数字图像处理-图像的表达

合集下载

数字图像处理课件ppt

数字图像处理课件ppt

06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换

数字图像处理-知识点总结

数字图像处理-知识点总结

图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。

模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。

图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x,y,z,λ,t) 式中(x,y,z)是空间坐标,λ是波长,t是时间,I是光点(x,y,z)的强度(幅度)。

上式表示一幅运动的(t)、彩色/多光谱的(λ)、立体的(x,y,z)图像。

图像的特点:1.空间有界:人的视野有限,一幅图像的大小也有限。

2.幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm其中Bm为有限值。

图像三大类:在每一种情况下,图像的表示可省略掉一维,即1.静止图像:I = f(x,y,z, λ)2.灰度图像:I = f(x,y,z,t )3.平面图像:I = f(x,y,λ,t)而对于平面上的静止灰度图像,其数学表达式可简化为:I = f(x,y)数字图像处理的基本步骤:1.图像信息的获取:采用图像扫描仪等将图像数字化。

2.图像信息的存储:对获取的数字图像、处理过程中的图像信息以及处理结果存储在计算机等数字系统中。

3.图像信息的处理:即数字图像处理,它是指用数字计算机或数字系统对数字图像进行的各种处理。

4.图像信息的传输:要解决的主要问题是传输信道和数据量的矛盾问题,一方面要改善传输信道,提高传输速率,另外要对传输的图像信息进行压缩编码,以减少描述图像信息的数据量。

5.图像信息的输出和显示:用可视的方法进行输出和显示。

数字图像处理系统五大模块:数字图像处理系统由图像输入、图像存储、图像通信、图像处理和分析五个模块组成。

1.图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计算机处理的数字图像。

第1章 数字图像处理概述

第1章 数字图像处理概述
举例:人眼所见 照片 电视电影
第1章 数字图像处理概述
3
人眼所见
第1章 数字图像处理概述
4
照片
第1章 数字图像处理概述
5
电视电影
第1章 数字图像处理概述
6
(2)图像的表达
图像表示 2-D数组 f (x, y)
x , y:2-D空间XY中坐标点的位置 f:代表图像在(x, y)的性质F 的数值 f,x,y 的值可以是任意实数
23
空间分辨率和幅度分辨率
数字图像
f (0, 0) f (1, 0) f ( x, y ) = M f ( N − 1, 0) f (0,1) f (1,1) L L f (0, M − 1) f (1, M − 1) M f ( N − 1, M − 1)
数字图像是对连续场景的近似
为达到较好的近似,需要多少个采样和灰度级 呢? 理论上,M N G越大,近似越好
但图像的数据量随M N G的增加而迅速增 加,故采样和灰度级数也不能太大
第1章 数字图像处理概述
25
图象质量与采样和量化
图像空间分辨率变化所产生的效果
第1章 数字图像处理概述
26
512*512
第1章 数字图像处理概述
34
64级 级
第1章 数字图像处理概述
35
16级 级
第1章 数字图像处理概述
36
8级 级
第1章 数字图像处理概述
37
4级 级
第1章 数字图像处理概述
38
2级 级
第1章 数字图像处理概述
39
空间和幅度分辨率同时变化所产生的效果
第1章 数字图像处理概述
40

