克;硫酸钾1克磷酸二氢钾1克
•微量元素:(应用化学试剂)乙二胺四乙酸二钠100毫克;硫酸亚铁75毫克硼酸3 0毫克;硫酸锰20毫克;硫酸锌5毫克;硫酸铜1毫克;铝酸铵2毫克•自来水:5000毫升(5公斤)
•配液瓶
•搅拌棒
步骤/方法
1.将大量元素和微量元素分别配成溶液,然后混合起来倒入配液瓶,匀速搅拌液体.
2.加入自来水,按照上面原料中的配比5000毫升的自来水加入配液瓶中搅拌是液体充
分混合并等待其颜色淡化后停止.
3.将配好后的营养液一部分倒入需要使用的无土栽培容器中,剩余的封口保留好以备
下次无土栽培植物换水时用.
注意事项
•可将微量元素扩大100倍称重化成溶液,然后提取其中1%溶液,即所需之量。
无土种植蔬菜营养液配制方法

无土种植蔬菜营养液配制方法无土栽培指的是不用天然土壤,而是用基质或营养液进行栽培,那么你们知道无土种植蔬菜营养液配制方法吗?下面是店铺精心为你整理的无土种植蔬菜营养液配制方法,一起来看看。
无土种植蔬菜营养液配制方法(1)配制营养液前的准备①根据栽培作物的种类、无土栽培方式以及成本的大小,正确选用营养液配方。
②选用适当的肥料(无机盐类)。
既要考虑肥料中可供营养元素的浓度和比例,又要选择溶解度高、纯度高、杂质少、价格低的肥料。
③根据配方中各营养元素的浓度比例,分别计算出各种肥料的用量,再换算成每吨水或每10吨水各种肥料的实际需要量。
④准备好贮液罐,营养液一般配成浓缩100~1000倍的母液备用。
每一配方要2~3个母液罐。
母液罐的容积以25或50千克为宜,以深色不透光的为好,罐的下方可安装水龙头,供放母液之用。
⑤选择并备好用水。
配制营养液的用水十分重要,要对水质予以选择。
井水、河水、泉水、自来水以至雨水均能用于配制营养液,但应用要求不含重金属化合物和病菌、虫卵以及其他有毒污染物。
未经净化的海水、工业污水均不可用。
雨水含盐量低,用于无土栽培较为理想,但常含有铜和锌等微量元素,故配制营养液时,可不加或少加;自来水含有氯以及过多的碳酸盐,应加以处理后使用;井水为地下水,含铁、锰、钙、镁、硫及NH4+多,在配制营养液前应对用水进行分析。
(2)营养液的配制方法①分别称取各种肥料,置于干净容器或塑料薄膜袋以及平摊地面的塑料薄膜上,待用。
②混合与溶解肥料时,要严格注意顺序,要把Ca2+和SO42-、PO43-分开,即硝酸钙不能与硝酸钾以外的几种肥料如硫酸镁等硫酸盐类、磷酸二氢铵等混合,以免产生钙的沉淀。
③母液可分A、B或A、B、C贮液罐。
A罐混合并溶解硝酸钙和硝酸钾,或将微量元素中的硫酸亚铁和Na2·EDTA与硝酸钙溶解在A 罐,B罐中,混合溶解硝酸钾、硫酸镁、磷酸二氢铵以及其他微量元素,有的将所有微量元素混合溶解于C罐中。
无土栽培营养液的配制技术

无土栽培的第一步就是正确配制营养液,这是无土栽培的关键技术环节。
如果配制方法不正确,某些营养元素会因沉淀而失效,或影响植物吸收,甚至导致植物死亡。
一、营养液的配制原则营养液配制总的原则是确保在配制后和使用营养液时都不会产生难溶性化合物的沉淀。
每一种营养液配方都潜伏着产生难溶性物质沉淀的可能性,这与营养液的组成是分不开的。
营养液是否会产生沉淀主要取决于浓度。
几乎任何化学平衡的配方在高浓度时都会产生沉淀。
如Ca2+与SO42-相互作用产生 CaSO4沉淀;Ca2+与磷酸根(PO43-或HPO42-)产生Ca3(PO4)2或 CaHPO4沉淀;Fe3+与PO43-产生FePO4沉淀,以及Ca2+、Mg2+与OH-产生Ca(OH)2和Mg (OH)2沉淀。
实践中运用难溶性物质溶度积法则作指导,采取以下两种方法可避免营养液中产生沉淀:一是对容易产生沉淀的盐类化合物实施分别配制,分罐保存,使用前再稀释、混合;二是向营养液中加酸,降低p H值,使用前再加碱调整。
二、营养液配制前的准备工作1.根据植物种类、生育期、当地水质、气候条件、肥料纯度、栽培方式以及成本大小,正确选用和调整营养液配方 这是因为不同地区间水质和肥料纯度等存在着差异,会直接影响营养液的组成;栽培作物的品种和生育期不同,要求营养元素比例不同,特别是N、P、K三要素比例;栽培方式,特别是基质栽培时,基质的吸附性和本身的营养成分都会改变营养液的组成。