数字图像处理笔记

数字图像处理笔记

第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。

(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。

虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。

3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。

数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。

像素是组成数字图像的基本元素。

5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。

7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。

8、低级图像处理、中级图像处理和高级图像处理。

(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。

特点:输入是图像,输出也是图像。

(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。

特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。

(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。

特点:输入是数据,输出是理解。

9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。

在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。

第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理 第2章 图像的数字化与显示

数字图像处理 第2章 图像的数字化与显示
k
(2.20)
2.3.3 空间与灰 度级分辨率
对一幅图像,当量化级数Q一定 时,采样点数 M×N 对图像质量有着显 著的影响。采样点数越多,图像质量越 好;当采样点数减少时,图像越小,图 上的块状效应就逐渐明显。
图像的采样与数字图像的质量
图像的量化与数字图像的质量
量化级数越多,图像质量越好,当量化级数越少时,图像质量越 差,量化级数最小的极端情况就是二值图像,图像出现假轮廓。
2.2 图像场取样
2.2.1 取样和量化的基本概念
数字化包括取样和量化两个过程 :
取样(sampling):对空间连续坐标(x, y)的 离散化 量化(quantization):幅值 f (x, y)的离散化
(a)连续图像
(b)数字化结果
图2.1 图像的数字化过程
(a)
(b)
图2.2 采样网格 (a) 正方形网格; (b) 正六角形网格
截止频率。
u U c , v Vc u U c , v Vc
(2.8)
其中 U c , Vc 对应于空间位移变量x和y的最高
则当采样周期
x, y满足
(2.9)
1 u s 2U c x 1 vs 2Vc y
此时,通过采样信号 f ( mx, ny ) 能唯一地恢 复或重构出原图像信号f (x,y)。该条件称为 Nyquist采样定理。
• 2.3.1

标量量化
标量量化:将数值逐个量化 。 例:假设抽样信号的范围是0~5 V,将它分为8等
分,这样就有8个量化电平,分别是5/8 V,10/8 V,15/8 V,…,35/8 V。 对每一个采样将它量化为离它最近的电平。 在量化后,为了能在数字信号处理系统中处理 二进制码,还必须经过编码操作。

数字图像处理知识点

数字图像处理知识点

数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。

数字图像处理的基本内容:1、图像获取。

举例:摄像机+图像采集卡、数码相机等。

2、图像增强。

显示图像中被模糊的细节,或是突出图像中感兴趣的特征。

3、图像复原。

以图像退化的数学模型为基础,来改善图像质量。

4、图像压缩。

减小图像的存储量,或者在图像传输时降低带宽。

5、图像分割。

将一幅图像划分为几个组成部分或分割出目标物体。

6、图像的表达与描述。

图像分割后,输出分割标记或目标特征参数。

7、目标识别。

把目标进行分类的过程。

8、彩色图像处理。

9、形态学处理。

10、图像的重建。

第一章导论图像按照描述模型可以分为:模拟图像和数字图像。

1)模拟图像,模拟图像可用连续函数来描述。

其特点:光照位置和光照强度均为连续变化的。

2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。

内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。

三个层次:狭义图像处理,图像分析,图像理解。

狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。

图像分析是一个从图像到数值或符号的过程。

图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。

图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。

数字图像处理PPT 第10章 图像表示与描述

数字图像处理PPT 第10章 图像表示与描述


ˆ B
空集
B的反射集
ˆ {w | w b, b B} B
56
膨胀和腐蚀
膨胀
图10.21 B对A的膨胀运算过程
57
膨胀和腐蚀
膨胀
(a) 原图像
(b) 膨胀后图像
图10. 22 膨胀运算示例
58
膨胀和腐蚀
腐蚀
集合B对集合A的腐蚀运算
{z | ( B) z A}
59
膨胀和腐蚀
区域A的
重心
1 x x A ( x , yR ) 重心计算 1 y y A ( x , yR )
33
圆形度
圆形度:
面积 R 4 2 周长
34
欧拉数
1.像素的连接 对于二值图像中具有相同值的两个像素a和b,所 有和a、b具有相同值的像素系列p0(=a),p1,p2,…,pn1,pn(=b)存在,并且pi-1和pi互为4-/8-邻接,那么像素a 和b叫做4-/8-连接,以上的像素序列叫4-/8-路径。
于无自交情况的多边形。该算法在获取边界之后,先查找边界的拐角点 ,并且标记该拐角点是凸点还是凹点。然后将所有的凸拐点连接起来作
为初始的最小周长多边形P0。接着把所有在多边形P0之外的凹拐点移
除。再将剩余的凹拐点和所有凸拐点依次连接,形成新的多边形P1。然 后移除所有原为凸点而在新多边形中变成凹点的拐点。再用剩余的点连