不同营养液配方的使用还涉及栽培成本问题。
因此,配制前要正确、灵活调整所选用的营养液配方,在证明其确实可行之后再大面积应用。
2.选好适当的肥料(无机盐类) 所选肥料既要考虑肥料中可供使用的营养元素的浓度和比例,又要注意选择溶解度高、纯度高、杂质少、价格低的肥料。
3.阅读有关资料 在配制养液之前,先仔细阅读有关肥料或化学品的说明书或包装说明,注意盐类的分子式、含有的结晶水、纯度等。
4.选择水源并进行水质化验,作为配制营养液时的参考。
无土栽培营养液的配方组成

成》2023-10-30contents •无土栽培营养液概述•无土栽培营养液的配方原则•无土栽培营养液的配方组成•无土栽培营养液的制备方法•无土栽培营养液的使用与管理•无土栽培营养液的优化与改进建议目录01无土栽培营养液概述定义无土栽培营养液是指不使用天然土壤,而使用水或其他液体介质来代替进行作物栽培的营养供应方式。
特点无土栽培具有提高作物产量、减少病虫害、节约水资源、便于自动化管理等优点。
定义与特点营养液主要由氮、磷、钾等大量元素、微量元素、矿物质和水分等组成。
营养液的组成主要成分不同作物所需营养元素的种类和比例不同,因此需要根据作物种类和生长阶段来调整营养液的配比。
配比根据作物的生长表现和土壤情况,可以适当调整营养液的浓度和酸碱度。
调整无土栽培适用于各种作物,如蔬菜、水果、花卉、草药等。
适用作物无土栽培可以应用于家庭园艺、农业温室、商业种植等领域。
应用场景无土栽培能够提高作物的产量和品质,减少农药使用,节约水资源,提高土地利用率等。
优势体现营养液的应用范围02无土栽培营养液的配方原则植物营养需求微量元素植物生长还需要铁、锌、铜等微量元素,这些元素在营养液中被称为微量元素。
维生素和生长调节物质植物生长还需要一些维生素和生长调节物质,这些物质在营养液中被称为有机物质。
大量元素植物生长需要大量的氮、磷、钾等元素,这些元素在营养液中被称为大量元素。
土壤的质地会影响营养液的渗透性和植物的吸收效果。
土壤质地土壤的酸碱度会影响营养液的化学性质和植物的生长状态。
土壤酸碱度土壤的含水量会影响营养液的浓度和植物的吸水效果。
土壤含水量土壤环境因素植物生长调节物质的应用生长调节剂生长调节剂可以促进或抑制植物的生长,调节营养液的浓度和酸碱度。
抗病剂抗病剂可以预防或治疗植物的病害,提高植物的抗病能力。
抗氧化剂抗氧化剂可以清除植物体内的自由基,提高植物的抗氧化能力。
03无土栽培营养液的配方组成镁参与植物叶绿素合成,促进光合作用。
无土栽培营养液的配制技术实验报告

实验目的:探究无土栽培营养液的配制技术,以达到满足作物生长所需的营养元素的目的。
实验原理:无土栽培是一种沿袭自古埃及时期的栽培方式,通过将植物根系悬浮在水中,通过水中溶解的营养液为植物提供养分,以实现生长发育。
无土栽培营养液的配制技术主要包括以下几个方面:1.主要营养元素:植物在生长过程中需要的主要营养元素有氮、磷、钾、镁、钙等。
根据不同作物的需求,可以参考无土栽培营养液配制的标准比例,如氮:磷:钾为1:0.5:2是通用的比例。
2.配制方法:无土栽培营养液的配制可以采用配合肥、水溶肥等形式。
具体操作可以按照以下步骤进行:首先,根据作物需求选择主要的营养元素,并记录所需的重量;然后,根据所选的营养元素重量计算所需的配方量;接着,将配方量的营养元素溶解在一定比例的水中,搅拌均匀即可。
3.校正PH值:无土栽培水培环境中,PH值的调节对植物生长至关重要。
一般来说,青花菜等蔬菜类作物适宜的PH值为5.5-6.5,而叶菜类作物如生菜适宜的PH值为6.0-6.5。
因此,在配制营养液时需要使用PH试纸或PH计来检测溶液的酸碱度,根据结果调整PH值至适宜范围。
实验步骤: 1. 确定所需的主要营养元素比例和作物种类。
2. 准备所需的营养元素溶解剂,如蒸馏水或自来水。
3. 按照所选作物所需的营养元素比例,根据每种营养元素的重量计算所需的配方量。
4. 将所需的配方量的营养元素溶解在一定比例的水中,并搅拌均匀。
5. 使用PH试纸或PH计检测溶液的酸碱度。
6. 根据PH值的检测结果,使用PH调节剂调整溶液的酸碱度至适宜范围。
实验结果:通过实验操作可以得到适合特定作物的无土栽培营养液,该营养液中提供了作物所需的主要营养元素,并且酸碱度调整至适宜范围,可以满足作物生长所需的条件。
实验结论:无土栽培营养液的配制技术可以通过计算所需的营养元素配方量、溶解于水中并校正PH值的方式实现。
根据不同作物的需求和环境条件,可以调整配方比例和酸碱度,从而得到适合特定作物生长的无土栽培营养液。
无土栽培营养液的配制技术实验报告

无土栽培营养液的配制技术实验报告一、实验目的1.了解无土栽培的基本原理和特点;2.掌握营养液的配制技术;3.建立适合无土栽培的营养液比例。
二、实验原理无土栽培是在不使用土壤的情况下,利用营养液为植物提供营养物质和水分的一种栽培方式。
营养液中的主要成分包括:氮、磷、钾、镁、钙、铁、锌、锰、铜等元素。
根据不同植物的生长需要,可以调整营养液中各元素的含量比例。
三、实验材料和仪器1.氮磷钾肥液;2.镁硫酸钾、硝酸钾、硫酸氨、硫酸铵、硝酸铵等化学品;3.蒸馏水、PH计、天平、量筒、烧杯等实验仪器;4.萝卜种子。
四、实验过程1.准备营养液组分。
按照配方材料表中的比例称取各种化学品,并分别加入到2000毫升蒸馏水中。
2.搅拌混合。
将各种化学品充分混合,直到溶解完全。
3.调整PH值。
用PH计检测营养液的PH值,根据植物种类调整PH值,通常PH值在5.5-6.5之间。
4.过滤。
将营养液用过滤纸过滤,除去悬浮物和杂质。
5.测量营养液的EC值。
6.储存。
将营养液储存在密封的玻璃瓶或塑料桶中,存放在阴凉干燥处。
五、实验结果及分析经过实验,得出了一种适合萝卜生长的营养液组方,如下表所示:营养液材料重量(g):-::-:硝酸钾 1硫酸氨 1硝酸铵 1硫酸铵 1镁硫酸钾(MgSO4)0.5硫酸铁0.02硫酸锰0.05硫酸锌0.01硫酸铜0.005蒸馏水1000经过调整PH值,得到PH值为6.0的营养液。
经测量得到营养液的EC值为1.0。
营养液中各元素所占的比例对植物的生长起着重要的作用。
在这个实验中,根据萝卜生长的需要,给营养液中增加了硫酸铁、硫酸锰、硫酸锌等微量元素,有利于萝卜的生长和发育。
六、实验结论经过实验,成功制备了一种适合萝卜生长的营养液,其中各成分比例和PH值都符合无土栽培技术的要求。
无土栽培是一种新兴的栽培方式,有着高效节水、减少污染等诸多优点。
熟练掌握无土栽培营养液的配制技术对于推广无土栽培有着重要的意义。
无土栽培技术营养液的配制与管理

最适pH值
7.0~7.5 7.0~7.4 6.4~7.5 6.0~7.0 6.0~7.0 5.0~8.0
作物
辣椒 茄子 甜瓜 马铃薯 南瓜
最适pH值
6.2~8.5 5.8~7.3 6.0~6.8 4.5~6.3 5.5~6.8
适宜范围 5.5~6.5
测定方法 pH试纸; 酸度计
调节方法
高:H2SO4、 HNO4、 CH3COOH; 低:NaOH、
三、对原料化合物的要求
1.根据目的,选择合适的化合物 2.优先选择元素含量高的化合物 3.根据作物的特殊需要选择肥料 4.选择溶解度大的化合物 5.肥料的纯度要较高 6.有毒物质不超标;取材方便,价格低
廉。
四、常用的原料化合物
氮肥 磷肥 钾肥 钙肥 铁肥 硼肥和 钼肥
硝酸钙、磷酸二 硝酸钾、氢铵、 磷酸二 磷酸二 氢铵、 氢钾等 硝酸铵 等
名称 汞 砷 氟化物 硒
标准(mg/L) ≦ 0.001 ≦ 0.05 ≦ 3.0 ≦ .02
名称 六六六 镉 铅 铬
标准(mg/L) ≦ 0.02 ≦ 0.005 ≦ 0.05 ≦ 0.05
表2-2 对水质的要求
硬度 pH值 溶存氧 氯化钠 余氯 重金属 EC值
≤10° 5.5~8.5 ≥4~5mg/L ≤100mg/L ≤0.01% 允许范围之内 优质水:<0.2ms/cm; 允许用水:0.2~0.4ms/cm ; 不允许用水:≥0.5ms/cm
二、组成的确定方法
(一)理论依据 1.园试配方 2.山崎配方 3.斯泰纳配方
(二)总浓度的确定 (三)各元素比例和用量的确定
1.生理平衡 2.化学平衡
三、营养液配方
(一)含义 (二)实例
做蔬菜无土栽培,营养液该如何制作?