链码举例:
4-链码: 000033333322222211110011
9
链 码
1 1 0 0 7 7 1 1 3 2 2 1 0 1 3 7 7 7 6 6 5 5
2 2
5
3 4 5 4 4 4 4 5

数字图像处理

数字图像处理

数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。

它涉及对数字图像进行获取、处理、分析和解释的过程。

数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。

本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。

数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。

在数字图像处理中,我们通常使用灰度图像和彩色图像。

•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。

灰度图像通常表示黑白图像。

•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。

彩色图像可以表示图像中的颜色信息。

图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。

1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。

2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。

3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。

常见的处理包括滤波、边缘检测、图像变换等。

4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。

常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。

•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。

•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。

•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。

边缘检测边缘检测是用于寻找图像中物体边缘的方法。

常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。

•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。

•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。

数据图像处理期末复习

数据图像处理期末复习

数据图像处理期末复习1.1数字图像处理及特点1、什么是数字图像?什么是数字图像处理?数字图像:数字图像是物体的一个数字表示,是以数字格式存放的图像,它传递着物理世界事物状态的信息,是人类获取外界信息的主要途径。

数字图像处理:它指将图像信号转换成数字信号并利用计算机对其进行处理的过程,已提高图像的实用性,达到人们所要求的的预期结果。

2、图像处理的目的①提高图像的视觉质量,以达到赏心悦目的目的。

②提取图像中所包含的某些特征或特殊信息,便于计算机分析。

③对图像数据进行变换、编码和压缩,便于图像的存储和传输。

3、数字图像的特点①处理信息量很大②数字图像处理占用的频带较宽③数字图像中各个像素相关性大1.2数字图像处理系统1、数字图像处理系统的组成(结构)数字图像处理系统由输入设备、输出设备、存储、处理组成。

图像输入设备将图像输入的模拟物理量转变为数字化的电信号,以供计算机处理。

图像输出设备则是将图像处理的中间结果或最后结果显示或打印记录。

图像处理计算机系统是以软件方式完成对图像的各种处理和识别,是数字图像处理系统的核心部分。

由于图像处理的信息量大,还必须有存储设备。

2、数字图像处理的优点①精度高②再现性好③通用性、灵活性强1.3数字图像处理的主要研究内容1、数字图像处理的主要研究内容①图像增强②图像编码③图像复原④图像分割⑤图像分类⑥图像重建1.4数字图像处理的应用和发展1、举例说明数字图像处理有哪些应用和发展?①航天和航空技术方面的应用②生物医学工程方面的应用③通信工程方面的应用④工业和工程方面的应用⑤军事、公安方面的应用⑥文化艺术方面的应用⑦其他方面的应用2、数字图像处理领域的发展方向①图像处理的发展向着高速率、高分辨率、立体化、多媒体化、智能化和标准化方向发展。

②图像、图形结合朝着三维成像或多维成像的方向发展③结合多媒体技术,硬件芯片越来越多,把图像处理的众多功能固化在芯片上将会有更加广阔的应用领域④在图像处理领域近年来引入了一些新的理论并提出了一些新的算法,如神经网络。