做蔬菜无土栽培,营养液该如何制作?无土栽培,是现在蔬菜繁殖、果种栽培的一种常见方式,而无土栽培的主要培育方式有水培、雾气培育、基质栽培等多种。
选择营养液栽培则是现在较为流行的一种无土栽培方式,那么,无土栽培营养液配方是如何的呢?营养,是保障人体正常生活的必须物质,于植物而言,营养也是培植的必需品,而专业的营养液,则可以脱离土壤,直接成为植物生存的根本。
最新无土栽培营养液配方大全如下:配方一:园艺植物需要准备的主要成分有硝酸钙950毫克、硫酸铜0.05毫克、硫酸锰2毫克、磷酸二氢铵155毫克、硫酸镁500毫克、硫酸锌0.22毫克、铁钠盐25毫克、硼酸3毫克、磷酸二氢铵155毫克。
此配方,仅适合园艺植物养植,可以搭配陶瓷、塑料的容器,也可直接加清水稀释,清水、营养液的占据比例约为6:4,而实际用量,则可根据植株的生活习性而决定。
可适合营养液种植的园艺植物,主要有风信子、绿萝、富贵竹、平安树、豆瓣绿、洋葱、水葱、黄金葛、吊兰、文竹、吸毒草等。
配方二:瓜类植物瓜类植物的营养液配方,应准备硝酸钙1000毫克、硫酸钾120毫克、硫酸镁250毫克、过磷酸钙840毫克、硝酸钾607毫克、磷酸二氢铵153毫克左右。
瓜类植物的营养液配置,可以选择井水、自来水等,调配比例仍然为6:4,而瓜类植物水培,应该逐渐更换营养液,或是直接将营养液作为养肥,不间断的加入水培液体中,种植效果显著。
可以使用营养液培育的主要瓜类植物包括有西瓜、甜瓜、黄瓜、菜瓜、南瓜、西葫瓜、蒲瓜等。
配方三:蔬菜植物蔬菜植物营养液在配置上,可以使用硝酸钙1260毫克、硫酸钙78毫克、硫酸镁537毫克、硫酸铵237毫克、磷酸钙589毫克、绿化钾156毫克、重过磷酸钙725毫克。
蔬菜植物营养液,需要搭配以常温清水,可稀释比例为7:3,蔬菜植株的繁殖性强,因此营养液的存在比例可适当减少,也可直接采取滴入的方式,每周三次,加入适量营养液与液体稀释,也可达到培养效果。
无土栽培营养液自制方法

无土栽培营养液自制方法无土栽培是一种不使用传统土壤的栽培方式,通过水培、气溶胶或其他介质来提供植物生长所需的养分。
在无土栽培中,营养液则扮演了至关重要的角色,为植物提供所需的养分。
以下是一种使用自制的无土栽培营养液的方法。
原料的准备:1. 两种主要的无土栽培营养液配方:- 全面营养液配方:适合大多数植物,包括蔬菜和花卉等。
配方成分为:- 硝酸铵:10g- 硝酸钾:10g- 磷酸二氢钾:5g- 硫酸镁:5g- 花卉专用营养液配方:适合花卉类植物,配方成分如下:- 硝酸铵:20g- 硝酸钾:5g- 磷酸二氢钾:10g- 硫酸镁:5g2. 其他必要的原料:- 硝酸铵- 硝酸钾- 磷酸二氢钾- 硫酸镁- 赤霉素(促进植物生长)- 三元复合微量元素肥(如EDI-3)- 钙镁硝酸盐(适用于水培)- 温室植物用的专用肥料方法步骤:1. 安全操作:在制作和使用营养液时请戴好手套、护目镜和口罩,以免对身体造成伤害。
2. 测量原料:使用天平准确测量所需的原料。
3. 混合主要成分:将硝酸铵、硝酸钾、磷酸二氢钾和硫酸镁混合在一起。
注意不同配方的原料比例不同。
4. 加入其他添加剂:根据需要可以加入一小撮的赤霉素和适量的三元复合微量元素肥。
5. 搅拌溶解:将混合后的营养液配方加入一定量的水中,用搅拌器搅拌溶解所有成分。
6. 调整pH值:使用PH试纸检测溶液的pH值。
营养液的pH通常应在5.5至6.5之间。
如果pH值超出范围,可以使用一些调节液(如醋或石灰)来调整。
7. 使用方法:将调制好的营养液配制成所需要的体积,然后使用于无土栽培的植物上。
按照每天或每周定期给植物施肥。
无土栽培营养液自制方法的注意事项:1. 遵循配方:在混合配方时,请准确测量并遵循所提供的配方比例,因为植物所需的养分比例非常重要。
2. 保持管道通畅:栽培过程中,要确保营养液通畅地流向植物的根部。
定期检查和清洗无土栽培系统中的管道,以防止堵塞。
3. 控制浓度:植物对营养液的需求是不断变化的,特别是在生长季节。
无土栽培营养液配方及配置技术

酸: HNO3, H2SO4, H3PO4 碱: KOH, KHCO3
一、营养液的组成及配方
PH
b 对作物的影响
直接影响:伤害植物的根系,> 9、< 4 。
间接影响:使营养液中营养元素有效性降低以至失效。 pH > 7: P、Ca、Mg、Fe、Mn、B、Zn有效性降低。 pH < 5:H+浓度过高,拮抗Ca2+的吸收,出现缺Ca 缺Mn、Al 酸中毒
0,1 1,8 0,8 2,0 1,0 3,9 0,4 1,5 0,5 0,7
1x 1x 1x 2x 2x 1x 1x 2x 1x 1x
8.7 / 10 = EC 0.9
8.7 / 10 = EC 0.9
一、营养液的组成及配方
EC(电导率 mS/cm)
b 对作物的影响
适宜的生长需满足营养足够供应 低 EC: 缺素,生长↓ ,产量↓ 高EC: 生长↓,产量↓
工作液:实际使用的营养液。 原配方:1倍 直接施用给作物。
一、营养液的组成及配方
1、营养液的组成
水
营养 元素
营养 液
水 (H2O)
• 可溶解物质 • 营养元素 • 其他砂石物质
• Na/ Cl 可导致累积
• Fe • Mg/ Ca (硬度) • HCO3- (导致 pH升高,需加酸调整) - Mn/ B (中毒风险) - Zn (有可能来自温室骨架结构)
高EC影响照片 低EC影响
一、营养液的组成及配方
EC(电导率 mS/cm)
b 对作物的影响
营养液 EC≠ 根际环境 EC
吸收水分 vs 营养元素吸收
EC ↑
→ 基质中浓度↑
→ 富集更多可以吸收的元素
无土栽培营养液配方

无土栽培营养液配方【常见问题】无土栽培营养液配方图:无土栽培蔬菜【专家解答】在制作无土栽培营养液时,不同的作物需要的肥料条件不同,进而营养液配方也有所不同。
下面列举几种营养液配方,可按需求选择配方使用或作为参考。
1、园艺均衡营养液配方(用量单位毫克/升):硝酸钙950,硝酸钾810,硫酸镁500,磷酸二氢铵155,EDTA铁钠盐15~25,硼酸3,硫酸锰2,硫酸锌0.22,硫酸铜0.0,钼酸钠或钼酸铵0.02。
2、番茄营养液配方(用量单位毫克/升):配方一(荷兰温室园艺研究所)硝酸钙1216,硝酸铵42.1,磷酸二氢钾208,硫酸钾393,硝酸钾395,硫酸镁466;配方二(陈振德等)尿素427,磷酸二铵600,磷酸二氢钾437,硫酸钾670,硫酸镁500,EDTA铁钠盐6.44,硫酸锰1.72,硫酸锌1.46,硼酸2.38,硫酸铜0.20,钼酸钠0.13;配方三(山东农业大学)硝酸钙590,硝酸钾606,硫酸镁492,过磷酸钙680。
3、黄瓜营养液配方(用量单位毫克/升):硝酸钙900,硝酸钾810,硫酸镁500,过磷酸钙840。
4、西瓜营养液配方(用量单位毫克/升):硝酸钙1000,硝酸钾300,硫酸镁250,过磷酸钙250,硫酸钾120。
5、绿叶菜营养液配方(用量单位毫克/升):硝酸钙1260,硫酸钾250,磷酸二氢钾350,硫酸镁537,硫酸铵237。
6、莴苣营养液配方(用量单位毫克/升):硝酸钙658,硝酸钾550,硫酸钙78,硫酸铵237,硫酸镁537,磷酸一钙589。
7、芹菜营养液配方(用量单位毫克/升):配方一,硫酸镁752,磷酸一钙24,硫酸钾500,硝酸钠644,硫酸钙337,磷酸二氢钾175,氯化钠156;配方二(王学军)硝酸钙295,硫酸钾404,重过磷酸钙725,硫酸钙123,硫酸镁492。
8、茄子营养液配方(用量单位毫克/升):硝酸钙354,硫酸钾708,磷酸二氢铵115,硫酸镁246。
无土栽培技术及营养液配方大全

无土栽培技术及营养液配方大全无土栽培技术是一种在无土环境中进行植物栽培的方法。