数字图像处理--第7章 图象描述

数字图像处理--第7章 图象描述

2、基于聚合的最小均方误差线段逼近法
3、基于分裂的最小均方误差线段逼近法
7.2.4 标记
边界的一维泛函表达 标记的方法: 1、求出给定物体的重心 2、以边界点到重心的距离做为角度的函数 例如:
7.2.4 标记
边界的一维泛函表达 标记的方法: 1、求出给定物体的重心 2、以边界点到重心的距离做为角度的函数 例如:
其中A= 分别是绕X,Y,Z轴的转动惯量,F= H= 称做惯性积。
考虑到这是个M阶曲面,所以必是个椭圆球,称之为惯 量椭球。它有3个互相垂直的主轴。对匀质的惯量椭球,任 两个主轴共面的剖面是个椭圆,称之为惯量椭圆。每幅2D 图象可看做一个面状刚体,对这个面上的每个区域都可求 得一个对应的惯量椭圆,它反映了区域上各点的分布情况。
7.4 边界描述 7.4.1 简单描述符 1、边界的长度 是所包围区域的轮廓的周长。 某区域R各边界点P的条件: 1) P本身属于区域R 2) P的邻域中有像素不于区域R
1、边界的长度
规则:
区域R内部点与边界点连通判定应 用两种方向规则 若区域R内部点用4-方向连通规则判 定,则区域R边界点应用8-方向连通规 则判定。 定义: 4向连通边界 8向连通边界
一个物体很容易实现45 角旋转.如果一个物 体旋转NX45 ,可由原链码加上 n 倍的模8得 到. 链码的微分,也称差分码,由原码的一阶 差分求得.链码差分是关于旋转不变的边界描 述方法.
原链码:10103322
(逆时针旋转90度)链码:21210033 差分码:33133030
差分码:33133030(又称链码的旋转归一化)
W:顶点数 Q: 边数 F: 面数 H:孔数 C:连通元 欧拉等式:W-Q+F=E=C-H 其中: W=26,Q=33,F=7,C=3,H=3,E=0

数字图像处理总复习(14)(1)

数字图像处理总复习(14)(1)
将M幅图像相加求平均利用了M幅图像中同一位置的M个 像素的 平均值,用一个n*n的模板进行平滑滤波利用了同一 幅图像中的n*n个像素的平均值。因为参与的像素个数越多, 消除噪声的能力越强,所以如果M>n*n,则前者消除噪声的 效果较好,反之则后者消除噪声的效果较好。
2.图像锐化与图像平滑有何区别与联系?
第三章 (不考计算题) 频域滤波的物理含义 傅立叶变换性质 频域滤波的基本方法
第四章 灰度基本变换(线形、非线性) 直方图处理(定义、直方图规定化、均衡化) 算术逻辑运算(帧差分,帧平均) 空间滤波(均值、中值、KNN) 同态滤波(滤波流程) 边缘检测(一阶,二阶,循环卷积) 图像锐化与图像平滑 真彩色图像处理与伪彩色图像处理
第一章图像数字图像处理灰度图像的概念图像工程定义分类图像的表达图像文件格式bmp文件第二章视觉感知要素图像采样和量化颜色模型像素之间的基本关系邻接连通距离度量第三章不考计算题频域滤波的物理含义傅立叶变换性质频域滤波的基本方法第四章灰度基本变换线形非线性直方图处理定义直方图规定化均衡化算术逻辑运算帧差分帧平均空间滤波均值中值knn同态滤波滤波流程边缘检测一阶二阶循环卷积图像锐化与图像平滑真彩色图像处理与伪彩色图像处理第五章图像编码与压缩不考计算图像编码的基本概念图像编码的方法第六章图像恢复颜色模型第七章图像分割图像的阈值分割图像的梯度分割图像边缘检测第八章目标的表达和描述目标表达目标的描述第九章形态学运算膨胀腐蚀开运算闭运算?除电磁波谱图像外按成像来源进行划分的话常见的计算机图像还包三种类型
8. 直方图修正有哪两种方法?二者有何主要区别于 联系?
方法:直方图均衡化和直方图规定化。
区别:直方图均衡化得到的结果是整幅图对比度的增 强,但一些较暗的区域有些细节仍不太清楚,直方图 规定化处理用规定化函数在高灰度区域较大,所以变 换的结果图像比均衡化更亮、细节更为清晰。联系: 都是以概率论为基础的,通过改变直方图的形状来达 到增强图像对比度的效果。