它通过提供足够的养分和水分来满足植物的生长需求,而不依赖传统的土壤。
无土栽培技术的优点是节省用地、节水、减少病虫害等,并且可以合理调控植物的生长环境,使植物生长更加高效健康。
无土栽培主要依靠培养基和营养液来提供植物所需的养分。
培养基是用于支持植物生长的基质,一般选择具有良好透气性和保水性的材料,如砂子、腐殖土等。
营养液则是植物所需的养分的混合物,包含了植物所需的主要元素和微量元素。
以下是一些常见的无土栽培营养液配方:1.N-P-K20-20-20-氮(N)含量:20%-磷(P)含量:20%-钾(K)含量:20%-它是一种通用的全面肥料,适用于大多数蔬菜和花卉的生长。
2.N-P-K15-30-15-氮(N)含量:15%-磷(P)含量:30%-钾(K)含量:15%-这种配方对于促进植物的花芽分化和果实发育是很有效的,适用于果树和一些开花植物。
3.N-P-K10-52-10-氮(N)含量:10%-磷(P)含量:52%-钾(K)含量:10%-这种配方对于促使植物的根系生长和发育是很有帮助的,适用于无花果、葡萄等栽培。
4.N-P-K5-10-5-氮(N)含量:5%-磷(P)含量:10%-钾(K)含量:5%-这种配方主要是为了促进植物的种子发芽和苗期生长,适用于蔬菜的育苗阶段。
5.N-P-K20-10-10-氮(N)含量:20%-磷(P)含量:10%-钾(K)含量:10%-这种配方适用于需要大量氮素的作物,如玉米、谷类作物等。
使用无土栽培技术时,可以根据不同植物的需求,合理选择适合的营养液配方。
同时,要注意定期更换营养液,及时补充植物所需的营养物质,保证植物的生长发育。
此外,还要控制好光照、温度和湿度等环境因素,提供良好的生长条件。
总之,无土栽培技术及营养液配方的选择应根据具体植物的需求来定,合理调配养分,提供适合植物生长的环境,才能保证植物的健康生长。
无土栽培营养液的配制技术实验报告

无土栽培营养液的配制技术实验报告无土栽培是一种通过人工方式在无土环境中使植物生长的技术,营养液是无土栽培中的重要组成部分。
无土栽培营养液的配制技术对植物的生长发育至关重要。
本实验旨在探究无土栽培营养液的配制技术,并通过对不同配比的营养液对植物生长的影响进行比较。
实验材料与方法:材料:尿素、硫酸钾、磷酸二氢钠、硝酸钾、重磷酸钾、硫酸亚铁、硝酸镁、硼酸、锌硫酸、钼酸钠、水、种子。
仪器:天平、称量瓶、磁力搅拌器、PH试纸、PH计、植物生长箱。
方法:1. 根据被测植物的需求确定所需的营养液配比,一般包括氮、磷、钾等主要元素以及微量元素的含量。
2. 进行固体营养液的准备,按照每种元素的配比称取相应的化学品,尽量保证称取精确。
3. 将称取好的固体营养液加入称量瓶中,加入适量的水,根据植物品种和要求调节PH值,用磁力搅拌器搅拌均匀。
4. 过滤液体,除去有机杂质和固体颗粒,以保证营养液的纯净度。
5. 将准备好的无土栽培营养液注入到植物生长箱中。
6. 在植物生长箱中种植植物,并给予适量的光照、温度和湿度等条件。
7. 观察不同配比的营养液对植物的生长影响,记录植物的生长情况,如株高、叶片数量等指标。
8. 进行数据分析,比较不同配比的营养液对植物生长的影响,确定适合被测植物的最佳配比。
实验结果及讨论:通过对不同配比的营养液进行比较,得出如下结果:1. 不同配比的营养液对植物的生长有显著影响。
营养液中的主要元素如氮、磷、钾等对植物的生长起着重要作用,不同的植物对这些元素的需求也有所不同。
2. 过量或不足的主要元素都会影响植物的生长。
过量的氮、磷、钾等主要元素可能导致植物过度生长而缺少结实,而不足的主要元素则会导致植物生长不良。
3. 微量元素的添加也是重要的。
微量元素如锌、钼等对植物的生长发育起到调节和促进作用,因此,在营养液配制中不可忽略。
4. 营养液的PH值对植物的吸收有影响。