数字图像处理入门ppt课件

数字图像处理入门ppt课件
• 关于matlab
– 如何构建一个矩阵?如何取得矩阵中具体一个 元素的值,如何修改一个(块)元素的值?
– 写一个循环程序,遍历整个矩阵,把每个像素 的值做一个变换,如y = 3x+1
– 矩阵的基本运算:加,减,乘,点乘 – 求一个图像的负片,用两种方法(一种是循环
遍历,一种是矩阵运算)实现。
六、图像的基本运算
•减
– C(x,y) = A(x,y) - B(x,y)
• 应用举例
– 显示两幅图像的差异,检测同一场景两幅图像 之间的变化
六、图像的基本运算
• 点乘
– C(x,y) = A(x,y) .* B(x,y)
六、图像的基本运算
•与
– g(x,y) = f(x,y) ∧ h(x,y)
一、数字图像的概念
图像(Image): 视觉景物的某种形式的表示和记录
我们把数字格式存储的图像称为“数字图像”
“数字”
“模拟”
计算机存储的图片 传统光学照片
数码相机拍摄的图像 传统的电视图像
传感器阵列
模拟图像
三步
数字图像
1.采样 空间离坐标(x,y)的离散化, 确定水平和垂直 方向上的像素个数N、M,f(x,y)→f(m,n)
如何获得图像中第m行n列像素的灰度值?如果是彩色 图像呢? – 如何吧真彩色图像转换成灰度图像,然后转换成二值 图像? – 如何得到该图像中灰度值最大(最小)的像素的位置 和取值?如何计算图像的均值? – 什么是灰度图像的直方图?如何计算灰度图像直方图, 如何显示/直方图反映图像的什么性质?
作业2
图像的直方图
21
不同图像的直方图反映图像的不同特点:
对比度低 对比度高
22

数字图像处理技术(1)

数字图像处理技术(1)

● 8位图像 ● 16位图像 ● 24位图像
14
⑴图像分辨率
● 分辨率的单位
dpi (display pixels / inch)
每英寸显示的线数 ● dpi的数值越大,图像越清晰
清晰度
绝对清晰度
视觉效果
dpi
300 dpi
96 dpi
21 dpi 15
像点组成图像示意
16
例3-1 计算图像的像素数
• 光波是一种具有一定频率范围的电磁波
– 颜色的实质是一种光波 – 物体表面的光滑程度或物质成分不同,对于光反射、
折射、散射和吸收的情况也有所不同,因而所呈现的 颜色就有不同 – 纯颜色通常使用光的波长来定义,用波长定义的颜色 叫做光谱色 – 用不同波长的光进行组合可以产生相同的颜色感觉
34
35
36
5
• 每个网格上只能用一个确定的亮度值表示。每一个采样的小方块内的灰度值 相同。把采样点上对应的亮度连续变化区间转换为有限个特定数的过程,称 之为量化,即样点亮度的离散化。
6
7
图像数字化实例
原图
量化
00000000000012244222...0000000000
..........
.......
11
– 对于那些在扫描时采用低分辨率得到的图像,不能通过提高分辨率的方 法来提高图像的质量,因为这种方法仅仅是将一个像素的信息扩展成了 几个像素的信息,并没有从根本上增加像素的数量。
12
什么是图像 图像与图形的区别
● 图像是自然界中多姿多彩的景物和生物 通过视觉感官在大脑中留下的印记。
● 数字图像:直接量化的原始信号 ●图形:运算形成的抽象化产物
40

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
答: Laplacian 算子进行检测边缘是利用阶跃边缘灰度变化的二阶导数特性,根据边缘点是零交叉点来检测图像边缘位 置。 它对应的模板为 -1 -1 -4 1 -1
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。

数字图像的基本原理

数字图像的基本原理

数字图像的基本原理
数字图像的基本原理包括图像的采集、表示和处理。

图像的采集是指通过光学传感器或其他设备将物体的光信息转化为数字信号。

光信息首先被分为像素,每个像素包含有关该位置的亮度和颜色信息。

图像的表示是指将图像数据转化为计算机可理解的数字形式。

最常见的表示方法是使用二维矩阵或数组,每个元素表示一个像素的属性。

常见的属性包括灰度值、RGB值或其他颜色模型的数值。

图像的处理指对图像数据进行操作以改变图像的外观或提取有用信息。

常见的图像处理操作包括图像滤波、增强、颜色空间转换、几何变换、图像分割和特征提取等。

通过这些操作,可以改善图像的质量、减少噪声、增强边缘和纹理等细节。

此外,数字图像的基本原理还包括图像的压缩和存储。

图像压缩是指通过编码技术减少图像数据的存储空间和传输带宽,如JPEG、PNG等压缩算法。

图像存储是将图像数据保存在计算机存储介质中,如硬盘、光盘或闪存等。

总之,数字图像的基本原理涉及图像的采集、表示、处理、压缩和存储。

这些原理在计算机视觉、图像处理和计算机图形学等领域起着重要作用。

数字图像处理边界和区域表示和描述

数字图像处理边界和区域表示和描述

第十一章 图像描述和分析灰度描述基于边界的表达基于区域的表达基于变换的表达基于边界的描述基于区域的描述纹理描述形状分析图像分析是一种描述过程,研究用自动或半自动系统,从图像中提取有用数据或信息生成非图的描述或表达。