营养液的PH值对植物根系的活性和根发达程度有一定影响,因此,在配制过程中要根据植物的要求进行调节。
无土栽培营养液的配制

无土栽培营养液的配制营养液配制是无土栽培的基础和关键。
进行无土栽培作物时,要在选定配方的基础上正确地配制营养液,避免产生沉淀的盐类,保证营养液中的各种营养元素有效地供给作物生长,以取得栽培的高产优质。
不正确的配制方法,一方面可能会使某些营养元素失效;另一方面可能会影响营养液中元素的平衡,严重时会伤害作物根系,甚至造成作物死亡。
因此,掌握正确的营养液配制方法,是无土栽培作物最起码的要求。
1.营养液的配制原则和要求1.1营养液的配制原则1.1.1确保在配制和使用营养液时不会产生难溶性化合物的沉淀,如可能产生沉淀的钙离子、亚铁离子、镁离子等阳离子和硫酸根离子、磷酸二氢根离子等阴离子。
1.1.2充分了解营养液配制中各种化合物的性质及相互之间产生的化学反应过程,在配制过程中运用难溶性物质溶度积法则,确保不会产生沉淀。
1.1.3选用均衡的营养液配方。
1.2营养液配制的要求1.2.1无土栽培不同于土壤栽培,不存在氮素的硝化过程,因此使用的氮肥应以硝态氮为主,铵态氮因易使作物徒长,组织细嫩,用量不应超过总氨量的25%。
1.2.2含氯肥料因含氯的成分对作物生长不利,因此应控制使用量。
1.2.3配制营养时应注意水质,过硬的水不宜使用或经处理以后使用。
1.2.4有机质肥或有机发酵物不宜用于作为配制营养液的肥源,因有机肥不易计算有效成分用量,同时有机成分不易直接被作物吸收利用,而且可能对作物造成损伤。
1.3营养液配方的选用在一定体积的营养液中,规定含有各种必需营养元素盐类的数量称为营养液配方,一种均衡的营养液配方其组成要遵循以下原则:1.3.1配方必须含有植物生长所必需的全部营养元素;1.3.2配方中各种营养元素的化合物必须是植物根系可吸收的状态;1.3.3配方中各种营养元素的数量和比例应符合植物生长发育的要求和生理平衡;1.3.4各种营养元素的无机盐类构成的总盐分浓度及其酸、碱反应应适合作物的生长的要求;1.3.5组成营养液的各种化合物在培养过程中应在较长时间内保持其有效状态,在被根吸收过程中造成的生理酸、碱反应比较平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)营养液的配制方法
配制营养液一般配制浓缩贮备液(也叫母液)和工作营养液(或叫栽培营养液,即直接用来种植作物用的)两种。
生产上一般用浓缩贮备液稀释成工作营养液,所以前者是为了方便后者而配制的,如果有大容量的容器或用量较少时也可以直接配制工作营养液。
1.母液的配制为了防止在配制母液时产生沉淀,不能将配方中的所有化合物放置在一起溶解,因为浓缩后有些离子的浓度的乘积超过其溶度积常数而会形成沉淀。
所以应将配方中的各种化合物进行分类,把相互之间不会产生沉淀的化合物放在一起溶解。
为此配方中的各种化合物一般分为三类,配制成的浓缩液分别称为A母液、B母液、C母液。
A母液以钙盐为中心,凡不与钙作用而产生沉淀的化合物均可放置在一起溶解。
一般包括Ca(NO3)2、KNO3,浓缩100-200倍;
B母液以磷酸盐为中心,凡不与磷酸根产生沉淀的化合物都可溶在一起,一般包括NH4H2PO4、MgSO4,浓缩100-200倍;
C母液是由铁和微量元素合在一起配制而成的,由于微量元素的用量少,因此其浓缩倍数可以较高,可配制成1000-3000倍液。
在配制各种母液时,母液的浓缩倍数,一方面要根据配方中各种化合物的用量和在水中的溶解度来确定,另外一方面以方便操作的整数倍为宜。
浓缩倍数不能太高,否则可能会使化合物过饱和而析出,而且在浓缩倍数太高时,溶解也较慢。
配制浓缩贮备液的步骤:按照要配制的浓缩贮备液的体积和浓缩倍数计算出配方中各种化合物的用量,依次正确称取A母液和B母液中的各种
化合物称量,分别放在各自的储液容器中,肥料一种一种加入,必须充分搅拌,且要等前一种肥料充分溶解后才能加入第二种肥料,待全部溶解后加水至所需配制的体积,搅拌均匀即可。
在配制C母液时,先量取所需配制体积2/3的清水,分为两份,分别放入两个塑料容器中,称取FeSO4·7H2O和EDTA-2Na分别加入这两个容器中,搅拌溶解后,将溶有FeSO4·7H2O的溶液缓慢倒入EDTA-2Na溶液中,边加边搅拌;然后称取C母液所需的其他各种微量元素化合物,分别放在小的塑料容器中溶解,再分别缓慢地倒入已溶解了FeSO4·7H2O和EDTA-2Na的溶液中,边加边搅拌,最后加清水至所需配制的体积,搅拌均匀即可。
2.工作营养液的配制利用母液稀释为工作营养液时,在加入各种母液的过程中,也要防止沉淀的出现。
配制步骤为:应在储液池中放入大约需要配制体积的1/2-2/3的清水,量取所需A母液的用量倒入,开启水泵循环流动或搅拌器使其扩散均匀,然后再量取B母液的用量,缓慢地将其倒入贮液池中的清水入口处,让水源冲稀B母液后带入贮液池中,开启水泵将其循环或搅拌均匀,此过程所加的水量已达到总液量的80%为度。
最后量取C母液,按照B母液的加入方法加入贮液池中,经水泵循环流动或搅拌均匀即完成工作营养液的配制。
在生产中,如果一次需要的工作营养液量很大,则大量营养元素可以采用直接称量配制法,而微量营养元素可采用先配制成C母液再稀释为工作营养液的方法。
具体的配制步骤为:在种植系统的储液池中放入所要配制营养液总体积约1/2-2/3的清水,称取相当于A母液的各种化合物,放在容器中溶解后倒入储液池中,开启水泵循环流动;然后称取相当于
B母液的各种化合物,放入容器中溶解后,用大量清水稀释后缓慢地加入贮液池的水源入口处,开动水泵循环流动;再量取C母液,用大量清水稀释,在贮液池的水源入口处缓慢倒入,开启水泵循环流动至营养液均匀为止。
在荷兰、日本等国家,现代化温室中进行大规模无土栽培生产时,一般采用A、B两母液罐,A罐中主要含硝酸钙、硝酸钾、硝酸铵和螯合铁,B罐中主要含硫酸钾、硝酸钾、磷酸二氢钾、硫酸镁、硫酸锰、硫酸铜、硫酸锌、硼砂和钼酸钠,通常制成100倍的母液。
为了防止母液罐出现沉淀,有时还配备酸液罐以调节母液酸度。
整个系统由计算机控制调节,稀释、混合形成灌溉营养液。
(二)营养液配制的操作规程
为了避免在配制营养液的过程中出差错而影响到作物的种植,需要建立一套严格的操作规程,内容应包括:
1.营养液原料的计算过程和最后结果要多次核对,确保准确无误。
2.称取各种原料时,要反复核对称取数量的准确性,并保证所称取的原料名称相符,切勿张冠李戴。
特别是在称取外观上相似的化合物时更应注意。
3.各种原料在分别称好之后,一起放到配制场地规定的位置上,最后核查无遗漏,才可动手配制。
切勿在用料未到齐的情况下匆忙动手操作。
4.建立严格的记录档案,将配制的各种原料用量、配制日期和配制人员详细记录下来,以备查验。
(三)注意事项
为了防止母液产生沉淀,在长时间贮存时,一般可加硝酸或硫酸将其酸化至pH 3~4,同时应将配制好的浓缩母液置于阴凉避光处保存,C母液最好用深色容器贮存。
在直接称量营养元素化合物配制工作营养液时,在贮液池中加入钙盐及不与钙盐产生沉淀的盐类之后,不要立即加入磷酸盐及不与磷酸盐产生
沉淀的其他化合物,而应在水泵循环大约30分或更长时间之后再加入。
加入微量元素化合物时也要注意,不应在加入大量营养元素之后立即加入。
在配制工作营养液时,如果发现有少量的沉淀产生,就应延长水泵循环流动的时间以使产生的沉淀溶解。
如果发现由于配制过程中加入化合物的速度过快,产生局部浓度过高而出现大量沉淀,并且通过较长时间开启水泵循环之后仍不能使这些沉淀溶解时,应重新配制营养液,否则在种植作物的过程中可能会由于某些营养元素沉淀而失效,最终出现营养液中营养元素的缺乏或不平衡而表现出生理失调症状。
例如微量元素铁被沉淀之后出现的作物缺铁失绿症状。