图像分析:图像分割、特征提取、符号描述、纹理分析、运动图像分析和图像的检测与配准。

预处理图像分割特征提取分类描述符号表达识别跟踪图像理解输入图像第十一章 图像描述和分析第十一章 图像描述和分析通过图像分割可得到图像中感兴趣的区域,即目标。

图像中目标的表达/表示和描述:先需要将目标标记出来,这时主要考虑目标像素的连通性。

在此基础上,可以对目标采取合适的数据结构来表达,并采用恰当的形式描述它们的特性。

第十一章 图像描述和分析图像分割结果得到了区域内的像素集合,或位于区域边界上的像素集合,这两个集合是互补的。

与分割类似,图像中的区域可用其内部(如组成区域的像素集合)表达,也可用其外部(如组成区域边界的像素集合)表达。

一般来说,如果关心的是区域的反射性质,如灰度、颜色、纹理等,常用内部表达法;如果关心的是区域形状、曲率,则选用外部表达法。

第十一章 图像描述和分析表达是直接具体地表达目标,好的表达方法应具有节省存储空间、易于特征计算等优点。

描述是较抽象地表达目标。

好的描述应在尽可能区别不同目标的基础上对目标的尺度、平移、旋转等不敏感,这样的描述比较通用。

描述可分为对边界的描述和对区域的描述。

此外,边界和边界或区域和区域之间的关系也常需要进行描述。

第十一章 图像描述和分析表达和描述是密切联系的。

表达的方法对描述很重要,因为它限定了描述的精确性;而通过对目标的描述,各种表达方法才有实际意义。

表达和描述又有区别,表达侧重于数据结构,而描述侧重于区域特性以及不同区域间的联系和差别。

表达和描述抽象的程度不同,但其分别的界限是相对的。

第十一章 图像描述和分析对目标特征的测量是要利用分割结果进一步从图像中获取有用信息,为达到这个目的需要解决两个关键问题:选用什么特征来描述目标如何精确地测量这些特征常见的目标特征分为灰度、颜色、纹理和几何形状特征等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Spatial aliasing occurs with the high frequency detail being translated to a low frequency due to some of its transitions are missed
• In the selection of a suitable spatial resolution, the display-observer distance is another factor for consideration. As the distance between an image and observer doubles corresponding to a reduction of the image size by on-half, the spatial resolution can be decreased by on-half without causing any spatial detail loss for the observer.
Quantisation and Brightness Resolution
• If the intensity of a continuous-tone image at a sampling point is quantised to an integer value called the gray-level, then the accuracy of the gray-level assigned depends on the number of bits used to represent the number of gray-levels in an image. As the number of bits are decreased, the image appears coarser due to lower brightness resolution with an insufficient number of gray-levels in smooth areas of the image.
数字图像处理-图像的表达
Sampling&Quantisation 采样和量化
• 采 样 时 要 确 定 好 空 间 分 辨 率 , 即 DPI • 量化时要确定好灰度分辨率,將采样
影像转换为 数值的过程称为量化。例 如 , 白 色 是 转 化 为 “1” 和黑色則转化为 “0” 。
• Digital Image Acquisition A physical image, which may be visible or
invisible to the human eye, is normally a continuoustone image with various shades blended together smoothly having no disruptions. Acquisition of a digital image from a continuous-tone image requires digitization of spatial coordinates(Known as sampling) and digitization of brightness(Known as quantisation).
Two different data types are available in Matlab to represent the gray-level: • double(double precision): the gray-level values rang from 0 (corresponding to black) to
(d) A/D converter to convert the continuous output of the light sensor into an integer value
(e) Memory to store the gray-level values produced by the A/D converter
9
Intensity Images (Gray-Scale Images)
• Matlab uses a single matrix to represent an intensity image with the magnitude value of each element in the matrix corresponding to the gray-level of each pixel in the image.
(b) Scanning mechanism to move the sampling aperture over the image in s predetermined pattern
(c) Light sensor to measure the brightness of the image at each pixel through the sampling aperture
1 (corresponding to white), and it is used for performing mathematical operations.
• uint8(unsigned 8 bit integers): the gray-level values range from 0 (corresponding to black) to 255(corresponding to white), and it is used to save memory as it requires only 1/8 the memory for a double precision array (no mathematical operations are defined for this data type).
Correctly Sampled Image Line
Sampled at a rate 2 times the spatial frequency
Original Image Line
Undersampled Image Line
Sampled at a rate less than half the spatial frequency
Brightness Resolution 分辨率
• 電腦顯示器的解析度大約為 72 dpi ,印表機是從150 到1440 dpi (高解析度機種) ,而掃瞄 器的解析度是300dpi 或更高。
• Post scr i pt 的印表機使用一種 解析度衡量方式,稱為每英吋 線數( l pi ),意思是指每一英吋 中可以畫入的線條數量。這種 方式的影用是基於要把半色調 影像,例如相片,分解成點( 或 圖素) 。在過去,這種半色調的
8
Digital Image Representation in Matlab
Matlab uses a rectangular matrix (two-dimensional array) to represent a digital image. There are four basic types of images supported by Matlab, namely, intensity (gray-level) images, binary images, RGB images and indexed images.
4
Sampling and Spatial Resolution
• However, for a given application, selecting the minimum resolution necessary can significantly reduce storage and processing requirements. According to the classical sampling theorem, an image must be sampled at a rate at least twice as fast as the highest spatial frequency (the frequency at which brightness cycle from dark to light and back to dark) contained in the image.
顯示是由不同寬度的直線構成。在近年,轉變成以格子的方式來呈現,因此可以把 影像分裂成點,每英吋線數的方式也就不適用了。報紙有 60 lpi的解析度,而雜 誌有133-175 lpi的解析度。高品質的印刷原料可能會超過 200 lpi。
Digital Imagage is represented mathematically by the function f(x,y), where x and y are independent variables denoting spatial co-ordinates, and the value of f at spatial coordinates (x,y) gives the intensity of the image at that point. However, there are three different spatial co-ordinate systems being used in digital image processing:
Ex001.m
• Like spatial resolution, the brightness resolution also depends on image-observer distance. The smaller the image as it is placed further away from the observer, the lower brightness resolution needs to be.
相关文档
最新文档